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Structure Prediction Flowchart

dhttp://www.russell.embl-
heidelberg.de/gtsp/flowchart2.html
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Protein Structure: Energy Terms

JHooke's law description of bond stretching
_Energy due to bond angle bending
1Energy due to torsional angle rotations

1Energy due to non-bonded interactions
between two atoms separated by distance r
@Lennard-Jones potential (proportional to r-°
@l ennard-Jones potential (proportional to r-12
@Electrostatic energy
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Energy Function
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Prokaryotic Gene Characteristics

DNA PATTERNS IN THE E. coli lexd GENE

GENE SEQUENCE PLTTERN
1 GARATTCEATARLTC TCTEETTTATTETE. AGTTTATGETT CTEN NNNNH HHNNNC G
b TTGLCA
41 CCARRMTCGCCTTTTECTIGTATATACTCACAGCATRACTG CTGHNNNNNNNNNC LG
CCAL -35 -10 TATACT > TATAAT, > mRMA start
81 IATATACACCCAGGGGECEGGALTGALRGCGTTAACGGCCA CTENMIMNMMTHNITNNC AG
+10 GGGEE Ribosomal binding site GGRGG
121 GGCAACALGAGETGETTTGATCTCATCCETGATCACATCAG
161 CCAGACAGGTATECCGCCEGACGCETECAGARNTCGCGCAG ATG

201 CETTTGEGGETTCCGTTCCCCARACGCGECTGLAGARCATC
241 TEARGECECTEGCACGCARAGECETTATTGARATTETTTC
281 CGGCGECATCACGCGGGATTCATCTETTGCAGGAAGAGGRA
321 GRAGGETIGCCGCTEETAGETCETEFTEGCTGCCEEFIGAAC
361 CRCTTCTSGCGCAMCAGCATATTGRAGGTCATTLTCAGGT OFEN READING FRAME
401 CGATCCTICCTITATTCAMGCCGAATGCTGATTICCTGCTG
441 CGCGTCAGCGGGATGTICGATGARLAGATATCGGCATTATGG
481 ATGGTGACTTECTGGCAGTGCATALARCTCAGELTGETACE
521 TAACGGETCAGGETCGTTGTCGCACGTATTIGATGACGARGTT
UL AR TR AR AR AL AR A RO RGRGC AL TARAGTOGRREC
601 TETTGCCAGARRATRGCGAGTTITALACCAATTETCGTIGA
641 CCTTCETCAGCAGAGCTTC ACCATTGAAGGGCTGGCGETT
681 GEGGTTATICGCRACGGCGACTGGCTGTARCATATCTCTG TAR
721 AGACCGCGATGECCGCCTEGCEFTCGCGETTITETTTTICATC
761 TCTCTTCATCAGGCTTGETC TGCATGGCATTCCTC ACTICA
801 TCTGATARAGCACTCTGGCATCTCGCCTTACCCATGRTTT
841 TCTCCAATATCACCGTTCC GTTGC TEGGACTEETCGRATAC
881 GGCGGTRATTGETCATCTTGATAGCCCGGTITATTIGGGC
921 GECETEGECEETTGECGCARCGGCGGRCCAGCT

Shown are matches to approximate consensus binding sites for Lexld
repressor (CTGHNNNNNNNNNCAG), the -10 amd -35 promoter regions
relatiwve to the start of the mRNA (TTGRCL and TATALT), the ribosomal
binding site on the mRNA {GGAGG), and the open reading frame

(4TG5, . .TRE), Only the second two of the predicted LexA binding sites
actunally bind the repressor.

FIGURE 9.6. The promoter and open reading frame of the E. coli lexA gene.
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Gene Expression

Process of transcription and/or translation
of a gene is called gene expression.

Every cell of an organism has the same
genetic material, but different genes are
expressed at different times.

Patterns of gene expression in a cell is
indicative of its state.
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Hybridization

JIf two complementary strands of DNA or
MRNA are brought together under the right
experimental conditions they will hybridize.

A hybridizes to B =

@ A is reverse complementary to B, or

IS is reverse complementary to a subsequence of
It is possible to experimentally verify

whether A hybridizes to B, by labeling A or B

with a radioactive or fluorescent tag,

followed by excitation by laser.
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Measuring gene expression

(1Gene expression for a single gene can be
measured by extracting mRNA from the cell
and doing a simple hybridization experiment.

dGiven a sample of cells, gene expression for
every gene can be measured using a single
microarray experiment.

2/22/07 CAP5510 8



Microarray/DNA chip technology

dHigh-throughput method to study gene expression
of thousands of genes simultaneously.

d Many applications:
® Genetic disorders & Mutation/polymorphism detection
@ Study of disease subtypes
@ Drug discovery & toxicology studies
@ Pathogen analysis

® Differing expressions over time, between tissues,
between drugs, across disease states
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Gene

Microarray Data

Expression Level

Genel

Gene?

Gene3
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Gene Chips
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Gene g

Probe 1 Probe 2 Probe N
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Microarray/DNA chips (Simplified)

dConstruct probes corresponding to reverse
complements of genes of interest.

[ Microscopic quantities of probes placed on solid
surfaces at defined spots on the chip.

dExtract mRNA from sample cells and label them.

d Apply labeled sample (MRNA extracted from cells)
to every spot, and allow hybridization.

dWash off unhybridized material.

dUse optical detector to measure amount of
fluorescence from each spot.
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Affymetrix DNA chip schematic

www.affymetrix.com

CAP5510
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What’s on the slide?

ip® array causes tagged DNA fragments that hybridized to glow

laser light at GeneCh

Shining a

15
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DNA Chips & Images

CAP5510
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Microarrays: competing technologies

dAffymetrix & Agilent
dDiffer in:

@ method to place DNA: Spotting vs.
photolithography

@ ength of probe
@Complete sequence vs. series of fragments

2/22/07 CAP5510
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How to compare 2 cell samples with Two-Color
Microarrays?

dmRNA from sample 1 is extracted and labeled with

a red fluorescent dye.

dmRNA from sample 2 is extracted and labeled with
a green fluorescent dye.

dMix the samples and apply it to every spot on the
microarray. Hybridize sample mixture to probes.

dUse optical detector to measure the amount of
green and red fluorescence at each spot.

