Polymerase Chain Reaction (PCR)

* For testing, large amount of DNA is needed

- Identifying individuals for forensic purposes
* (0.1 yL of saliva contains enough epithelial cells)

- Identifying pathogens (viruses and/or bacteria)

* PCR is a technique to amplify the number of
copies of a specific region of DNA.

» Useful when exact DNA sequence is unknown
* Need to know "flanking” sequences
» Primers designed from "flanking" sequences
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PCR
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Schematic outline of a typical PCR cycle
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PCR: Polymerase Chain Reaction
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Gel Electrophoresis

» Used to measure the lengths of DNA
fragments.
» When voltage is applied to DNA, different

size fragments migrate to different
distances (smaller ones travel farther).
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Gel Pictures
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Gel Electrophoresis: Measure sizes of fragments

« The phosphate backbone makes DNA a highly
negatively charged molecule. Thus DNA can be
fractionated according to its size.

e Gel: allow hot 1 % solution of purifed agarose to cool
and solidify/polymerize (like Jello).

« DNA sample added to wells at the top of a gel and
voltage is applied. Larger fragments migrate through
the pores slower.

* Proteins can be separated in much the same way,
only acrylamide is used as the crosslinking agent.

e Varying concentration of agarose makes different
pore sizes & results.
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Gel Electrophoresis
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Gel Electrophoresis
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Seqguencing a Fragment Using Gels

» Isolate the desired DNA fragment.

» Using the "starving method"” obtain all
fragments thatend in A, C, G, T

* Run gel with 4 lanes and read the sequence
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Application of Gels: Sequencing

GCCAGGTGAGCCTTTGCA

A C G T
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2D Gel Electrophoresis
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2D-Gels

First Dimension Methodology of a 2D Gel:
Denatured cell extract layered on a glass tube filled with polyacrylamide
saturated with solution of ampholytes, a mixture of polyanionic[(-) charged] and
polycationic [(+) charged] molecules. When placed in an electric field, the
ampholytes separate and form continuous gradient based on net charge. Highly
polyanionic ampholytes will collect at one end of tube, highly polycationic
ampholytes will collect at other end. Gradient of ampholytes establishes pH
gradient. Charged proteins migrate through gradient until they reach their pl, or
Isoelectric point, the pH at which the net charge of the protein is zero. This
resolves proteins that differ by only one charge.

Entering the Second Dimension:
Proteins that were separated on IEF gel are next separated in the second
dimension based on their molecular weights. The IEF gel is extruded from tube
and placed lengthwise in alignment with second polyacrylamide gel slab
saturated with SDS. When an electric field is imposed, the proteins migrate from
IEF gel into SDS slab gel and then separate according to mass. Sequential
resolution of proteins by their charge and mass can give excellent separation of

cellular proteins. As many as 1000 proteins can be resolved simultaneously.
*Some information was taken from Lodish et al. Molecular Cell Biology.
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2D-gels
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Mass Spectrometry
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Mass Spectrometry

e Mass measurements By Time-of-Flight
Pulses of light from laser ionizes protein that is absorbed on metal target.
Electric field accelerates molecules in sample towards detector. The time
to the detector is inversely proportional to the mass of the molecule.
Simple conversion to mass gives the molecular weights of proteins and
peptides.

e Using Peptide Masses to Identify Proteins:
One powerful use of mass spectrometers is to identify a protein from its
peptide mass fingerprint. A peptide mass fingerprint is a compilation of
the molecular weights of peptides generated by a specific protease. The
molecular weights of the parent protein prior to protease treatment and
the subsequent proteolytic fragments are used to search genome
databases for any similarly sized protein with identical or similar peptide
mass maps. The increasing availability of genome sequences combined
with this approach has almost eliminated the need to chemically sequence
a protein to determine its amino acid sequence.
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Genomics

» Study of all genes in a genome, or comparison of
whole genomes.

- Whole genome sequencing

- Whole genome annotation & Functional genomics

- Whole genome comparison

PipMaker: uses BLASTZ to compare very long sequences (>
2Mb);

* Mummer: used for comparing long microbial sequences (uses
Suffix trees!)

