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Nomenclature

RNA Polymerization occurs 5’ to 3’

5’ 3’
5’3’

Template Strand

Nontemplate or Coding Strand

5’ 3’

RNA 
starts

xyz

+1

Promoter Terminator

DownstreamUpstream

-10 +10

Transcription unit
RNA-coding region

Slide courtesy Prof. Mathee
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Transcriptional unit and single gene mature mRNA 

Transcriptional unit

5’ 3’

Transcription  
start site

ORF+1
Terminator

-10
RNA-coding region

-35
Promoter

Start
Codon

3’5’
Protein-coding region

Stop
Codon

5’ untranslated region
5’ UTR
Leader

3’ untranslated region
3’ UTR
Trailer

RBS
RBS

Ribosome 
binding site

mRNA
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Messenger RNA or mRNA 

Initation Codon AUG Methionine Termination Codons

Others: GUG Valine
UUG Leucine
AUU Isoleucine

UAA Ochre
UAG Amber
UGA Opal

Untranslated
leader

Intracistronic
Distance
1-40 bp

Trailer

Coding region
Open Reading Frame (ORF)

Start

mRNA

Stop
ORF

RBS
Ribosome Binding Site
Shine-Dalgarno Sequence

Start Stop

7 bp upstream of start codon
5’--AGGAGG--3’

Reading frame is one of three possible 
ways of reading a nucleotide sequence as 
a series of triplets. 

Slide courtesy Prof. Mathee
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β '

α β

σ

α
RNAP Holoenzyme

Transcription Starts

Spacer Region
16-18 bp

TTGACA TATAATE. coli consensus for σ70

+20+1
A/G

-10-20-30-40-60 -50

-35 -10
4-8 bp

Basal Promoter:
ORF

+20+1
A/G

-10-20-30-40-60 -50

-35 -10UP Element

AT-rich
α-CTD makes the contact

Transcription Starts
Stronger Promoter:

ORF

Transcriptional machinery: RNA Polymerase and 
DNA

Slide courtesy Prof. Mathee



CAP5510/CGS5166 53/7/06

Prokaryotic Gene Characteristics



Gene Expression
• Process of transcription and/or translation 

of a gene is called gene expression.
• Every cell of an organism has the same 

genetic material, but different genes are 
expressed at different times.

• Patterns of gene expression in a cell is 
indicative of its state. 
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Hybridization
• If two complementary strands of DNA or 

mRNA are brought together under the right 
experimental conditions they will hybridize.

• A hybridizes to B ⇒
– A is reverse complementary to B, or 
– A is reverse complementary to a subsequence of 

B.
• It is possible to experimentally verify 

whether A hybridizes to B, by labeling A or B
with a radioactive or fluorescent tag, 
followed by excitation by laser.
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Measuring gene expression
• Gene expression for a single gene can be 

measured by extracting mRNA from the cell 
and doing a simple hybridization experiment. 

• Given a sample of cells, gene expression for 
every gene can be measured using a single 
microarray experiment.
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Microarray/DNA chip technology
• High-throughput method to study gene expression 

of thousands of genes simultaneously.
• Many applications:

– Genetic disorders & Mutation/polymorphism detection
– Study of  disease subtypes
– Drug discovery & toxicology studies
– Pathogen analysis
– Differing expressions over time, between tissues, 

between drugs, across disease states
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Microarray Data
Gene Expression Level

Gene1

Gene2

Gene3

…
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Microarray/DNA chips (Simplified)
• Construct probes corresponding to reverse 

complements of genes of interest.
• Microscopic quantities of probes placed on solid 

surfaces at defined spots on the chip.
• Extract mRNA from sample cells and label them.
• Apply labeled sample (mRNA extracted from cells) 

to every spot, and allow hybridization.
• Wash off unhybridized material.
• Use optical detector to measure amount of 

fluorescence from each spot.
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Gene Chips
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Affymetrix DNA chip schematic

www.affymetrix.com
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What’s on the slide?
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DNA Chips & Images
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Microarrays: competing technologies
• Affymetrix & Synteni/Stanford
• Differ in: 

– method to place DNA: Spotting vs. 
photolithography

– Length of probe
– Complete sequence vs. series of fragments 
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How to compare 2 cell samples with 
Two-Color Microarrays?

• mRNA from sample 1 is extracted and labeled with 
a red fluorescent dye.

• mRNA from sample 2 is extracted and labeled with 
a green fluorescent dye.

