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STSs and ESTs

[ Sequence-Tagged Site: short, unique sequence

L Expressed Sequence Tag: short, unique sequence
from a coding region
® 1991: 609 ESTs [Adams et al.]
@ June 2000: 4.6 million in dbEST

@ Genome sequencing center at St. Louis produce 20,000
ESTs per week.
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What Are ESTs and How Are They Made?

J Small pieces of DNA sequence (usually 200 - 500 nucleotides)
of low quality.

 Extract mRNA from cells, tissues, or organs and sequence
either end. Reverse transcribe to get cDNA (5 EST and 3’'EST)
and deposit in EST library.

1 Used as "tags" or markers for that gene.

 Can be used to identify similar genes from other organisms
(Complications: variations among organisms, variations in
genome size, presence or absence of introns).

1 5 ESTs tend to be more useful (cross-species conservation), 3’
EST often in UTR.
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DNA Markers

dUniquely identifiable DNA segments.
dShort, <b00 nucleotides.
dLayout of these markers give a map of genome.

d Markers may be polymorphic (variations among
individuals). Polymorphism gives rise to alleles.

JFound by PCR assays.

3/29/11 CAP 5510/ CGS 5166



Polymorphisms

dLength polymorphisms
@ Variable # of tandem repeats (VNTR)
@ Microsatellites or short tandem repeats
@Restriction fragment length polymorphism (RFLP)
caused by changes in restriction sites.
Single nucleotide polymorphism (SNP)
@ Average once every ~100 bases in humans
@ Usually biallelic
@ dbSNP database of SNPs (over 100,000 SNPs)
@ESTs are a good source of SNPs
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SNPs

1 SNPs often act as "disease markers”, and provide "genetic
predisposition”.

1 SNPs may explain differences in drug response of
individuals.

[ Association study: study SNP patterns in diseased
individuals and compare against SNP patterns in normal
individuals.

O Many diseases associated with SNP profile.
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Comparative Interactomics

Fly interaction map

Yeast interaction map
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Machine Learning

JHuman Endeavor
@ Data Information Knowledge

dMachine Learning
® Automatically extracting information from data

[ Types of Machine Learning

@ Unsupervised
»Clustering
»>Pattern Discovery

@ Supervised
»>Learning
»>Classification
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Support Vector Machines

[ Supervised Statistical Learning Method for:
@ Classification
® Regression

dSimplest Version:

@ Training: Present series of labeled examples (e.g., gene
expressions of fumor vs. normal cells)

@ Prediction: Predict labels of new examples.
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Learning Problems



Learning Problems

UBinary Classification
UMulti-class classification
JRegression
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SVM — Binary Classification

dPartition feature space with a surface.

dSurface is implied by a subset of the training
points (vectors) near it. These vectors are
referred to as Support Vectors.

dEfficient with high-dimensional data.
Solid statistical theory
1 Subsume several other methods.
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Classification of 2-D

(Separable) data
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Classification of
(Separable) 2-D data
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Classification of (Separable) 2-D data
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* Margin of a point

* Margin of a point set
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Classification using the Separator
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Perceptron Algorithm (Primal)

Rosenblatt, 1956

Given separable training set S and learning rate n>0
ﬂ@ — Q; // WelghT

b, =0; //Bias

k=0;R=max |x | B

repeat W =2 ayX
for i=11to N

ify; (W ex; + D) =0 then
Wi = W T myX
Oy = by + myR?
k=k+ 1
Until no mistakes made within loop

Return k, and (w,, b,) where k = # of mistakes
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Performance for Separable Data

Theorem:
If margin m of S is positive, then

k < (2R/m)>2
i.e., the algorithm will always converge,

and will converge quickly.
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Non-linear Separators
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Main idea: Map into feature space

§ Input space § Feature space
a *
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Figuee 2, The wea of SY machines: map the trarwrg data
noninearly nte a higher-dmensional feature space via
&, and constnt a separating hyperplane with maamum
mergn e, Ts yiekds a nonlnear decision beundary m
nput pace, By the use of a kemel funchion, it s possible
lo eomgite the separating nyperplane without explicithy
camyng eut the map into the feature pace.
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Non-linear Separators
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Useful URLSs

d http://www.support-vector.net
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Perceptron Algorithm (Primal)

Rosenblatt, 1956

Given separable training set S and learning rate n>0
ﬂ@ — Q; // WelghT

b, =0; //Bias

k=0;R=max |x | B

repeat W =2 ayX
for i=11to N

ify; (W ex; + D) =0 then
Wi = W T myX
Oy = by + myR?
k=k+ 1
Until no mistakes made within loop

Return k, and (w,, b,) where k = # of mistakes
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Perceptron Algorithm (Dual)

Given a separable training set S
a=0;b,=0;
R =max | x |
repeat
for i=11toN
if y, (2a,y; x;*x + b) <0 then
a,=q + 1
b=b +yR?
endif
Until no mistakes made within loop
Return (q, b)
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Perceptron Algorithm (Dual)