2/22/07 CAP5510 19



2-color DNA
microarray
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Study effect of treatment over time

Sample E——
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2/22/07 CAP5510 21



Sources of Variations & Errors

 Variations in cells/individuals.

 Variations in mMRNA extraction, isolation, introduction of
dye, variation in dye incorporation, dye interference.

J Variations in probe concentration, probe amounts, substrate
surface characteristics

[ Variations in hybridization conditions and kinetics

 Variations in optical measurements, spot misalignments,
discretization effects, noise due to scanner lens and laser
irregularities

1 Cross-hybridization of sequences with high sequence
identity.

d Limit of factor 2 in precision of results.

Need to Normalize data

2/22/07 CAP5510 22



Types of bias/variation

dIntensity & Range

@Variation changes with intensity. Larger variation
at lower end.

dSpatial
@ Spot location changes expression

Plate
@Printing plate changes expression

http://www.arabidopsis.org/info/2010_projects/comp_proj/AFGC/RevisedAF6C/Friday/index.htm
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Clustering

Clustering is a general method to study
patterns in gene expressions.

Several known methods:
@Hierarchical Clustering (Bottom-Up Approach)
@ K-means Clustering (Top-Down Approach)
@ Self-Organizing Maps (SOM)

2/22/07 CAP5510
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Hierarchical Clustering: Example
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A Dendrogram




Hierarchical Clustering [Johnson, SC, 1967]

dGiven n points in RY, compute the distance
between every pair of points

JWhile (not done)

@Pick closest pair of points s; and s; and make
them part of the same cluster.

@Replace the pair by an average of the two s;,
Try the applet aft:

2/22/07 CAP5510 27


http://www.cs.mcgill.ca/~papou/#applet

Distance Metrics

dFor clustering, define a distance function:
® Euclidean distance metrics

D«(X,Y) = {Zd:(xi —\ﬁ)k}

® Pearson correlation coefficient

2/22/07
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EXHIBIT 3.4 Joint Probability Model for the Ratings of Two People

@) pxy=0 (b) pxr =13
Yy y
X 1 2 3 Total x 1 2 3 Total
]
3 1/9 1/9 1/9 1/3 3 1/18 1/18 4/18 173
2 1/9 1/9 1/9 1/3 2 1/18 4/18 1/18 173
1 1/9 1/9 1/9 1/3 1 4/18 1/18 1/18 173
Total 1/3 173 1/3 1 Total 1/3 173 173 1
(©) pxy = —% d) pxy =3
y y
x 1 2 3 Total x 1 2 3 Total
3 4/18 1/18 1/18 1/3 3 127 227  6/27 13
2 1/18 4/18 1/18 1/3 2 2127 5127 2127 173
1 1/18 1/18 4/18 1/3 1 6/27 2127 1727 173
Total 173 173 173 1 Total 173 1/3 173 1
() pxy = -3 ) pxy = %
Yy y
x 1 2 3 Total x 1 2 3 Total
3 6/27 227 1/27 1/3 3 1/36  2/36 9/36 173
2127 5127 2127 1/3 2 2/36  8/36 2/36 173
1 127 2727 6/27 1/3 1 9/36 2/36 1/36 173
Total 173 173 1/3 1 Total 1/3 173 173 1
®) pxy = -3
y
x 1 2 3 Total
3 9/36 2/36 1/36 173
2 2/36 8/18 2/18 173
1 1/36  2/36 9/36 1/3
2/22/07
Total 173 1/3 173 1




Clustering of gene expressions

Represent each gene as a vector or a point in
d-space where d is the number of arrays or
experiments being analyzed.

2/22/07 CAP5510 30
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Clustering Random vs. Biological
Data

start clustered randoml random2 random3
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Expression Profiles for
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Observations

+ As glucose was depleted - Marked change
in the global pattern of gene expression

4 #9808 BAES
8% ABEE L]
LR R | £ 1 -

+ ~50% of difterentially expressed genes
have unknown function

&
8 88 BEED
L 1) [ X ]

+ Genes with similar expression profiles had
common promoters

» ¥ . e L L L AL LA LEE ] LA » ¥ el
SO S84S PORE FSEE 2PN

European Bioinformatics Institute

+ Expression patterns observed match those
observed 1n other types of experiments
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K-Means Clustering: Example

Example from Andrew Moore' stutorial on Clustering.

2/22/07 CAP5510
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Start

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

Coppright © 001, Andrew W, Moo

Wemears and Hisrarcheal Chmterng: Shae 7

K-means
1. Ask user how many
clusters they'd like.
{e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
dosest to. (Thus
each Center "owns”
a set of datapoints)

Copprght € 001, Andrew Wi, Moo

" LX) s LY o 1

Nemeare and Werwchicsl Clmierng: Sios 8

2/122/07
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K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)
2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to.

4. Each Center finds
the centroid of the
points it owns

Coppright © 001, Andrew W, Moo

Wemears and Hisrarcheal Chmterng: Shae 3

K-means
1. Ask user how many
clusters they'd like.
{e.g. k=5)
2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to.

4. Each Center finds
the centroid of the
points it owns...

5. ..and jumps there

6. ..Repeatunt
terminated!

