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Structure Prediction Flowchart

http://www.russell.embl-
heidelberg.de/gtsp/flowchart2.html
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Protein Structure: Energy Terms

Hooke’s law description of bond stretching
Energy due to bond angle bending
Energy due to torsional angle rotations
Energy due to non-bonded interactions 
between two atoms separated by distance r

Lennard-Jones potential (proportional to r-6

Lennard-Jones potential (proportional to r-12

Electrostatic energy
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Energy Function

J. L. Klepeis, M. J. Pieja and C. A. Floudas ,
Biophysical Journal 84:869-882 (2003) 
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Prokaryotic Gene Characteristics
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Gene Expression

Process of transcription and/or translation 
of a gene is called gene expression.
Every cell of an organism has the same 
genetic material, but different genes are 
expressed at different times.
Patterns of gene expression in a cell is 
indicative of its state. 
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Hybridization

If two complementary strands of DNA or 
mRNA are brought together under the right 
experimental conditions they will hybridize.
A hybridizes to B ⇒

A is reverse complementary to B, or 
A is reverse complementary to a subsequence of 
B.

It is possible to experimentally verify 
whether A hybridizes to B, by labeling A or B
with a radioactive or fluorescent tag, 
followed by excitation by laser.
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Measuring gene expression

Gene expression for a single gene can be 
measured by extracting mRNA from the cell 
and doing a simple hybridization experiment. 
Given a sample of cells, gene expression for 
every gene can be measured using a single 
microarray experiment.
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Microarray/DNA chip technology

High-throughput method to study gene expression 
of thousands of genes simultaneously.
Many applications:

Genetic disorders & Mutation/polymorphism detection
Study of  disease subtypes
Drug discovery & toxicology studies
Pathogen analysis
Differing expressions over time, between tissues, 
between drugs, across disease states



Microarray Data
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Gene Expression Level

Gene1

Gene2

Gene3

…



Gene Chips
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Gene g

Probe 1 Probe 2 Probe N…
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Microarray/DNA chips (Simplified)

Construct probes corresponding to reverse 
complements of genes of interest.
Microscopic quantities of probes placed on solid 
surfaces at defined spots on the chip.
Extract mRNA from sample cells and label them.
Apply labeled sample (mRNA extracted from cells) 
to every spot, and allow hybridization.
Wash off unhybridized material.
Use optical detector to measure amount of 
fluorescence from each spot.
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Affymetrix DNA chip schematic

www.affymetrix.com



What’s on the slide?
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DNA Chips & Images
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Microarrays: competing technologies

Affymetrix & Agilent
Differ in: 

method to place DNA: Spotting vs. 
photolithography
Length of probe
Complete sequence vs. series of fragments 
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How to compare 2 cell samples with Two-Color 
Microarrays?

mRNA from sample 1 is extracted and labeled with 
a red fluorescent dye.
mRNA from sample 2 is extracted and labeled with 
a green fluorescent dye.
Mix the samples and apply it to every spot on the 
microarray. Hybridize sample mixture to probes. 
Use optical detector to measure the amount of 
green and red fluorescence at each spot.
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http://www.arabidopsis.org/info/2010_projects/comp_proj/AFGC/RevisedAFGC/Friday/
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Sample          

Treated Sample(t1)                                Expt 1             
Treated Sample(t2)                                   Expt 2
Treated Sample(t3)                                       Expt 3
…
Treated Sample(tn)                                         Expt n

Study effect of treatment over time
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Variations in cells/individuals.
Variations in mRNA extraction, isolation, introduction of 
dye, variation in dye incorporation, dye interference.
Variations in probe concentration, probe amounts, substrate 
surface characteristics
Variations in hybridization conditions and kinetics
Variations in optical measurements, spot misalignments, 
discretization effects, noise due to scanner lens and laser 
irregularities
Cross-hybridization of sequences with high sequence 
identity.
Limit of factor 2 in precision of results.

Sources of Variations & Errors

Need to Normalize data
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Types of bias/variation

Intensity & Range
Variation changes with intensity. Larger variation 
at lower end.