3/7/06 CAP5510/CGS5166 20
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Genomics

» Study of all genes in a genome

- Gene Expression

* Microarray experiments & analysis
- Probe design (CODEHOP)
- Array image analysis (CrazyQuant)
- Identifying genes with significant changes (SAM)
- Clustering

3/7/06 CAP5510/CGS5166
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Comparative Genomics

+ Comparison of whole genomes.
- Whole genome sequencing
- Whole genome annotation & Functional genomics

- Whole genome comparison

PipMaker, MultiPipMaker, EnteriX: PipMaker uses BLASTZ to
compare very long sequences (> 2Mb);

* Mummer: used for comparing long microbial sequences (uses
Suffix trees!)

* Many morel
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Databases for Comparative Genomics

* PEDANT useful resource for standard questions in
comparative genomics. For e.q., Aow many known
proteins in XXX have known 3-d structures, how
many proteins from family YYY are in ZZZ, efc.

* COGs Clusters of orthologous groups of proteins.

* MBGD Microbial genome database searches for
homologs in all microbial genomes

3/7/06 CAP5510/CGS5166 23



Proteomics

» Study of all proteins in a genome, or
comparison of whole genomes.

- Whole genome annotation & Functional
proteomics

- Whole genome comparison
- Protein Expression: 2D Gel Electrophoresis

3/7/06 CAP5510/CGS5166
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Other Proteomics Tools

From ExPASy/SWISS-PROT:
AACompIdent identify proteins from aa composition

[Input: aa composition, isoelectric point, mol wt., etc. Output: proteins from DB]
AACompSim compares proteins aa composition with other proteins
MultIdent uses mol wt., mass fingerprints, etc. to identify proteins

PeptIdent compares experimentally determined mass fingerprints with
theoretically determined ones for all proteins

FindMod predicts post-translational modifications based on mass difference
between experimental and theoretical mass fingerprints.

PeptideMass theoretical mass fingerprint for a given protein.
GlycoMod predicts oligosaccharide modifications from mass difference
TGREASE calculates hydrophobicity of protein along its length
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Gene Networks & Pathways

* Genes & Proteins act in concert and
therefore form a complex network of
dependencies.

3/7/06 CAP5510/CGS5166
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Pathway Example from KEGG
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Pseudomonas aeruginosa
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STSs and ESTs

» Sequence-Tagged Site: short, unique
sequence
* Expressed Sequence Tag: short, unique
sequence from a coding region

- 1991: 609 ESTs [Adams et al.]

- June 2000: 4.6 million in dbEST

- Genome sequencing center at St. Louis produce
20,000 ESTs per week.
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What Are ESTs and How Are They Made?

Small pieces of DNA sequence (usually 200 - 500 nucleotides)
of low quality.

Extract mRNA from cells, tissues, or organs and seguence
either end. Reverse transcribe to get cDNA (5 EST and 3'EST)
and deposit in EST library.

Used as "tags" or markers for that gene.

Can be used to identify similar genes from other organisms
(Complications: variations among organisms, variations in
genome size, presence or absence of introns).

5" ESTs tend to be more useful (cross-species conservation), 3’
EST often in UTR.
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DNA Markers

* Uniquely identifiable DNA segments.
+ Short, <b00 nucleotides.

* Layout of these markers give a map of
genome.

* Markers may be polymorphic (variations
among individuals). Polymorphism gives rise
to alleles.

* Found by PCR assays.
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Polymorphisms

» Length polymorphisms
- Variable # of tandem repeats (VNTR)
- Microsatellites or short tandem repeats

- Restriction fragment length polymorphism (RFLP) caused
by changes in restriction sites.

» Single nucleotide polymorphism (SNP)
- Average once every ~100 bases in humans
- Usually biallelic

- dbSNP database of SNPs (over 100,000 SNPs)
- ESTs are a good source of SNPs
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SNPs

- SNPs often act as "disease markers"”, and
provide “"genetic predisposition”.

» SNPs may explain differences in drug
response of individuals.

» Association study: study SNP patterns in
diseased individuals and compare against
SNP patterns in normal individuals.

» Many diseases associated with SNP profile.
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Motifs In Protein Sequences

M otifs are combinations of secondary structuresin
proteins with a specific structur e and a specific function.
They are also called super-secondary structures.

Examples: Helix-Turn-Helix, Zinc-finger,
Homeobox domain, Hairpin-beta motif,
Calcium-binding motif, Beta-al pha-beta motif,
Coiled-coil motifs.

Several motifs may combine to form domains.
 Serine proteinase domain, Kringle domain, calcium-binding
domain, homeobox domain.

