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K-Means Clustering: Example

Example from Andrew Moore’s tutorial on Clustering.
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K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)
2. Randomly guess k
cluster Center
locations
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K-means and Hierarchical Clustering: Slide 7

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to.

4. Each Center finds
the centroid of the
points it owns
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K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k

cluster Center
locations

3. Each datapoint finds

out which Center it's
closest to. (Thus
each Center "owns”
a set of datapoints)
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K-means and Hierarchical Clusterng: Side 8

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to.

4. Each Center finds
the centroid of the

points it owns...
5. ..and jumps there
6. ...Repeat until

terminated!

Copyright © 2001, Andrew W, Moore

8 |

=i

K-means and Hierarchical Clustering: Side 10

CAPS5510/ CGS 5166




2/22/11

K-means
Start

Advance apologies: in
Black and White this
example will deteriorate

Example generated by
Dan Pelleg’s super-duper
fast K-means system:

Dan Pelleg and Andrew
Moore. Accelerating Exact
k-means Algorithms with
Geometric Reasoning.
Proc. Conference on
Knowledge Discovery in
Databases 1999,
(KDD99) (available on
www autorlab.org/pap html)
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K-means
continues
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K-means
continues
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K-means
continues
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K-means
continues

K-means
continues
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continues

K-means
continues
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K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)
2. Randomly guess k
cluster Center
locations
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K-means
continues
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K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k

cluster Center
locations

3. Each datapoint finds

out which Center it's
closest to. (Thus
each Center “owns”
a set of datapoints)
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K-means and Hierarchical Clustering: Siide 8

K-means
terminates
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K-Means Clustering [McQueen ’67]

Repeat

® Start with randomly chosen cluster centers

@ Assign points to give greatest increase in score
® Recompute cluster centers

@ Reassign points

until (no changes)

Try the applet at: http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/
AppletH.html
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Comparisons

dHierarchical clustering
@ Number of clusters not preset.
@ Complete hierarchy of clusters
@ Not very robust, not very efficient.

J K-Means

@ Need definition of a mean. Categorical data?
® More efficient and often finds optimum clustering.
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Functionally related
genes behave similarly
across experiments
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Figure 1: Expression profiles of the cytoplasmic ribosomal proteins. Figure (a) shows the
expression profiles from the data in [Eisen et al., 1998] of 121 cytoplasmic ribosomal proteins, as
classified by MYGD [MYGD, 1999]. The logarithm of the expression ratio is plotted as a function
of DNA microarray experiment. Ticks along the X-axis represent the beginnings of experimental
series. They are, from left to right, cell division cycle after synchronization with « factor arrest
(alpha), cell division cycle after synchronization by centrifugal elutriation (elu), cell division cycle
measured using a temperature sensitive cdcl5 mmutant (cdc), sporulation (spo), heat shock (he),
reducing shock (re), cold shock (co), and diauxic shift (di). Sporulation is the generation of a yeast
spore by meiosis. Diauxic shift is the shift from anaerobic (fermentation) to aerobic (respiration)
metabolism. The medium starts rich in glucose, and yeast cells ferment, producing ethanol. When
the glucose is used up, they switch to ethanol as a source for carbon. Heat, cold, and reducing
shock are various ways to stress the yeast cell. Figure (b) shows the average, plus or minus one
standard deviation, of the data in Figure (a).
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Self-Organizing Maps [Kohonen]

Kind of neural network.

dClusters data and find complex relationships
between clusters.

dHelps reduce the dimensionality of the data.
dMap of 1 or 2 dimensions produced.
dUnsupervised Clustering

Like K-Means, except for visualization
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4 2-D 6rid
4 3-D 6rid
d Hexagonal Grid
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SOM Architectures
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SOM Algorithm

dSelect SOM architecture, and initialize weight
vectors and other parameters.

JWhile (stopping condition not satisfied) do for each
input point x
@ winning node g has weight vector closest to x.

@ Update weight vector of q and its neighbors.
@ Reduce neighborhood size and learning rate.
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SOM Algorithm Details

dDistance between x and weight vector: |x = wi
L Winning node: g(x) = min
dWeight update function (for neighbors):

wilk +1) = wi(k) + u(k,x,i)[x(k) - wi(k)]
dLearning rate:

X — Wi

Vi — Iq(x)

(k,x, i) =no(k)eXp[ ~ ]
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World Bank Statistics

dData: World Bank statistics of countries in 1992.

139 indicators considered e.g., health, nutrition,
educational services, etc.

dThe complex joint effect of these factors can can
be visualized by organizing the countries using the
self-organizing map.
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World Poverty SOM
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World Poverty Map
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Viewing SOM Clusters on PCA axes
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Neural Networks
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Learning NN

Weights W

v

VY V

Adaptive Algorithm

Desired Response
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Types of NNs

J Recurrent NN
d Feed-forward NN
d Layered

Other issues

 Hidden layers possible
O Different activation functions possible
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Application: Secondary Structure Prediction

W

0

‘ Identical for all positions in the window

A Identical for all positions in the window
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Polymerase Chain Reaction (PCR)

O For testing, large amount of DNA is needed

@ Identifying individuals for forensic purposes
> (0.1 microliter of saliva contains enough epithelial cells)

@ Identifying pathogens (viruses and/or bacteria)

O PCR is a technique to amplify the number of copies of a
specific region of DNA.

[ Useful when exact DNA sequence is unknown
1 Need to know “flanking" sequences
d Primers designed from “flanking" sequences
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PCR

[ Flanking Regions with

known sequence

DNA

|

Forward

Primer

-
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Region to be
amplified

Reverse
Primer

Millions of
Copies
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PCR

Polymearase Chain Reaction (PCR)
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Schematic outline of a typical PCR cycle

PCR: Polymerase Chain Reaction
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POLYMERASE CHAIN REACTION

1.
DN is denatured, Primers attach
to each strand, A new DMNA strand

LW region: oF #terest.

is synthesized behind primers on e —
each template strand.
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Another round: DNA, is Another round: DNA, Another round: DNA is T
denatured, primers are is denatured, primers denatured, primers
attached, and the are attached, and the are attached, and the
number of DNA, number of DNA, number of DN&
strands are doubled, strands are doubled, strands are doubled,
5.
Continued rounds of amplification swiftly produce
2/22/11 large numbers of identical fragments, Each o 32

fragment contains the DNA region of interest,
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