Spatial 
Spot location changes expression

Plate
Printing plate changes expression

http://www.arabidopsis.org/info/2010_projects/comp_proj/AFGC/RevisedAFGC/Friday/index.htm
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Clustering

Clustering is a general method to study 
patterns in gene expressions. 
Several known methods:

Hierarchical Clustering (Bottom-Up Approach)
K-means Clustering (Top-Down Approach)
Self-Organizing Maps (SOM)



Hierarchical Clustering: Example
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A Dendrogram
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Hierarchical Clustering [Johnson, SC, 1967]

Given n points in Rd, compute the distance 
between every pair of points
While (not done)

Pick closest pair of points si and sj and make 
them part of the same cluster.
Replace the pair by an average of the two sij

Try the applet at:
http://www.cs.mcgill.ca/~papou/#applet

http://www.cs.mcgill.ca/~papou/#applet
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Distance Metrics

For clustering, define a distance function:
Euclidean distance metrics

Pearson correlation coefficient

k=2: Euclidean Distance
kd
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Clustering of gene expressions

Represent each gene as a vector or a point in 
d-space where d is the number of arrays or 
experiments being analyzed.
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From Eisen MB, et al, PNAS 1998 95(25):14863-8 

Clustering Random vs. Biological 
Data
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K-Means Clustering: Example

Example from Andrew Moore’s tutorial on Clustering.
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Start
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Start

End
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K-Means Clustering [McQueen ’67]

Repeat
Start with randomly chosen cluster centers
Assign points to give greatest increase in score
Recompute cluster centers
Reassign points

until (no changes)
Try the applet at: http://www.cs.mcgill.ca/~bonnef/project.html

http://www.cs.mcgill.ca/~bonnef/project.html
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Comparisons

Hierarchical clustering
Number of clusters not preset.
Complete hierarchy of clusters
Not very robust, not very efficient.

K-Means
Need definition of a mean. Categorical data?
More efficient and often finds optimum 
clustering.
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Functionally related 
genes behave similarly 
across experiments
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Self-Organizing Maps [Kohonen]

Kind of neural network.
Clusters data and find complex relationships 
between clusters.
Helps reduce the dimensionality of the data.
Map of 1 or 2 dimensions produced.
Unsupervised Clustering
Like K-Means, except for visualization
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SOM Architectures

2-D Grid
3-D Grid
Hexagonal Grid
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SOM Algorithm

Select SOM architecture, and initialize 
weight vectors and other parameters.
While (stopping condition not satisfied) do
for each input point x

winning node q has weight vector closest to x.
Update weight vector of q and its neighbors.
Reduce neighborhood size and learning rate.
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SOM Algorithm Details

Distance between x and weight vector:
Winning node:  
Weight update function (for neighbors): 

Learning rate:
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World Bank Statistics

Data: World Bank statistics of countries in 
1992. 
39 indicators considered e.g., health, 
nutrition, educational services, etc. 
The complex joint effect of these factors 
can can be visualized by organizing the 
countries using the self-organizing map. 



World Poverty PCA
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World Poverty SOM
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World Poverty Map
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Viewing SOM Clusters on PCA axes
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http://www.axon.com/genomics/Acuity_PCA_3D.avi


SOM Example [Xiao-rui He]
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Neural Networks

ΣInput X

Synaptic
Weights W

ƒ(•)

Bias θ

Output y
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Learning NN
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Types of NNs

Recurrent NN
Feed-forward NN
Layered

Other issues
Hidden layers possible
Different activation functions possible



Application: Secondary Structure Prediction
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Support Vector Machines

Supervised Statistical Learning Method for:
Classification
Regression

Simplest Version:
Training: Present series of labeled examples 
(e.g., gene expressions of tumor vs. normal cells)
Prediction: Predict labels of new examples.
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SVM – Binary Classification

Partition feature space with a surface.
Surface is implied by a subset of the 
training points (vectors) near it. These 
vectors are referred to as Support Vectors. 
Efficient with high-dimensional data. 
Solid statistical theory
Subsume several other methods.
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Learning Problems

Binary Classification
Multi-class classification
Regression
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SVM – General Principles

SVMs perform binary classification by 
partitioning the feature space with a surface 
implied by a subset of the training points 
(vectors) near the separating surface. These 
vectors are referred to as Support Vectors. 
Efficient with high-dimensional data. 
Solid statistical theory
Subsume several other methods.



SVM Example (Radial Basis Function)
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SVM Ingredients

Support Vectors
Mapping from Input Space to Feature Space
Dot Product – Kernel function
Weights
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Classification of 2-D 
(Separable) data
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Classification of
(Separable) 2-D data
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Classification of (Separable) 2-D data

•Margin of a point
•Margin of a point set

+1

-1
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x

Separator
w•x + b = 0

w•xi + b > 0

w•xj + b < 0

x

Classification using the Separator
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Perceptron Algorithm (Primal)

Given separable training set S and learning rate η>0 
w0 = 0; // Weight
b0 = 0;  // Bias
k = 0; R = max xi
repeat

for i = 1 to N 
if yi (wk•xi + bk) ≤ 0 then

wk+1 = wk + ηyixi
bk+1 = bk + ηyiR2

k = k + 1
Until no  mistakes made within loop
Return k, and  (wk, bk) where k = # of mistakes

Rosenblatt, 1956

w = Σ aiyixi
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Theorem: 
If margin m of S is positive, then 

i.e., the algorithm will always converge, 
and will converge quickly.