3/7/06 CAP5510/CGS5166
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Helix-Turn-Helix Motifs

e Structure
 3-helix complex
e Length: 22 amino acids
e Turn angle

 Function
» Generegulation by
binding to DNA

3/7/06 CAP5510/CGS5166 R 36
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inding at HTH Mot

(b)

Figure 7.10 The helix-turn-helix motif in lambda Cro bound to DNA (orange) with the

two recognition helices (red) of the Cro dimer sitting in the major groove of DNA. The

binding model, suggested by Brian Matthews, is shown schematically in (a) with

connected circles for the C, positions as they were model built into regular B-DNA, A

schematic diagram of the Cro dimer is shown in (b) with different colors for the two

subunits. A schematic space-filling model of the dimer of Cro bound to a bent B-DNA

molecule is shown in (c). The sugar-phosphate backbone of DNA is red, and the bases are

yellow. Protein atoms are colored red, blue, green, and white. [(a) Adapted from D. 37
Ohlendorf et al., J. Mol. Evol. 19: 113, 1983. (¢) Courtesy of Brian Matthews.]
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Basis for New Algorithm

» Combinations of residues in specific locations
(may not be contiguous) contribute towards
stabilizing a structure.

+ Some reinforcing combinations are relatively
rare.

3/7/06 CAP5510/CGS5166 39



New Motif Detection Algorithm

Pattern Generation:; ‘

Aligned Motif
Examples
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Dictionary

New Protan Detection
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Protain
Name

Cro

1 43 1[5 16 17 18 19

434 Cro
P22 Cro
Rep
LacR
CAP
TrpR

Cll

Q1 G9 N20
« A5 G9 V10 115

CAP5510/CGS5166 41

3/7/06



Pattern Mining Algorithm

Algorithm Pattern-Mining

Input: Motif length m, support threshold T,
list of aligned motifs M.

Output: Dictionary L of frequent patterns.

L, := All frequent patterns of length 1
for i =2tom do
C, ;= Candidates(L, ,)
L, := Frequent candidates from C,
If (IL;] <=1) then
return L astheunionof al L, | <=1.

o0k wWNPRE

3/7/06 CAP5510/CGS5166
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Candidates Function
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C,

G1, V2, S3, T6
G1,V2, S3, 17
G1,V2, S3, ES
G1, V2, T6, I7
G1, V2, T6, ES
G1, V2,17, ES

V2, T6, 17, ES
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G1, V2, S3, T6
G1, V2, S3, I7
G1l, V2, S3, ES8
G1, V2, To, E8

V2, T6, 17, ES
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Motif Detection Algorithm
Algorithm Motif-Detection

Input : Motif length m, threshold score T, pattern dictionary L, and
Input protein sequence P[1..n].
Output : Information about motif(s) detected.

1. for eachlocationi do

2. S := MatchScore(P[i..i+m-1], L).
3. if (S>T)then

4 Report it as a possible motif
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Experimental Results: GYM 2.0

Protain GYM =DE Number GYM = Annot.
Family Agree Annotated

Master 88 (100 %) 13 13
Sigma 284 + 23 (98 %) 96 82
Negates 86 (92 %) 0 0

LysR 127 (98 %) 95 93
AraC 57 (84 %) 41 34
Rreg 99 (85 %) Y4 46
Total 653 + 23 (94 %) 289 255 (88 %)
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Experiments

* Basic Implementation (Y. Gao)

* Improved implementation & comprehensive testing
(K. Mathee, GN).

* Implementation for homeobox domain detection (X. Wang).

- Statistical methods to determine thresholds (C. Bu).

+ Use of substitution matrix (C. Bu).

» Study of patterns causing errors (N. Xu).

* Negative training set (N. Xu).

* NN implementation & testing (J. Liu & X. He).

* HMM implementation & testing (J. Liu & X. He).

3/7/06 CAP5510/CGS5166 46



Theory of Evolution

» Charles Darwin
- 1858-59: Origin of Species
— 5 year voyage of H.M.S. Beagle (1831-36)
- Populations have variations.

- Natural Selection & Survival of the fittest: nature
selects best adapted varieties to survive and to
reproduce.

- Speciation arises by splitting of one population into
subpopulations.

- Gregor Mendel and his work (1856-63) on inheritance.

3/7/06 CAP5510/CGS5166 47



_ _ Millions of years
e T i S

25 20 15 0 108 -0

036 Pygmy
0.44 chimp

0.37 Common
chimp

0.56 0.84

Human
Goarilla

R il SRR : - Orangutan

2.30

L Gikbon




Dominant View of Evolution

» All existing organisms are derived from a
common ancestor and that new species arise
by splitting of a population into
subpopulations that do not cross-breed.