Copprght € 001, Andrew Wi, Moo

" LX) s LY o 1

Kemmars ard ararchicsl Clsterng: Sice 10
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K-means
Start

Advance apologies; in
Black and White this
example will deteriorate

Example generated by
Dan Pelleg’s suparduper
fast K-means system:

Dan Pelleg and Andrew
Moore. Accelerating Exact
k-means Algorithms with
Geometric Reasoning.
Froc. Conference on
Knowledge Discovery in
Databases 1999,
(KDD53) (available on
wn autoriab, of gl hitml)

Cppght © 2001 Andew W, Moors

Frmaans and Harachical Clterng. Shae 11

K-means
continues

Copprght © 001, Andree W Matve

Ll

E-masns and Hirarchieal Clisterng: Side 12

2/122/07
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K-means
continues

Cppght © 2001 Andew W, Moors

Frmraans and Harachical Clterng. Shae 13

K-means
continues

Copprght © 001, Andree W Matve

E-masns and Hirarchieal Clisterng: Side 14
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K-means
continues

Coppright & 2001, Andrew W, Moors

I

K-means ard Hisrarchical Clusterng: Shds 15

K-means
continues

Copwght © 2001 Angmw W, Moom

E-maans and Herachical Custenng: Skae 16

2/122/07

CAP5510

K-means
continues

Coppright & 2001, Andrew W, Moors

K-maans ard Hisrarchical Clusterng: Shds 17

K-means
continues

Copwght © 2001 Angmw W, Moom

K-means ard Hierachical Custenng; Shoe 18
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Start

2/122/07

K-means
1. Ask user how many
clusters they'd like.
(e.0. k=5)
2. Randomly guess k
cluster Center
locations

Copyright © 001, Anidii W. Macn

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to. (Thus
each Center "owns”
a set of datapoints)

Copyrght © 2001, Andrew W. Moore

o4 0.6 o8 1

¥-meare and Hersrchcal Curerng: Sioe B

CAP5510

K-means
continues

Copyright © 001, Anidii W. Macn

K- and Hisrachicsl Clusténng: Skde 19

K-means
terminates

Copyrght © 2001, Andrew 'W. Moore

£-means and Herachcs! Custerng: Side 20

End

10
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K-Means Clustering [McQueen ’67]

Repeat

@Start with randomly chosen cluster centers

@ Assign points to give greatest increase In score
@ Recompute cluster centers

@ Reassign points

until (no changes)

Try the applet at:

2/22/07 CAP5510
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http://www.cs.mcgill.ca/~bonnef/project.html

Comparisons

dHierarchical clustering
@Number of clusters not preset.
@Complete hierarchy of clusters
@®Not very robust, not very efficient.

JK-Means

@Need definition of a mean. Categorical data?

®More efficient and often finds optimum
clustering.

2/22/07 CAP5510

41



Functionally related
genes behave similarly
across experiments

2/22/07
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Figure 1: Expression profiles of the cytoplasmic ribosomal proteins. Figure (a) shows the
expression profiles from the data in [Eisen et al., 1998] of 121 cytoplasmic ribosomal proteins, as
clagsified by MYGD [MYGD, 1999]. The logarithm of the expression ratio is plotted as a function
of DNA microarray experiment. Ticks along the X-axis represent the beginnings of experimental
series. They are, from left to right, cell division cycle after synchronization with «v factor arrest
(alpha), cell division cycle after synchromzation by centrifugal elutriation (elu), cell division cycle
measured using a temperature sensitive cdc? 5 mmutant (cde), sporulation (spo), heat shock (he),
reducing shock (re), cold shock (co), and diauxic shift (di). Sporulation is the generation of a yeast
spore by meiosis. Diauxic shift is the shift from anaerobic (fermentation) to aerobic (respiration)
metabolism. The medium starts rich in glucose, and yeast cells ferment, producing ethanol. When
the glucose is used up, they switch to ethanol as a source for carbon. Heat, cold, and reducing
shock are various ways to stress the yeast cell. Figure (b) shows the average, plus or minus one
standard deviation, of the data in Figure (a).
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Self-Organizing Maps [Kohonen]

JKind of neural network.

UClusters data and find complex relationships
between clusters.

J1Helps reduce the dimensionality of the data.
JdMap of 1 or 2 dimensions produced.
dUnsupervised Clustering

Like K-Means, except for visualization
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SOM Architectures

d2-D 6rid
13-D 6rid
_1Hexagonal Grid

2/22/07 CAP5510



SOM Algorithm

dSelect SOM architecture, and initialize
weight vectors and other parameters.

While (stopping condition not satisfied) do
for each input point x
®winning node q has weight vector closest to x.
@ Update weight vector of g and its neighbors.
®Reduce neighborhood size and learning rate.
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SOM Algorithm Details

dDistance between x and weight vector: |x—wi|
OWinning node:  a(x)=min|x—w|
J1Weight update function (for neighbors):
Wi(K+1) = wi(k) + w(k, X, )] X(K) = wi(K)]
LLearning rate:

o Ta(x 2
,u(k, X, I) = no(k) exp[_rl O_ZQ( )H J
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World Bank Statistics

dData: World Bank statistics of countries in
1992.

139 indicators considered e.g., health,
nutrition, educational services, etc.

dThe complex joint effect of these factors
can can be visualized by organizing the
countries using the self-organizing map.
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World Poverty SOM
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World Poverty Map

CAP5510
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Viewing SOM Clusters on PCA axes

T o -
Y-axis (Component 2

Wariance = 12,7583

CAP5510
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http://www.axon.com/genomics/Acuity_PCA_3D.avi

SOM Example [Xiao-rui He]
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Neural Networks

Synaptic
Weights W

Bias 0

CAP5510

I+

— Output y

55



Learning NN

Weights W
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Adaptive Algorithm

Desired Response
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Types of NNs

JRecurrent NN

JdFeed-forward NN
dLayered

Other issues

dHidden layers possible
dDifferent activation functions possible

2/22/07 CAP5510
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Application: Secondary Structure Prediction

TiQAlS|F DlG|D[P|VITIT]LIT QA S~

i

A Identical for all positions in the window

A Aldentical for all positions in the window

CAP5510
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Support Vector Machines

Supervised Statistical Learning Method for:
@ lassification
@Regression

dSimplest Version:

@ Training: Present series of labeled examples
(e.g., gene expressions of tumor vs. normal cells)

@Prediction: Predict labels of new examples.
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Learning Problems



SVM — Binary Classification

dPartition feature space with a surface.