• Mix the samples and apply it to every spot on the 
microarray. Hybridize sample mixture to probes. 

• Use optical detector to measure the amount of 
green and red fluorescence at each spot.
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http://www.arabidopsis.org/info/2010_projects/comp_proj/AFGC/RevisedAFGC/Friday/



Sample          

Treated Sample(t1)                                Expt 1             
Treated Sample(t2)                                   Expt 2
Treated Sample(t3)                                       Expt 3
…
Treated Sample(tn)                                         Expt n

Study effect of treatment over time
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• Variations in cells/individuals.
• Variations in mRNA extraction, isolation, introduction of 

dye, variation in dye incorporation, dye interference.
• Variations in probe concentration, probe amounts, substrate 

surface characteristics
• Variations in hybridization conditions and kinetics
• Variations in optical measurements, spot misalignments, 

discretization effects, noise due to scanner lens and laser 
irregularities

• Cross-hybridization of sequences with high sequence 
identity.

• Limit of factor 2 in precision of results.

Sources of Variations & Errors

Need to Normalize data
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Types of bias/variation
• Intensity & Range

– Variation changes with intensity. Larger variation 
at lower end.

• Spatial 
– Spot location changes expression

• Plate
– Printing plate changes expression

http://www.arabidopsis.org/info/2010_projects/comp_proj/AFGC/RevisedAFGC/Friday/index.htm
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Clustering
• Clustering is a general method to study 

patterns in gene expressions. 
• Several known methods:

– Hierarchical Clustering (Bottom-Up Approach)
– K-means Clustering (Top-Down Approach)
– Self-Organizing Maps (SOM)
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Hierarchical Clustering: Example
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A Dendrogram
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Hierarchical Clustering [Johnson, SC, 1967]
• Given n points in Rd, compute the distance 

between every pair of points
• While (not done)

– Pick closest pair of points si and sj and make 
them part of the same cluster.

– Replace the pair by an average of the two sij

Try the applet at:
http://www.cs.mcgill.ca/~papou/#applet
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Distance Metrics
• For clustering, define a distance function:

– Euclidean distance metrics

– Pearson correlation coefficient

k=2: Euclidean Distance
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Clustering of gene expressions
• Represent each gene as a vector or a point in 

d-space where d is the number of arrays or 
experiments being analyzed.
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From Eisen MB, et al, PNAS 1998 95(25):14863-8 

Clustering Random vs. Biological 
Data
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K-Means Clustering: Example

Example from Andrew Moore’s tutorial on Clustering.
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Start
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Start

End
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K-Means Clustering [McQueen ’67]
Repeat
– Start with randomly chosen cluster centers
– Assign points to give greatest increase in score
– Recompute cluster centers
– Reassign points
until (no changes)

Try the applet at: http://www.cs.mcgill.ca/~bonnef/project.html

CAP5510/CGS5166 403/7/06

http://www.cs.mcgill.ca/~bonnef/project.html


Comparisons
• Hierarchical clustering

– Number of clusters not preset.
– Complete hierarchy of clusters
– Not very robust, not very efficient.

• K-Means
– Need definition of a mean. Categorical data?
– More efficient and often finds optimum 

clustering.
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Functionally related 
genes behave similarly 
across experiments



Self-Organizing Maps [Kohonen]
• Kind of neural network.
• Clusters data and find complex relationships 

between clusters.
• Helps reduce the dimensionality of the data.
• Map of 1 or 2 dimensions produced.
• Unsupervised Clustering
• Like K-Means, except for visualization
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SOM Architectures
• 2-D Grid
• 3-D Grid
• Hexagonal Grid

CAP5510/CGS5166 443/7/06



SOM Algorithm
• Select SOM architecture, and initialize 

weight vectors and other parameters.
• While (stopping condition not satisfied) do

for each input point x
– winning node q has weight vector closest to x.
– Update weight vector of q and its neighbors.
– Reduce neighborhood size and learning rate.
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SOM Algorithm Details

• Distance between x and weight vector:
• Winning node:  
• Weight update function (for neighbors): 

• Learning rate:
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World Bank Statistics
• Data: World Bank statistics of countries in 

1992. 
• 39 indicators considered e.g., health, 

nutrition, educational services, etc. 
• The complex joint effect of these factors 

can can be visualized by organizing the 
countries using the self-organizing map. 