* Organization: Directed Rooted Tree;
Existing species: Leaves; Common ancestor
species (divergence event): Internal node;
Length of an edge: Time.
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Constructing Evolutionary/Phylogenetic Trees

» 2 broad categories:

- Distance-based methods
+ Ultrametric
- Additive:
- UPGMA
- Transformed Distance
- Neighbor-Joining
- Character-based
* Maximum Parsimony
+ Maximum Likelihood
* Bayesian Methods
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Ultrametric

* An ultrametric tree:
- decreasing internal node labels

- distance between two nodes is label
of least common ancestor.

- An ultrametric distance matrix:

- Symmetric matrix such that for
every i, j, k, there is tie for
maximum of D(i,j), D(j.k), D(i k)
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Ultrametric: Assumptions

* Molecular Clock Hypothesis, Zuckerkandl &
Pauling, 1962: Accepted point mutations in
amino acid sequence of a protein occurs at a
constant rate.

- Varies from protein to protein

- Varies from one part of a protein to another
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Ultrametric Data Sources

* Lab-based methods: hybridization

- Take denatured DNA of the 2 taxa and let them
hybridize. Then measure energy to separate.

+ Sequence-based methods: distance
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Ultrametric: Example
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Ultrametric: Example
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Ultrametric: Distances Computed
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Additive-Distance Trees

Additive distance trees are edge-weighted trees,
with distance between leaf nodes are exactly
equal to length of path between nodes.

AlB|C|D

A 0[3|7]|9 A®\2 g °PD
B 0|68 ’

C 0|6 L \oc
D 0
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Unrooted Trees on 4 Taxa
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Four-Point Condition

If the true tree is as shown below, then
1. dAB + dCD < dAC + dBD' and
2. dyg + dep < dyap + dpe
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Unweighted pair-group method with
arithmetic means (UPGMA)

A|B|C AB | C
B | de € | dusyx

C | du | dyc D |dusp | deo
D dAD dBD dCD

diapyc = (dac + dgc) /2
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Transformed Distance Method

+ UPGMA makes errors when rate constancy
among lineages does not hold.

* Remedy: infroduce an outgroup & make
corrections

. Dij—Dio—Djo Z Bt
Dij'= +| k=2
2 N

* Now apply UPGMA
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Saitou & Nei: Neighbor-Joining Method

» Start with a star topology.

* Find the pair to separate such that the total
length of the tree is minimized. The pair is
then replaced by its arithmetic mean, and
the process is repeated.

812:%4- 1 Z(le-l— Dak) + 1 ZDij
2 2(n_2) k=3 (n—2) 3<i<j<n
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Neighbor-Joining

NP
>\21 AT\

812:%4- 1 Z(le-l— Dax) + 1 ZDij
2 2(!’]—2) k=3 (n—2) 3<i<j<n

3/7/06 CAPS5510/CGS5166 64



Constructing Evolutionary/Phylogenetic Trees

» 2 broad categories:

- Distance-based methods
+ Ultrametric
- Additive:
- UPGMA
- Transformed Distance
- Neighbor-Joining
- Character-based
* Maximum Parsimony
+ Maximum Likelihood
* Bayesian Methods
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Character-based Methods

» Input: characters, morphological features, sequences, eftc.

» Output: phylogenetic tree that provides the history of what
features changed. [Perfect Phylogeny Problem]

+ one leaf/object, 1 edge per character, path <changed
traits
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» Perfect phylogeny does not a

112|345
A |1 11 01]0
B|(O|O|1]|O
c |1 11 01]0
D| O] 0|1 1
E|O0O|1]0]|O
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c|1(1]]0]0]|1
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E|O|]1|O0|O0]1
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Maximum Parsimony

- Minimize the total number of mutations
implied by the evolutionary history

3/7/06 CAP5510/CGS5166
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Examples of Character Data

1 4 Characters/Sites
A 1 0 Sequences | 1 | 2 | 3 | 4| B | 6|7 |89
B 0] 0] 1 A|lA|G|A |G| T|T|C|A
C 1 0] 2 Al | C|C |G| T | T|C|T
D 0] 1 3 A|lG|A | T|A|T|C|C]|A
E o) 0] 4 AlG|A|G|A|T|C|C|T

3/7/06
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Maximum Parsimony Method: Example