Surface is implied by a subset of the
training points (vectors) near it. These
vectors are referred to as Support Vectors.

dEfficient with high-dimensional data.
1Solid statistical theory
_1Subsume several other methods.
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Learning Problems

dBinary Classification
JMulti-class classification
JRegression

2/22/07 CAP5510
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Leamed threshold Optimized threshold
Class Method FP FN TP TN Cost | FP FN TP TN Cost
Tricatboxylic acid  Radial SVM 8 8 9 2442 24| 4 7 10 2446 18
Dot-product-1 SVM | 11 9 B 2439 29 3 [ 11 2447 15
Dotproduct2 SYM | 5 10 7 2445 25| 4 6 11 2446 16 Leamed threshold Optimized threshold
Dotproduct:3 SVM | 4 12 5 2446 28| 4 6 11 2446 16 Class Method FP_FN TP TN Cost|FP FN TP TN Cost
Parzen 4 12 5 2446 28 0 12 5 2450 24 Proteasome Radial SVM 3 7 28 2429 171 4 5 30 2418 14
FLD 9 10 7 2441 29 7 g 9 2443 23 Dot-product-1 SVM | 14 11 24 2418 36 2 T 28 2430 16
4.5 7 17 0 2443 41 Dotproduct-2 SVM | 4 13 22 2428 301 4 6 290 2428 16
MOC1 3 16 1 2446 35 - _ _ _ _ Dot-product-3 SVM | 3 18 17 2429 391 2 7 28 2430 16
Respiration Radial SVM e 6 24 2428 21| 8§ 4 36 2419 16 Parzen 215 30 2411 31 3 9 26 2429 21
Dotproduct-1 SVM | 21 10 20 2416 41| 6 9 21 2431 24 FLD 7012023 2425 31127 28 2420 26
Dotproduct2 SVM | 7 14 16 2430 35| 7 6 24 2430 19 C4.5 1710 25 2415 37( - - - = =
Dotproduct-3 SVM | 3 15 15 2434 33| 7 6 24 2430 19 MOCI 10 17 18 2422 44
Parzen 210 20 2415 42 7 12 18 2430 31 Histone Radial SVM 0 2 9 2456 41 0 2 9 2456 4
FLD 0 10 20 2427 30| 14 4 26 2423 22 Dot-product-1 SVM 1] 4 T 2456 8 0 2 9 2456 4
4.5 12 17 13 2419 52 Dotproduct-2 SVM | 0 5 6 2456 10 0 2 9 2456 4
MOC1 1 2% 4 2425 64 = = = 25 = Dot-product-3 SVM | 0 8§ 3 2456 16 0 2 9 2456 4
Ribosome Radial SVM 9 4 117 2337 17| 6 1 120 2340 8 Parzen 2 3 8 4 311 3 8 MH 7T
Dotproduct-1 SVM | 13 6 115 2333 25|11 1 120 2335 13 FLD 0 3 8 4% 612 1 10 244 4
Dotproduct2 SVM | 7 10 111 2338 27| o 1 120 2337 11 C4.5 22 9 HM 6
Dotproduct3 SVM | 3 18 103 2343 39| 7 1 120 2339 9 MOC1 2 5 6 WM BRI - - - - -
Parzen 6 s 113 2340 e 5 g 113 2341 21 Helix-tum-helix  Radial SVM 1 16 0 2450 331 0 16 0 2451 32
FLD 15 5 116 2331 25| 8 3 118 2338 14 Dot-product-1 SVM | 20 16 0 2431 52| 0 16 0 2451 32
c4.5 31 21 100 2315 7| - - - - - Dotproduct-2 SVM | 4 16 0 2447 | 0 16 0 2451 32
MOC1 2% 26 95 2320 78 Dot-product-3 SVM 1 16 0 2450 3| 0 16 0 2451 32
Parzen 14 16 0 2437 46 0 16 0 2451 32
FLD 14 16 0 2437 46 0 16 0 2451 32
Table 2: Comparison of error rates for various classification methods. Classes are as described c4.5 2 16 0 2449 34
in Table 1. The methods are the radial basis function SVM, the SVMs using the scaled dot product MaocC] 6 16 0 2445 38| - - - = =

kernel raised to the first, second and third power, Parzen windows, Fisher's linear discriminant, and

the two decision tree learners, C4.5 and MOC1. The next five columns are the false positive, false
negative, true positive and true negative rates summed over three cross-validation splits, followed

by the cost, which 1s the number of false positives plus twice the number of false negatives. These
five columns are repeated twice, first using the threshold learned from the training set, and then
using the threshold that minimizes the cost on the test set. The threshold optimization is not
possible for the decision tree methods, sinee they do not produce ranked results,
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Table 3: Comparison of error rates for various classification methods (continued). See caption
for Table 2.
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Class Kermnel Cost for cach split Total
Trcarboxylic acid  Radial 18 21 15 22 21 97
Dot-product-1 [ 15 22 18 23 22| 100
Dot-produet-2 | 16 22 17 22 22 99
Dot-produet-3 | 16 22 17 23 22| 100
Respiration Radial 16 18 23 20 16 93
Dot-product-1 | 24 24 29 27 23 127
Dot-product-2 | 19 19 26 24 23 111
Dot-product-3 | 19 19 26 22 21| 107
Ribosorme Radial ® 12 15 11 13 59
Dot-product-1 | 13 18 14 16 16 77
Dot-product-2 | 11 16 14 16 15 72
Dot-product-3 | 9 15 11 15 15 65
Proteasome Radial 14 10 9 11 11 55
Dot-product-1 | 16 12 12 17 19 76
Dot-produet-2 | 16 13 15 17 17 78
Dot-product-3 | 16 13 16 16 17 79
Histone Radial 4 4 4 4 4 20
Dot-product-1 | 4 4 4 4 4 20
Dot-product-2 | 4 4 4 4 4 20
Dot-product-3| 4 4 4 4 4 20