CAP5510/CGS5166 473/7/06



World Poverty PCA
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World Poverty SOM
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World Poverty Map
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Viewing SOM Clusters on PCA axes
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http://www.axon.com/genomics/Acuity_PCA_3D.avi


SOM Example [Xiao-rui He]
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Neural Networks

ΣInput X

Synaptic
Weights W

ƒ(•)

Bias θ

Output y
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Learning NN

×

×

× Σ

Σ

Adaptive Algorithm

Input X

1

Weights W

−
+

Desired Response

Error
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Types of NNs
• Recurrent NN
• Feed-forward NN
• Layered

Other issues
• Hidden layers possible
• Different activation functions possible
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Application: Secondary Structure Prediction

CAP5510/CGS5166 583/7/06



Support Vector Machines
• Supervised Statistical Learning Method for:

– Classification
– Regression

• Simplest Version:
– Training: Present series of labeled examples 

(e.g., gene expressions of tumor vs. normal cells)
– Prediction: Predict labels of new examples.
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Learning Problems

A
A

A

B

A
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SVM – Binary Classification
• Partition feature space with a surface.
• Surface is implied by a subset of the 

training points (vectors) near it. These 
vectors are referred to as Support Vectors. 

• Efficient with high-dimensional data. 
• Solid statistical theory
• Subsume several other methods.
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Learning Problems
• Binary Classification
• Multi-class classification
• Regression
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SVM – General Principles
• SVMs perform binary classification by 

partitioning the feature space with a surface 
implied by a subset of the training points 
(vectors) near the separating surface. These 
vectors are referred to as Support Vectors. 

• Efficient with high-dimensional data. 
• Solid statistical theory
• Subsume several other methods.
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SVM Example (Radial Basis Function)
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SVM Ingredients
• Support Vectors
• Mapping from Input Space to Feature Space
• Dot Product – Kernel function
• Weights
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Classification of 2-D 
(Separable) data
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Classification of
(Separable) 2-D data



CAP5510/CGS5166 713/7/06

Classification of (Separable) 2-D 
data

+1

-1

•Margin of a point
•Margin of a point set
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Classification using the 
Separator

x

Separator
w•x + b = 0

w•xi + b > 0

w•xj + b < 0

x
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Perceptron Algorithm (Primal)

Given separable training set S and learning rate η>0 
w0 = 0; // Weight
b0 = 0;  // Bias
k = 0; R = max xi
repeat

for i = 1 to N 
if yi (wk•xi + bk) ≤ 0 then

wk+1 = wk + ηyixi
bk+1 = bk + ηyiR2

k = k + 1
Until no  mistakes made within loop
Return k, and  (wk, bk) where k = # of mistakes

Rosenblatt, 1956

w = Σ aiyixi



Theorem: 
If margin m of S is positive, then 

i.e., the algorithm will always converge, 
and will converge quickly.

Performance for Separable Data

k ≤ (2R/m)2
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Perceptron Algorithm (Dual)
Given a separable training set S 
a = 0; b0 = 0; 
R = max xi
repeat

for i = 1 to N 
if yi (Σaj yj xi•xj + b) ≤ 0 then

ai = ai + 1
b = b + yiR2

endif
Until no  mistakes made within loop
Return (a, b)
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Non-linear Separators
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Main idea: Map into feature space
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Non-linear Separators
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X F



Useful URLs
• http://www.support-vector.net
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http://www.support-vector.net/


Perceptron Algorithm (Dual)
Given a separable training set S 
a = 0; b0 = 0; 
R = max xi
repeat

for i = 1 to N 
if yi (Σaj yj (xi ,xj) + b) ≤ 0 then

ai = ai + 1
b = b + yiR2

Until no  mistakes made within loop
Return (a, b)

(xi ,xj) = Φ(xi)• Φ(xj)
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Different Kernel Functions
• Polynomial kernel

• Radial Basis Kernel

• Sigmoid Kernel
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SVM Ingredients
• Support Vectors
• Mapping from Input Space to Feature Space
• Dot Product – Kernel function
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Generalizations
• How to deal with more than 2 classes?

Idea: Associate weight and bias for each class.
• How to deal with non-linear separator?

Idea: Support Vector Machines.
• How to deal with linear regression?
• How to deal with non-separable data?
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Applications
• Text Categorization & Information Filtering

– 12,902 Reuters Stories, 118 categories (91% !!)
• Image Recognition

– Face Detection, tumor anomalies, defective parts 
in assembly line, etc. 

