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Problem 1:

 Input: Small sequence S
* QOutput: Is S from a CpG 1sland?

* Build Markov models: M+ and M —
* Then compare
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d Compute

S(x) = log(

0.580

-0.803

-0.913 | 0.302 1.812 -0.685
-0.624 |0.461 0.331 -0.730
-1.169 | 0.573 0.393 -0.679

2/1/11

CAPS5510/ CGS 5166

How to distinguish?

L i~ 1)Xi L
P(x | M+) = 2 lOg Py = 2 Vx( - nxi
P(x | M—) - Mxi - Hxi =

Score(GCAC)
=.461-.913+.419
<0.

GCAC not from CpG island.

Score(GCTC)
=.461-.685+.573
> 0.

GCTC from CpG island.



Problem 1:

 Input: Small sequence S

* Output: Is S from a CpG 1sland?
* Build Markov Models: M+ & M-
* Then compare

Problem 2:

* Input: Long sequence S

* Output: Identify the CpG islands in S.
* Markov models are inadequate.
* Need Hidden Markov Models.
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Hidden Markov Model (HMM)

e States

e Transitions
 Transition Probabilities
 Emissions

 Emission Probabilities

O

O O
O O
O
 What 1s hidden about HMMs? O
O O

Answer: The path through the model is
hidden since there are many valid paths.
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How to Solve Problem 27?

[ Solve the following problem:
Input: Hidden Markov Model M,

parameters ©, emitted sequence S
Output: Most Probable Path T1

How: Viterbi's Algorithm (Dynamic Programming)
Define II[i,j] = MPP for first j characters of S ending in state i
Define P[i,j] = Probability of II[i,j]

@ Compute state i with largest P[i, j].
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Profile HMMs

PROFILE METHOD, [M. Gribskov et al., '90]

Location Sequence | Protein

inSeq. |1 2 3 4 5 6 Name
14|GVSASA Ka RbtR
32|GVSEMT Ec DeoR
33|GVSPGT Ec RpoD
716 | GAGIAT Ec TrpR
17| GCSRET Ec CAP
206|cLsSPSR Ec AraC
210|Cc L S P SR St AraC
13|G VNKETL |BrMerR

START —» STATE1 —» STATE2 —» STATE3 —» STATE4 —» STATES —» STATE6 —» END
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Profile HMMs from Multiple Alignments

HBA HUMAN VGA--HAGEY
HBB HUMAN V----NVDEV
MYG PHYCA  VEA--DVAGH
GLB3 CHITP VKG------ D
GLB5 PETMA VYS--TYETS
LGB2 LUPLU FNA--NIPKH
GLB1 GLYDI IAGADNGAGV
Construct Profile HMM from above multiple alignment.
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Profile HMMs with InDels

DELETE 1 —> DELETE2 —> DELETE3 —» DELETE4 — DELETES —» DELETE 6

N AN AN

START —>» STATE 1 —V STATE 2 —V STATE3 —» STATE4 —» STATES —» STATE6 —» END

IV e

Missing transitions from DELETE j to INSERT j and
from INSERT j to DELETE j+1.
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HMM for Sequence Alignment

A. Sequence alignment
N « F L S
N « F L S
N K Y L T
Q « W - T

RED POSITION REPRESENTS ALIGNMENT IN COLUMN
GREEN POSITION REPRESENTS INSERT IN COLUMN
PURPLE POSITION REPRESENTS DELETE IN COLUMN

B. Hidden Markov model for sequence alignment

D1

oGt

D4

e MAW o

[l match state ’insert state . doletastate ~ —= transition probability

FIGURE 5.16. Relationship between the sequence alignment and the hidden Markov model of the alignment (Krogh et al. 1994).
This particular form for the HMM was chosen to represent the sequence, structural, and functional variation expected in proteins.
The model accommodates the identities, mismatches, insertions, and deletions expected in a group of related proteins. (A) A sec-
tion of an msa. The illustration shows the columns generated in an msa. Each column may include matches and mismatches (red
pP2£itipps), insertions (green positions), and deletions (@PR PreIVIOGS ($) dgre HMM. Each column in the model represents thg ()
possibility of a match, insert, or delete in each column of the alignment in 4. The HMM is a probabilistic representation of a sec-
tion of the msa. Sequences can be generated from the HMM by starting at the beginning state labeled BEG and then by following
any one of many pathways from one type of sequence variation to another (states) along the state transition arrows and terminat-
ing in the ending state labeled END. Any sequence can be generated by the model and each pathway has a probability associated
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Profile HMM Software

HMMER http://hmmer.wustl.edu/

SAM http://www.cse.ucsc.edu/research/compbio/sam.html
PFTOOLS http://www.isrec.isb-sib.ch/ftp-server/pftools/