Characters/Sites
>equence 1 112 1345|6789
1 AlA| G| A |G| T | T|C|A
2 Al | C|C| 66| T|T|C]|T
3 AlG|A|T|A | T|C]|C]|A
4 AlG|A|G|A | T|C|C|T
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FIGURE 514 Three possible unrooted trees (I, II, and III) for four DNA sequences
(1, 2, 3, and 4) that have been used to choose the most parsimonious tree, The pos-
sible phylogenetic relationships among the four sequences are shown in Newick
format. The terminal nodes are marked by the sequence number and the nucleo-
tide type at homologous positions in the extant species. Each dot on a branch
means a substitution is inferred on that branch. Note that the nucleotides at the
two internal nodes of each tree represent one possible reconstruction from among
several alternatives. For example, the nucleotides at both the internal nodes of tree
11I(d) (bottom right) can be A instead of T. In this case, the two substitutions will
be positioned on the branches leading to species 2 and 4. Alternatively, other com-
binations of nucleotides can be placed at the internal nodes. However, these alter-
natives will require three substitutions or more. The minimum number of substi-

tutions required for site 9 is two.
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Inferring nucleotides on internal
nodes

(a) (AT) (b) (TAGC)
11
T (TAG)
10 10
(AGT) (AG)
9 9
(CT) (GT) T A
A A VAL
1 2 3 4 5 6 2 4 5 6 3 1
C T G T A A T T A A G C

FIGURE 5.15 Nucleotides in six extant species (1-6) and inferred possible
nucleotides in five ancestral species (7-11) according to the method of Fitch (1971).
Unions are indicated by parentheses. Two different trees (a and b) are depicted.
Note that the inference of an ancestral nucleotide at an internal node is dependent

on the tree. Modified from Fitch (1971).
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B C

\< t Step 1

A s

Searching for \<< \2/ \<< |
the Maximum \ . .
Parsimony

Tree: <<< QZ \<<< \Q( <<<
Exhaustive . N A A R
PRERY Y Y

FIGURE 5.16 Exhaustive stepwise construction of all 15 possible trees for five
OTUs. In step 1, we form the only possible unrooted tree for the first three OTUs
(A, B, and C). In step 2, we add OTU D to each of the three branches of the tree in
step 1, thereby generating three unrooted trees for four OTUs. In step 3, we add
3/7/06 OTU E to each of the five branches of the three trees in step 2, thereby generating

15 unrooted trees. Additions of OTUs are shown as heavier lines. Modifed from
Swofford et al. (1996).
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Probabilistic Models of Evolution

» Assuming a model of

substitution,

- Pr{si(t+A) = Y |Si(1) = X},

» Using this formula it is X
possible to compute the

likelihood that data D is

generated by a given Y
phylogenetic tree T

under a model of

substitution. Now find

the tree with the -Time elapsed? A

maximum likelihood. ‘Prob of change along edge?
Pr{S;(t+A) = Y |S(t) = X}
Prob of data? Product of
prob for all edges
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(a) 1 2 3 4 5 6 7 8 9
OIUl A A G A CT T C A
OTU2 A G C C C T T C T
OTU3 A G A T A T C C A
OTU4 A G A G G T C C T

(b) OTU1 oTU3

HTU5
/
HTUs
OTu2 OTU4
(©
C C
L5y =Prob >A—A<A + Prob >A—C
C G C
C C
+ Prob >C—A<A + Prob >C—C
C G C
C C
+ Prob >T-—A<A + Prob >T—C
C G C
C C
+ Prob \G—A/A + Prob \G—C
C/ N C/

' n
(d) L= L(]_) x L(z) X L(3) XX L(n) =i 1=-.[1L({)

zz2Zz2z=

n
(e} InL = lnL(l) + h1L(2) + ]I!L(g) +..+ L(n) =1' § 1]IIL(,')

FIGURE 5.19 Schematic representation of
the calculation of the likelihood of a tree.
(a) Data in the form of sequence align-
ment of length . (b} One of three possi-
ble trees for the four taxa whose
sequences are shown in (a). (¢) The likeli-
hood of a particular site, in this case site
5, equals the sums of the 16 probabilities
of every possible reconstruction of ances-
tral states at nodes 5 and 6 in (b). (d) The
likelihood of the tree in (b) is the product
of the individual likelihoods for all n
sites. (e) The likelihood is usually evalu-
ated by summing the logarithms of the
likelihoods at each site, and reported as
the log likelihood of the tree. Modified
from Swofford et al. (1996).
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