• Gene Expression Analysis
• Protein Homology Detection
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SVM Example (Radial Basis Function)
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Sources of Variations & Errors in 
Microarray Data

• Variations in cells/individuals.
• Variations in mRNA extraction, isolation, 

introduction of dye, variation in dye incorporation, 
dye interference.

• Variations in probe concentration, probe amounts, 
substrate surface characteristics

• Variations in hybridization conditions and kinetics
• Variations in optical measurements, spot 

misalignments, discretization effects, noise due to 
scanner lens and laser irregularities

• Cross-hybridization of sequences with high 
sequence identity.

• Limit of factor 2 in precision of results.Need to Normalize data



Significance Analysis of Microarrays (SAM) 
[Tusher, Tibshirani, Chu, PNAS’01]

• Fold change is a typical measure to decide 
genes of interest.

• However, variations in gene expression are 
also gene dependent. If repeats are 
available, then such variations can be 
measured for each gene. This helps to give a 
better analysis of significant genes of 
interest. 
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Genomics
• Study of all genes in a genome, or comparison of 

whole genomes.
– Whole genome sequencing
– Whole genome annotation & Functional genomics
– Whole genome comparison 

• PipMaker: uses BLASTZ to compare very long sequences     (> 
2Mb); http://www.cse.psu.edu/pipmaker/

• Mummer: used for comparing long microbial sequences (uses 
Suffix trees!)
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Genomics (Cont’d)
– Gene Expression

• Microarray experiments & analysis
– Probe design (CODEHOP)
– Array image analysis (CrazyQuant)
– Identifying genes with significant changes (SAM)
– Clustering 
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Proteomics
• Study of all proteins in a genome, or 

comparison of whole genomes.
– Whole genome annotation & Functional 

proteomics
– Whole genome comparison
– Protein Expression: 2D Gel Electrophoresis
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2D Gel Electrophoresis
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Other Proteomics Tools
From ExPASy/SWISS-PROT:
• AACompIdent identify proteins from aa composition
[Input: aa composition, isoelectric point, mol wt., etc. Output: proteins from DB]
• AACompSim compares proteins aa composition with other proteins
• MultIdent uses mol wt., mass fingerprints, etc. to identify proteins
• PeptIdent compares experimentally determined mass fingerprints with 

theoretically determined ones for all proteins
• FindMod predicts post-translational modifications based on mass difference 

between experimental and theoretical mass fingerprints.
• PeptideMass theoretical mass fingerprint for a given protein.
• GlycoMod predicts oligosaccharide modifications from mass difference
• TGREASE calculates hydrophobicity of protein along its length
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Databases for Comparative Genomics
• PEDANT useful resource for standard questions in 

comparative genomics. For e.g., how many known 
proteins in XXX have known 3-d structures, how 
many proteins from family YYY are in ZZZ, etc.

• COGs Clusters of orthologous groups of proteins.
• MBGD Microbial genome database searches for 

homologs in all microbial genomes
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Gene Networks & Pathways
• Genes & Proteins act in concert and 

therefore form a complex network of 
dependencies. 
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Pathway Example from KEGG

Staphylococcus aureus
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Pseudomonas aeruginosa



STSs and ESTs
• Sequence-Tagged Site: short, unique 

sequence
• Expressed Sequence Tag: short, unique 

sequence from a coding region
– 1991: 609 ESTs [Adams et al.] 
– June 2000: 4.6 million in dbEST
– Genome sequencing center at St. Louis produce 

20,000 ESTs per week.

CAP5510/CGS5166 1003/7/06



CAP5510/CGS5166 1013/7/06

What Are ESTs and How Are They 
Made?

• Small pieces of DNA sequence (usually 200 - 500 
nucleotides) of low quality.

• Extract mRNA from cells, tissues, or organs and 
sequence either end. Reverse transcribe to get cDNA
(5’ EST and 3’EST) and deposit in EST library. 

• Used as "tags" or markers for that gene. 
• Can be used to identify similar genes from other 

organisms (Complications: variations among 
organisms, variations in genome size, presence or 
absence of introns).

• 5’ ESTs tend to be more useful (cross-species 
conservation), 3’ EST often in UTR.