Table 4: Comparison of SVM performance using various kernels. For each of the MYGD
classifications, SVMs were trained using four different kemel functions on five different random
three-fold splits of the data, training on two-thirds and testing on the remaining third. The first
column contains the class, as described in Table 1. The second column contains the kernel function,
as described in Table 2. The next five columns contain the threshold-optimized cost (i.e., the
number of false positives plus twice the number of false negatives) for each of the five random
three-fold splits. The final column 1s the total cost across all five splits.
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Family Gene Loens Ermror Description
TCA YPROOIW  CIT3 FN mtochondnal eitrate synthase
YOR14ZW  LSCL FN o subumit of suceinyl-CoA higase
YNROOIC CIT1 FN mitochondnal eitrate synthase
YLR174W  1DP2 FN wsocirate dehydrogenase
YILIZSW  KGDI FN ar-ketoglutarate dehydrogenase
YDRI4BC KGD2 FN component of a-ketoglutarate dehydrogenase
complex in mitochondra
YDLOs6W  1DP1 N mitochondnal form of 1socitrate dehydrogenase
YBLOISW  ACHI FP acetyl CoA hydrolase
Resp YPRI9IW QCRZ FN ubiquinol eytochrome-¢ reductase core proten 2
YPLZTIW  ATPLS FN ATP synthase epailon subumt
YPL26ZW  FUMI FP furmarase
YML120C NDIL FP mitochendnal NADH ubquinene 6 oxadoreductase
YELOSSW MDHI1 FP mutochondnal malate dehydrogenase
YDLOSTC COX9 N subumit VIla of eytochrome ¢ oxadase
Rabo YPLO3TC  EGDI FP /7 subumt of the nascent-polypeptde-assoaated
complex (NAC)
YLR406C RPL31B FN  rbosomal protein L31B (L34B) (YL28)
YLRO7SW RPLIO FP nbosomal proten L10
YALOO3W EFB1 FP translation elongation factor EF-17
Prot YHRO27C RPNI TN subunit of 265 proteasome (PA700 subunit)
YGR270W  YTA7 FN  member of CDC48/PAS1/SECIS family of ATPases
YGRO48W  UFD1 FP ubiquitin fusion degradation protein
YDROGSC DOA4 N ubiquitin 1sopeptdase
YDLO20C RPN4 FN wmvelved m ubiquitin degradation pathway
Hist YOLO12C  HTA3 N listone-related protein
YEKLO49C  CSE4 N required for proper kinetochore function

Table &: Consistently misclassified genes. The table hists all 25 genes that are consistently mms-
classified by SVMs trained using the MYGD classifications listed in Table 1. Two types of errors
are included: a false posiive (FP') oceurs when the SVM includes the gene in the given class but
the MY GD classificaton does not; a fulse negative (FN) oceurs when the SVM does not include
the gene in the given class bul the MYGD classification does.
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SVM | SVM
Dataset Features | FP | FN | FP FN

Ovarian(original) 97802 4.6 | 4.8 5 3

= = Ovarian(modified) [ 97802 | 4.4 | 3.4 0 0
If;’t““i . anF Ff;t}“‘f L F: "{ﬁ’ 11"; AML/ALL train 7129 |06 |28 O 0
dot-product 5 5
At roiiet 2 25 5 2 12 12 AML treatment 7129 4.8 | 3.5 3 2
dot-product 5 25 4 2 12 13 Colon 2000 38 1 3.7 3 3
dot-product 10 25 4 2 12 13
dot-product 0 0 4 2 12 13 .
dot-product 2 50 3 2 12 14 Table 5: Results for the perceptron on all data sets. The results are averaged over 5 shufflings of the data
dot-product 5 30 302 12 1 as this algorithm is sensitive to the order in which it receives the data points. The first column is the dataset
E{ggﬁ&g ;ﬂ f[::] i g ﬁ i; used and the second is number of features in the dataset. For the ovarian and colon datasets, the number
d(,t_pmdu& 2 100 5 3 11 12 of normal tissues misclassified (FP) and the number of tumor tissues misclassified (FN) is reported. For the
dot-product 5 100 5 3 11 12 AML/ALL training dataset, the number of AML samples misclassified (FP) and the number of ALL patients
dot-product 10 | 100 5 3 11 12 misclassified (FN) is reported. For the AML treatment dataset, the number of unsuccessfully treated patients
dotpeoduct () 11 000 | av i gl misclassified (FP) and the number of successfully treated patients misclassified (FN) is reported. The last two
dot-product 2 500 4 3 11 13 .
dot-product 5 500 4 3 11 13 columns report the best score obtained by the SVM on that dataset.
dot-product 10 500 4 3 11 13
dot-product 0 L1000 T 3 11 10
dot-product 2 1000 5 3 1 12
dot-product 5 1000 5 3 11 12
dot-product 10 L1000 h 3 11 12
dot-product 0 97802 17 0 14 1]
dot-product 2 | 97802 | 9 2 12 &
dot-product 5 | 97802 | 7 3 11 10
dot-product 10 | 97802 | 5 3 11 12

Table 1: Error rates for ovarian cancer tissue experiments.
For each setting of the SVM consisting of a kernel and diagonal factor (DF), each tissue was classified. Column
2 is the number of features (clones) used. Reported are the number of normal tissues misclassified (FP), tumor
tissues misclassified (FN), tumor tissues classified correctly (TP), and normal tissues elassified correctly (TN).
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Figure 1: SVM classification margins for ovarian tissues. When classifying, the SWM caleulates a margin
which is the distanee of an example from the decigion boundary it has learmed. Tn this graph, the margin for
each tissue sample caleulated using (10) is shown. A positive value indicates a eorrect classification, and a
negative value indicates an incorrect classification. The most negative point eorresponds to tissue N039. The
second most negative point corresponds to tissue HWBC3.
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SVM — General Principles