Performance for Separable Data

k ≤ (2R/m)2
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Perceptron Algorithm (Dual)

Given a separable training set S 
a = 0; b0 = 0; 
R = max xi
repeat

for i = 1 to N 
if yi (Σaj yj xi•xj + b) ≤ 0 then

ai = ai + 1
b = b + yiR2

endif
Until no  mistakes made within loop
Return (a, b)



Non-linear Separators
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Main idea: Map into feature space
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Non-linear Separators
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X F
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Useful URLs

http://www.support-vector.net

http://www.support-vector.net/
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Perceptron Algorithm (Dual)

Given a separable training set S 
a = 0; b0 = 0; 
R = max xi
repeat

for i = 1 to N 
if yi (Σaj yj (xi ,xj) + b) ≤ 0 then

ai = ai + 1
b = b + yiR2

Until no  mistakes made within loop
Return (a, b)

(xi ,xj) = Φ(xi)• Φ(xj)
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Different Kernel Functions

Polynomial kernel

Radial Basis Kernel

Sigmoid Kernel
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SVM Ingredients

Support Vectors
Mapping from Input Space to Feature Space
Dot Product – Kernel function
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Generalizations

How to deal with more than 2 classes?
Idea: Associate weight and bias for each class.

How to deal with non-linear separator?
Idea: Support Vector Machines.

How to deal with linear regression?
How to deal with non-separable data?
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Applications

Text Categorization & Information Filtering
12,902 Reuters Stories, 118 categories (91% !!)

Image Recognition
Face Detection, tumor anomalies, defective parts 
in assembly line, etc. 

Gene Expression Analysis
Protein Homology Detection
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Significance Analysis of Microarrays (SAM) [Tusher, Tibshirani, 
Chu, PNAS’01]

Fold change is a typical measure to decide 
genes of interest.
However, variations in gene expression are 
also gene dependent. If repeats are 
available, then such variations can be 
measured for each gene. This helps to give a 
better analysis of significant genes of 
interest. 
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Genomics

Study of all genes in a genome, or comparison of 
whole genomes.

Whole genome sequencing
Whole genome annotation & Functional genomics
Whole genome comparison 

PipMaker: uses BLASTZ to compare very long sequences     (> 
2Mb); http://www.cse.psu.edu/pipmaker/
Mummer: used for comparing long microbial sequences (uses 
Suffix trees!)

http://www.cse.psu.edu/pipmaker/
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Genomics (Cont’d)

Gene Expression
Microarray experiments & analysis

Probe design (CODEHOP)
Array image analysis (CrazyQuant)
Identifying genes with significant changes (SAM)
Clustering 
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Proteomics

Study of all proteins in a genome, or 
comparison of whole genomes.

Whole genome annotation & Functional 
proteomics
Whole genome comparison
Protein Expression: 2D Gel Electrophoresis



2D Gel Electrophoresis
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Other Proteomics Tools
From ExPASy/SWISS-PROT:

AACompIdent identify proteins from aa composition
[Input: aa composition, isoelectric point, mol wt., etc. Output: proteins from DB]

AACompSim compares proteins aa composition with other proteins
MultIdent uses mol wt., mass fingerprints, etc. to identify proteins
PeptIdent compares experimentally determined mass fingerprints with 
theoretically determined ones for all proteins
FindMod predicts post-translational modifications based on mass difference 
between experimental and theoretical mass fingerprints.
PeptideMass theoretical mass fingerprint for a given protein.
GlycoMod predicts oligosaccharide modifications from mass difference
TGREASE calculates hydrophobicity of protein along its length
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Databases for Comparative Genomics

PEDANT useful resource for standard questions in 
comparative genomics. For e.g., how many known 
proteins in XXX have known 3-d structures, how 
many proteins from family YYY are in ZZZ, etc.
COGs Clusters of orthologous groups of proteins.
MBGD Microbial genome database searches for 
homologs in all microbial genomes
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Gene Networks & Pathways

Genes & Proteins act in concert and 
therefore form a complex network of 
dependencies. 
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Pathway Example from KEGG

Staphylococcus aureus
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Pseudomonas aeruginosa
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