Start and Stop Codon Distribution
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Genetic Code

Slide courtesy http://www.emc.maricopa.edu/faculty/farabee/BIOBK/code.gif



Recognizing Codons
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Codon Bias
• Some codons preferred over others. O = optimal

S = suboptimal
R = rare
U = unfavorable

Frame Shift 1

Frame Shift 2
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Codon Bias
• Codon biases specific to organisms O = optimal

S = suboptimal
R = rare
U = unfavorable

Same Frames;
Different labeling
of codon types
(i.e., from yeast)



Eukaryotic Gene Prediction
• Complicated by introns & alternative splicing 
• Exons/introns have different GC content.
• Many other measures distinguish exons/introns
• Software: 

– GENEPARSER Snyder & Stormo (NN)
– GENIE Kulp, Haussler, Reese, Eckman (HMM)
– GENSCAN Burge, Karlin (Decision Trees)
– XGRAIL Xu, Einstein, Mural, Shah, Uberbacher (NN)
– PROCRUSTES Gelfand (Formal Languages)
– MZEF Zhang
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Introns/Exons in C. elegans

A/T

G/C

• 8192 Introns in C. elegans : [GT…AG]
• Vary in lengths from 30 to over 600; Complexity 
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HMM structure for Gene Finding

Start EndState1 State4

State2 State3

UTR OneExon

1st Exon
Exon

Intron

Last Exon

UTR
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Motifs in Protein SequencesMotifs in Protein Sequences

Examples: Helix-Turn-Helix, Zinc-finger, 
Homeobox domain, Hairpin-beta motif, 
Calcium-binding motif, Beta-alpha-beta motif,
Coiled-coil motifs.

Examples: Helix-Turn-Helix, Zinc-finger, 
Homeobox domain, Hairpin-beta motif, 
Calcium-binding motif, Beta-alpha-beta motif,
Coiled-coil motifs.

Motifs are combinations of secondary structures in 
proteins with a specific structure and a specific function.
They are also called super-secondary structures.

Motifs are combinations of secondary structures in 
proteins with a specific structure and a specific function.
They are also called super-secondary structures.

Several motifs may combine to form domains. 
• Serine proteinase domain, Kringle domain, calcium-binding 
domain, homeobox domain.

Several motifs may combine to form domains. 
• Serine proteinase domain, Kringle domain, calcium-binding 
domain, homeobox domain.
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Helix-Turn-Helix MotifsHelix-Turn-Helix Motifs

• Structure
• 3-helix complex
• Length: 22 amino acids
• Turn angle

• Function
• Gene regulation by 

binding to DNA

Branden & Tooze
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DNA Binding at HTH MotifDNA Binding at HTH Motif

Branden & Tooze



HTH Motifs: ExamplesHTH Motifs: Examples

Loc Helix 2 Turn Helix 3 
 

Protein  
Name -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

14 Cro F G Q E K T A K D L G V Y Q S A I N K A I H 
16 434 Cro M T Q T E L A T K A G V K Q Q S I Q L I E A 
11 P22 Cro G T Q R A V A K A L G I S D A A V S Q W K E 
31 Rep L S Q E S V A D K M G M G Q S G V G A L F N 
16 434 Rep L N Q A E L A Q K V G T T Q Q S I E Q L E N 
19 P22 Rep I R Q A A L G K M V G V S N V A I S Q W E R 
24 CII L G T E K T A E A V G V D K S Q I S R W K R 
4 LacR V T L Y D V A E Y A G V S Y Q T V S R V V N 
167 CAP I T R Q E I G Q I V G C S R E T V G R I L K 
66 TrpR M S Q R E L K N E L G A G I A T I T R G S N 
22 BlaA Pv L N F T K A A L E L Y V T Q G A V S Q Q V R 
23 TrpI Ps N S V S Q A A E Q L H V T H G A V S R Q L K 
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Basis for New AlgorithmBasis for New Algorithm
• Combinations of residues in specific locations 

(may not be contiguous) contribute towards 
stabilizing a structure. 

• Some reinforcing combinations are relatively 
rare. 

• Combinations of residues in specific locations 
(may not be contiguous) contribute towards 
stabilizing a structure. 