SVMs perform binary classification by
partitioning the feature space with a surface
implied by a subset of the training points
(vectors) near the separating surface. These
vectors are referred to as Support Vectors.

dEfficient with high-dimensional data.
1Solid statistical theory
1Subsume several other methods.
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SVM Example (Radial Basis Function)
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SVM Ingredients

JSupport Vectors

JMapping from Input Space to Feature Space
Dot Product - Kernel function
dWeights
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Classification of 2-D

(Separable) data
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Classification of
(Separable) 2-D data

2/22/07
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Classification of (Separable) 2-D data

Margin of a point
Margin of a point set
2/22/07 CAP5510 71



Classification using the Separator

Separator
wex +b =0

2/22/07
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Perceptron Algorithm (Primal)

Rosenblatt, 1956

Given separable training set S and learning rate n>0
w, = 0; // Weight

b, =0; // Bias

k = 0; R = max fasx (s

repeat W = 2 ayX
for i=1toN

ITy; (Wyex; + by) < 0 then
Wi = Wy + NyiX;
b1 = by + MyR?
k=k+1
Until no mistakes made within loop

Return k, and (w,, b,) where k = # of mistakes
2/22/07 CAP5510 73



Performance for Separable Data

Theorem:

If margin m of S is positive, then
k < (2R/m)?

i.e., The algorithm will always converge,
and will converge quickly.

2/22/07 CAP5510
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Perceptron Algorithm (Dual)

Given a separable training set S

a=_0; bo = 0;
R = max (@ (&
repeat
for i=1toN
ity (Zay; e + b) <0 then
a=a+1
b=Db+yR?
endif

Until no mistakes made within loop
Return (a, b)

2/22/07 CAP5510
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Non-linear Separators
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Main idea: Map into feature space

§  Input space b Feature space

» L]
+*
.._,_.$ -“““-..“_-\
5 s *
. L ]

Fiqum: 2, The wea of 5 machines: map the rarig data
noninearky inte a higher-dimensional feature space via
&, and constnact a separating hyperplane with maamum
margmn frem, This yiekls a nonlnear decision boundary in
nput pace, By the use of a kemel unchon, it s possible
o wmguite the separaten fryperplane without explicity
camymg aut the map inko the feature pace.
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Non-linear Separators
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Useful URLs
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http://www.support-vector.net/

Perceptron Algorithm (Dual)

Given a separable training set S

a=_0; bo = 0;
R = max (@ (&
repeat
for i=1toN
18Y% (Zaj y; &5(Xi,%;) +b) <0 then
a=a+1
b=Db+yR?

Until no mistakes made within loop
Return (a, b)
&G (X %) = D(X;)* (X))
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Different Kernel Functions

dPolynomial kernel K(X.Y) = (X OY)d

dRadial Basis Kernel
{—X —YZJ
2

K(X,Y)=exp
1 Sigmoid Kernel
k(X,Y)=tanh(w(X eY)+6)

2/22/07 CAP5510
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SVM Ingredients

JSupport Vectors
JMapping from Input Space to Feature Space
Dot Product - Kernel function
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Generalizations

JHow to deal with more than 2 classes?

Idea: Associate weight and bias for each class.

dHow to deal with non-linear separator?

J
J

Idea: Support Vector Machines.
ow to deal with linear regression?
ow to deal with non-separable data?
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Applications

dText Categorization & Information Filtering
@12,902 Reuters Stories, 118 categories (917% )

dImage Recognition

@Face Detection, tumor anomalies, defective parts
in assembly line, etc.

Gene Expression Analysis
Protein Homology Detection
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Leamed threshold Optimized threshold
Class Method FP FN TP TN Cost | FP FN TP TN Cost
Tricatboxylic acid  Radial SVM 8 8 9 2442 24| 4 7 10 2446 18
Dot-product-1 SVM | 11 9 B 2439 29 3 [ 11 2447 15
Dotproduct2 SYM | 5 10 7 2445 25| 4 6 11 2446 16 Leamed threshold Optimized threshold
Dotproduct:3 SVM | 4 12 5 2446 28| 4 6 11 2446 16 Class Method FP_FN TP TN Cost|FP FN TP TN Cost
Parzen 4 12 5 2446 28 0 12 5 2450 24 Proteasome Radial SVM 3 7 28 2429 171 4 5 30 2418 14
FLD 9 10 7 2441 29 7 g 9 2443 23 Dot-product-1 SVM | 14 11 24 2418 36 2 T 28 2430 16
4.5 7 17 0 2443 41 Dotproduct-2 SVM | 4 13 22 2428 301 4 6 290 2428 16
MOC1 3 16 1 2446 35 - _ _ _ _ Dot-product-3 SVM | 3 18 17 2429 391 2 7 28 2430 16
Respiration Radial SVM e 6 24 2428 21| 8§ 4 36 2419 16 Parzen 215 30 2411 31 3 9 26 2429 21
Dotproduct-1 SVM | 21 10 20 2416 41| 6 9 21 2431 24 FLD 7012023 2425 31127 28 2420 26
Dotproduct2 SVM | 7 14 16 2430 35| 7 6 24 2430 19 C4.5 1710 25 2415 37( - - - = =
Dotproduct-3 SVM | 3 15 15 2434 33| 7 6 24 2430 19 MOCI 10 17 18 2422 44
Parzen 210 20 2415 42 7 12 18 2430 31 Histone Radial SVM 0 2 9 2456 41 0 2 9 2456 4
FLD 0 10 20 2427 30| 14 4 26 2423 22 Dot-product-1 SVM 1] 4 T 2456 8 0 2 9 2456 4
4.5 12 17 13 2419 52 Dotproduct-2 SVM | 0 5 6 2456 10 0 2 9 2456 4
MOC1 1 2% 4 2425 64 = = = 25 = Dot-product-3 SVM | 0 8§ 3 2456 16 0 2 9 2456 4
Ribosome Radial SVM 9 4 117 2337 17| 6 1 120 2340 8 Parzen 2 3 8 4 311 3 8 MH 7T
Dotproduct-1 SVM | 13 6 115 2333 25|11 1 120 2335 13 FLD 0 3 8 4% 612 1 10 244 4
Dotproduct2 SVM | 7 10 111 2338 27| o 1 120 2337 11 C4.5 22 9 HM 6
Dotproduct3 SVM | 3 18 103 2343 39| 7 1 120 2339 9 MOC1 2 5 6 WM BRI - - - - -
Parzen 6 s 113 2340 e 5 g 113 2341 21 Helix-tum-helix  Radial SVM 1 16 0 2450 331 0 16 0 2451 32
FLD 15 5 116 2331 25| 8 3 118 2338 14 Dot-product-1 SVM | 20 16 0 2431 52| 0 16 0 2451 32
c4.5 31 21 100 2315 7| - - - - - Dotproduct-2 SVM | 4 16 0 2447 | 0 16 0 2451 32
MOC1 2% 26 95 2320 78 Dot-product-3 SVM 1 16 0 2450 3| 0 16 0 2451 32
Parzen 14 16 0 2437 46 0 16 0 2451 32
FLD 14 16 0 2437 46 0 16 0 2451 32
Table 2: Comparison of error rates for various classification methods. Classes are as described c4.5 2 16 0 2449 34
in Table 1. The methods are the radial basis function SVM, the SVMs using the scaled dot product MaocC] 6 16 0 2445 38| - - - = =