HMMpro  http://www.netid.com/html/hmmpro.html

GENEWISE http://www.ebi.ac.uk/Wise2/

PROBE ftp://ftp.ncbi.nih.gov/pub/neuwald/probel.0/
META-MEME http://metameme.sdsc.edu/

BLOCKS http://www.blocks.fhcrc.org/

PSI-BLAST http://www.ncbi.nlm.nih.gov/BLAST/newblast.html
Read more about Profile HMMs at

® http://www.csb.yale.edu/userguides/seq/hmmer/docs/node9.html
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How to model Pairwise Sequence Alignment

LEAPVE
LAPVIE
Pair HMMs
* Emit pairs of synbols
I * Emission probs?
/ DE&BTI‘E  Related to Sub. Matrices
START > KIATCH > END
\ ;NS!RT‘ /HOW to deal with InDels?
U  Global Alignment? Local?

» Related to Sub. Matrices
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How to model Pairwise Local Alignments?

START — Skip Module — Align Module — Skip Module — END

How to model Pairwise Local Alignments with
gaps?

START > Skip Module — Align Module — Skip Module — > END

N
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Standard HMM architectures

[Linear Architecture

=5 HMMpre =[] x]
File rd'hg Model  Alignment View  Help
RS =2~ Ezk e @4 (@

File: | Delete1 Delete2 Delete3

Architecture: | Linear
Alphabet: | DNA |
Length: | 3

Start Main1 Main2 Main3

Insert1 Insert2 Insert3 Insert4

O @) O O
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Standard HMM architectures

Loop Architecture
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Standard HMM architectures

Wheel Architecture
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Problem 3: LIKELIHOOD QUESTION

===« [nput: Sequence S, model M, state 1 —

e Output: Compute the probability of reaching
state 1 with sequence S using model M

* Backward Algorithm (DP)

Problem 4: LIKELIHOOD QUESTION
 Input: Sequence S, model M

e Output: Compute the probability that S was
emitted by model M

* Forward Algorithm (DP)
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Problem 5: LEARNING QUESTION

===« [nput: model structure M, Training Sequence S

e Output: Compute the parameters ©
* Criteria: ML criterion
 maximize P(S | M, ®) HOW???

Problem 6: DESIGN QUESTION

 Input: Training Sequence S

e Output: Choose model structure M, and compute
the parameters ©

 No reasonable solution

 Standard models to pick from
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lterative Solution to the LEARNING QUESTION
(Problem 5)

JPick initial values for parameters ©,
1Repeat

Run training set S on model M

Count # of times transition i = | is made

Count # of times letter x is emitted from state |
Update parameters ©

dUntil (some stopping condition)
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Entropy

dEntropy measures the variability observed in given
data.

E = —E Pc log Pc
dEntropy is useful in multiple alignments & profiles.

dEntropy is max when uncertainty is max.
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G-Protein Couple Receptors

dTransmembrane proteins with 7 a-helices
and 6 loops; many subfamilies

dHighly variable: 200-1200 aa in length, some
have only 20% identity.

A[Baldi & Chauvin, '94] HMM for GPCRs

JHMM constructed with 430 match states
(avg length of sequences) ; Training: with 142
sequences, 12 iterations
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GPCR - Analysis

dCompute main state entropy values
Hi = —E €ia log Cia

a

For every sequence from test set (142) & random
set (1600) & all SWISS-PROT proteins

@ Compute the negative log of probability of the most
probable path &

Score(S) = —log(P(n | S,M))
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GPCR Analysis
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GPCR Analysis (Cont’d

Score
2000 3000 4000
|

"*,. x Random sequences
+ GPCR (training)
SWISS-PROT (validation)

0

Sequence length
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Applications of HMM for GPCR

Bacteriorhodopsin
@ Transmembrane protein with 7 domains
@®But it is not a GPCR

@ Compute score and discover that it is close to
the regression line. Hence not a GPCR.

dThyrotropin receptor precursors
@ All have long initial loop on INSERT STATE 20.

@ Also clustering possible based on distance to
regression line.
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HMMs — Advantages

3 Sound statistical foundations
O Efficient learning algorithms

A Consistent treatment for insert/delete penalties for
alignments in the form of locally learnable probabilities

[ Capable of handling inputs of variable length

[ Can be built in a modular & hierarchical fashion; can be
combined into libraries.

1 Wide variety of applications: Multiple Alignment, Data
mining & classification, Structural Analysis, Pattern
discovery, Gene prediction.
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HMMs — Disadvantages

Large # of parameters.

Cannot express dependencies &
correlations between hidden states.
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