• Some reinforcing combinations are relatively 
rare. 
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New Motif Detection AlgorithmNew Motif Detection Algorithm

Pattern Generation: Pattern Generation: 

Pattern Generator
Aligned Motif
Examples

Pattern 
DictionaryMotif Detection: Motif Detection: 

Motif Detector
New Protein
Sequence

Detection
Results
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PatternsPatterns
Loc Helix 2 Turn Helix 3 
 

Protein  
Name -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

14 Cro F G Q E K T A K D L G V Y Q S A I N K A I H 
16 434 Cro M T Q T E L A T K A G V K Q Q S I Q L I E A 
11 P22 Cro G T Q R A V A K A L G I S D A A V S Q W K E 
31 Rep L S Q E S V A D K M G M G Q S G V G A L F N 
16 434 Rep L N Q A E L A Q K V G T T Q Q S I E Q L E N 
19 P22 Rep I R Q A A L G K M V G V S N V A I S Q W E R 
24 CII L G T E K T A E A V G V D K S Q I S R W K R 
4 LacR V T L Y D V A E Y A G V S Y Q T V S R V V N 
167 CAP I T R Q E I G Q I V G C S R E T V G R I L K 
66 TrpR M S Q R E L K N E L G A G I A T I T R G S N 
22 BlaA Pv L N F T K A A L E L Y V T Q G A V S Q Q V R 
23 TrpI Ps N S V S Q A A E Q L H V T H G A V S R Q L K 
 

• Q1 G9 N20
• A5 G9 V10 I15 



Pattern Mining Algorithm Pattern Mining Algorithm 
Algorithm Pattern-Mining
Input:  Motif length m, support threshold T, 

list of aligned motifs M.
Output: Dictionary L of frequent patterns.

1. L1 := All frequent patterns of length 1 
2. for i = 2 to m do
3. Ci := Candidates(Li-1)
4.          Li := Frequent candidates from Ci
5.          if (|Li| <= 1) then
6.               return L as the union of all Lj , j <= i.

Algorithm PatternPattern--MiningMining
Input:  Motif length m, support threshold T, 

list of aligned motifs M.
Output: Dictionary L of frequent patterns.

1. L1 := All frequent patterns of length 1 
2. for i = 2 to m do
3. Ci := Candidates(Li-1)
4.          Li := Frequent candidates from Ci
5.          if (|Li| <= 1) then
6.               return L as the union of all Lj , j <= i.
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Candidates FunctionCandidates Function

G1, V2, S3 
G1, V2, T6 
G1, V2, I7
G1, V2, E8
G1, S3, T6
G1, T6, I7
V2, T6, I7
V2, T6, E8

L3

G1, V2, S3, T6 
G1, V2, S3, I7
G1, V2, S3, E8
G1, V2, T6, I7
G1, V2, T6, E8
G1, V2, I7, E8
V2, T6, I7, E8

C4

G1, V2, S3, T6 
G1, V2, S3, I7
G1, V2, S3, E8

G1, V2, T6, E8

V2, T6, I7, E8

L4
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Motif Detection AlgorithmMotif Detection Algorithm
Algorithm Motif-Detection

Input :  Motif length m, threshold score T, pattern dictionary L, and 
input protein sequence P[1..n].  

Output : Information about motif(s) detected.

1. for each location i do
2. S := MatchScore(P[i..i+m-1], L).
3.    if (S > T) then
4.       Report it as a possible motif

Algorithm MotifMotif--DetectionDetection

Input :  Motif length m, threshold score T, pattern dictionary L, and 
input protein sequence P[1..n].  

Output : Information about motif(s) detected.

1. for each location i do
2. S := MatchScore(P[i..i+m-1], L).
3.    if (S > T) then
4.       Report it as a possible motif
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Experimental Results: GYM 2.0Experimental Results: GYM 2.0

Motif Protein 
Family 

Number 
Tested 

GYM = DE 
Agree 

Number 
Annotated 

GYM = Annot. 

Master 88 88 (100 %) 13 13 
Sigma 314 284 + 23 (98 %) 96 82 

Negates 93 86 (92 %) 0 0 
LysR 130 127 (98 %) 95 93 
AraC 68 57 (84 %) 41 34 
Rreg 116 99 (85 %) 57 46 

HTH 
Motif  
(22) 

Total 675 653 + 23 (94 %) 289 255 (88 %) 
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ExperimentsExperiments
• Basic Implementation (Y. Gao)
• Improved implementation & comprehensive testing 

(K. Mathee, GN).
• Implementation for homeobox domain detection (X. Wang). 
• Statistical methods to determine thresholds (C. Bu). 
• Use of substitution matrix (C. Bu). 
• Study of patterns causing errors (N. Xu). 
• Negative training set (N. Xu). 
• NN implementation & testing (J. Liu & X. He).
• HMM implementation & testing (J. Liu & X. He).

• Basic Implementation (Y. Gao)
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• Study of patterns causing errors (N. Xu). 
• Negative training set (N. Xu). 
• NN implementation & testing (J. Liu & X. He).
• HMM implementation & testing (J. Liu & X. He).
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