kernel raised to the first, second and third power, Parzen windows, Fisher's linear discriminant, and

the two decision tree learners, C4.5 and MOC1. The next five columns are the false positive, false
negative, true positive and true negative rates summed over three cross-validation splits, followed

by the cost, which 1s the number of false positives plus twice the number of false negatives. These
five columns are repeated twice, first using the threshold learned from the training set, and then
using the threshold that minimizes the cost on the test set. The threshold optimization is not
possible for the decision tree methods, sinee they do not produce ranked results,
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Table 3: Comparison of error rates for various classification methods (continued). See caption
for Table 2.
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Class Kermnel Cost for cach split Total
Trcarboxylic acid  Radial 18 21 15 22 21 97
Dot-product-1 [ 15 22 18 23 22| 100
Dot-produet-2 | 16 22 17 22 22 99
Dot-produet-3 | 16 22 17 23 22| 100
Respiration Radial 16 18 23 20 16 93
Dot-product-1 | 24 24 29 27 23 127
Dot-product-2 | 19 19 26 24 23 111
Dot-product-3 | 19 19 26 22 21| 107
Ribosorme Radial ® 12 15 11 13 59
Dot-product-1 | 13 18 14 16 16 77
Dot-product-2 | 11 16 14 16 15 72
Dot-product-3 | 9 15 11 15 15 65
Proteasome Radial 14 10 9 11 11 55
Dot-product-1 | 16 12 12 17 19 76
Dot-produet-2 | 16 13 15 17 17 78
Dot-product-3 | 16 13 16 16 17 79
Histone Radial 4 4 4 4 4 20
Dot-product-1 | 4 4 4 4 4 20
Dot-product-2 | 4 4 4 4 4 20
Dot-product-3| 4 4 4 4 4 20

Table 4: Comparison of SVM performance using various kernels. For each of the MYGD
classifications, SVMs were trained using four different kemel functions on five different random
three-fold splits of the data, training on two-thirds and testing on the remaining third. The first
column contains the class, as described in Table 1. The second column contains the kernel function,
as described in Table 2. The next five columns contain the threshold-optimized cost (i.e., the
number of false positives plus twice the number of false negatives) for each of the five random
three-fold splits. The final column 1s the total cost across all five splits.
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Family Gene Loens Ermror Description
TCA YPROOIW  CIT3 FN mtochondnal eitrate synthase
YOR14ZW  LSCL FN o subumit of suceinyl-CoA higase
YNROOIC CIT1 FN mitochondnal eitrate synthase
YLR174W  1DP2 FN wsocirate dehydrogenase
YILIZSW  KGDI FN ar-ketoglutarate dehydrogenase
YDRI4BC KGD2 FN component of a-ketoglutarate dehydrogenase
complex in mitochondra
YDLOs6W  1DP1 N mitochondnal form of 1socitrate dehydrogenase
YBLOISW  ACHI FP acetyl CoA hydrolase
Resp YPRI9IW QCRZ FN ubiquinol eytochrome-¢ reductase core proten 2
YPLZTIW  ATPLS FN ATP synthase epailon subumt
YPL26ZW  FUMI FP furmarase
YML120C NDIL FP mitochendnal NADH ubquinene 6 oxadoreductase
YELOSSW MDHI1 FP mutochondnal malate dehydrogenase
YDLOSTC COX9 N subumit VIla of eytochrome ¢ oxadase
Rabo YPLO3TC  EGDI FP /7 subumt of the nascent-polypeptde-assoaated
complex (NAC)
YLR406C RPL31B FN  rbosomal protein L31B (L34B) (YL28)
YLRO7SW RPLIO FP nbosomal proten L10
YALOO3W EFB1 FP translation elongation factor EF-17
Prot YHRO27C RPNI TN subunit of 265 proteasome (PA700 subunit)
YGR270W  YTA7 FN  member of CDC48/PAS1/SECIS family of ATPases
YGRO48W  UFD1 FP ubiquitin fusion degradation protein
YDROGSC DOA4 N ubiquitin 1sopeptdase
YDLO20C RPN4 FN wmvelved m ubiquitin degradation pathway
Hist YOLO12C  HTA3 N listone-related protein
YEKLO49C  CSE4 N required for proper kinetochore function

Table &: Consistently misclassified genes. The table hists all 25 genes that are consistently mms-
classified by SVMs trained using the MYGD classifications listed in Table 1. Two types of errors
are included: a false posiive (FP') oceurs when the SVM includes the gene in the given class but
the MY GD classificaton does not; a fulse negative (FN) oceurs when the SVM does not include
the gene in the given class bul the MYGD classification does.
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SVM | SVM
Dataset Features | FP | FN | FP FN

Ovarian(original) 97802 4.6 | 4.8 5 3

= = Ovarian(modified) [ 97802 | 4.4 | 3.4 0 0
If;’t““i . anF Ff;t}“‘f L F: "{ﬁ’ 11"; AML/ALL train 7129 |06 |28 O 0
dot-product 5 5
At roiiet 2 25 5 2 12 12 AML treatment 7129 4.8 | 3.5 3 2
dot-product 5 25 4 2 12 13 Colon 2000 38 1 3.7 3 3
dot-product 10 25 4 2 12 13
dot-product 0 0 4 2 12 13 .
dot-product 2 50 3 2 12 14 Table 5: Results for the perceptron on all data sets. The results are averaged over 5 shufflings of the data
dot-product 5 30 302 12 1 as this algorithm is sensitive to the order in which it receives the data points. The first column is the dataset
E{ggﬁ&g ;ﬂ f[::] i g ﬁ i; used and the second is number of features in the dataset. For the ovarian and colon datasets, the number
d(,t_pmdu& 2 100 5 3 11 12 of normal tissues misclassified (FP) and the number of tumor tissues misclassified (FN) is reported. For the
dot-product 5 100 5 3 11 12 AML/ALL training dataset, the number of AML samples misclassified (FP) and the number of ALL patients
dot-product 10 | 100 5 3 11 12 misclassified (FN) is reported. For the AML treatment dataset, the number of unsuccessfully treated patients
dotpeoduct () 11 000 | av i gl misclassified (FP) and the number of successfully treated patients misclassified (FN) is reported. The last two
dot-product 2 500 4 3 11 13 .
dot-product 5 500 4 3 11 13 columns report the best score obtained by the SVM on that dataset.
dot-product 10 500 4 3 11 13
dot-product 0 L1000 T 3 11 10
dot-product 2 1000 5 3 1 12
dot-product 5 1000 5 3 11 12
dot-product 10 L1000 h 3 11 12
dot-product 0 97802 17 0 14 1]
dot-product 2 | 97802 | 9 2 12 &
dot-product 5 | 97802 | 7 3 11 10
dot-product 10 | 97802 | 5 3 11 12

Table 1: Error rates for ovarian cancer tissue experiments.
For each setting of the SVM consisting of a kernel and diagonal factor (DF), each tissue was classified. Column
2 is the number of features (clones) used. Reported are the number of normal tissues misclassified (FP), tumor
tissues misclassified (FN), tumor tissues classified correctly (TP), and normal tissues elassified correctly (TN).
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Figure 1: SVM classification margins for ovarian tissues. When classifying, the SWM caleulates a margin
which is the distanee of an example from the decigion boundary it has learmed. Tn this graph, the margin for
each tissue sample caleulated using (10) is shown. A positive value indicates a eorrect classification, and a
negative value indicates an incorrect classification. The most negative point eorresponds to tissue N039. The
second most negative point corresponds to tissue HWBC3.
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Significance Analysis of Microarrays (SAM) [Tusher, Tibshirani,
Chu, PNAS’01]

dFold change is a typical measure to decide
genes of interest.

dHowever, variations in gene expression are
also gene dependent. If repeats are
available, then such variations can be
measured for each gene. This helps to give a

better analysis of significant genes of
interest.
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Genomics

Study of all genes in a genome, or comparison of
whole genomes.

& Who
& Who
® Who

e genome sequencing
e genome annotation & Functional genomics
e genome comparison

» PipMaker: uses BLASTZ to compare very long sequences (>
2Mb);

» Mummer: used for comparing long microbial sequences (uses
Suffix trees!)

2/22/07
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http://www.cse.psu.edu/pipmaker/

Genomics (Cont’d)

@Gene Expression

»Microarray experiments & analysis
= Probe design (CODEHOP)
= Array image analysis (CrazyQuant)
= Identifying genes with significant changes (SAM)
= Clustering

2/22/07 CAP5510
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Proteomics

Study of all proteins in a genome, or
comparison of whole genomes.

®Whole genome annotation & Functional
proteomics

@ Whole genome comparison
@Protein Expression: 2D Gel Electrophoresis

2/22/07 CAP5510
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2D Gel Electrophoresis
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Other Proteomics Tools

From ExPASY/SWISS-PROT:

a

AACompIdent identify proteins from aa composition

[Input: aa composition, isoelectric point, mol wt., etc. Output: proteins from DB]

d
d
d

[y Wiy

AACompSim compares proteins aa composition with other proteins
MultIdent uses mol wt., mass fingerprints, etc. to identify proteins

PeptIdent compares experimentally determined mass fingerprints with
theoretically determined ones for all proteins

FindMod predicts post-translational modifications based on mass difference
between experimental and theoretical mass fingerprints.

PeptideMass theoretical mass fingerprint for a given protein.
GlycoMod predicts oligosaccharide modifications from mass difference
TGREASE calculates hydrophobicity of protein along its length
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Databases for Comparative Genomics

JPEDANT useful resource for standard questions in
comparative genomics. For e.q., Aow many known
proteins in XXX have known 3-d structures, how
many proteins from family YYY are in ZZZ, efc.

1 COGs Clusters of orthologous groups of proteins.

MBGD Microbial genome database searches for
homologs in all microbial genomes
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Gene Networks & Pathways

dGenes & Proteins act in concert and
therefore form a complex network of
dependencies.

2/22/07 CAP5510
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Pathway Example from KEGG
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Pseudomonas aeruginosa

CGlweine, serne and
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