Given a separable training set S
a=0;b,=0;

R =max | x |

repeat

for i=11to N

if y, (Za;y; [4](x.x) + b) <0then
a,=q + 1
b=b+yR?
Until no mistakes made within loop
Return (a, D)

W] (X %) = @(X)* P(X)
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Different Kernel Functions

[ Polynomial kernel

K(X,Y)=(X°*Y)’

K(X,Y)= exp[ -|x -1 ]

O Radial Basis Kernel

Q Sigmoid Kernel 20°

K(X,Y)=tanh(w(X *Y)+0)
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SVM Ingredients

d Support Vectors

dMapping from Input Space to Feature Space
Dot Product - Kernel function

dWeights
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Generalizations

dHow to deal with more than 2 classes?
Idea: Associate weight and bias for each class.

dHow to deal with non-linear separator?
Idea: Support Vector Machines.

dHow to deal with linear regression?
dHow to deal with non-separable data?
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Applications

1 Text Categorization & Information Filtering
@ 12,902 Reuters Stories, 118 categories (91% )

dTImage Recognition

@ Face Detection, tumor anomalies, defective parts in
assembly line, etc.

L Gene Expression Analysis
Protein Homology Detection
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Learned threshold Optimized threshold
Class Method FP FN TP TN Cost|FP FN TP TN Cost
Tricatboxylic acid Radial SVM 8 8 9 2442 24 4 7 10 2446 18
Dot-product-1 SVM | 11 9 8 2439 29| 3 6 11 2447 15
Dotproduct:2 SVM | 5 10 7 2445 25| 4 6 11 2446 16 Leamned threshold Optimized threshold
Dot—product—3 SVYM 4 12 5 2446 28 4 6 11 2446 16 Class Method FP FN TP TN Cost | FP FN TP TN Cost
Parzen 4 12 5 2446 28 0 12 5 2450 24 Proteasome Radial SVM 3 7 28 2429 17 4 5 30 2428 14
FLD 9 10 7 2441 2 7 8 0 2443 23 Dotproduct-1 SVM | 14 11 24 2418 36| 2 7 28 2430 16
4.5 7 17 0 2443 41 _ _ _ _ _ Dotproduct-2 SVM | 4 13 22 2428 30 4 6 29 2428 16
MOC1 3 16 1 2446 35 _ _ _ _ _ Dot-product-3 SVM [ 3 18 17 2429 39 2 7 28 2430 16
Respiration Radial SVM 9 6 24 2428 21| 8 4 26 2429 16 Parzen 215 30 2411 31} 3 9 26 2429 21
Dotproduct-1 SVM [ 21 10 20 2416 41| 6 9 21 2431 24 FLD 7012 23 2425 3112 7 28 2420 26
Dotproduct:2 SVM | 7 14 16 2430 35| 7 6 24 2430 19 C4.5 1710 25 2415 37| - - - - -
Dotproduct-3 SVM | 3 15 15 2434 33| 7 6 24 2430 19 MOC1 10 17 18 2422 #4| - - - = =
Parzen 22 10 20 2415 21 7 12 18 2430 31 Histone Radial SVM 0 2 9 2456 41 0 2 9 2456 4
FLD 10 10 20 2427 30| 14 4 26 2423 22 Dot-product-1 SVM | 0 4 7 2456 8 0O 2 9 2456 4
4.5 18 17 13 2419 52 _ _ _ _ Dot-product-2 SVM [ 0 5 6 2456 0] 0 2 9 245 4
MOC1 12 26 4 2425 64 - - - - - Dot-product-3 SVM 0 8 3 2456 16 0 2 9 2456 4
Ribosome Radial SVM 9 4 117 2337 17| 6 1 120 2340 8 Parzen 2 3 8 44 31 1 3 8 2455 7
Dotproduct-1 SVM [ 13 6 115 2333 25|11 1 120 2335 13 FLD 0 3 8 246 6| 2 1 10 2454 4
Dotproduct2 SVM [ 7 10 111 2339 27| 9 1 120 2337 11 C45 2.2 9 HM 6 - - = = -
Dotproduct3 SVM | 3 18 103 2343 39| 7 1 120 2339 9 MoC1 2 5 6 244 L) - - - - -
Parzen 6 8 113 2340 2| 5 8§ 113 2341 21 Helix-tumn-helix ~ Radial SVM 1 16 0 2450 31 0 16 0 2451 32
FLD 15 5 116 2331 25 8 3 118 2338 14 Dot-product-1 SVM | 20 16 0 2431 52 0 16 0 2451 32
4.5 31 21 100 2315 73| - = _ _ _ Dotproduct-2 SVM | 4 16 0 2447 361 0 16 0 2451 32
MOC1 26 26 95 2320 781 = = - = = Dotproduct-3 SVM | 1 16 0 2450 3] 0 16 0 2451 32
Parzen 14 16 0 2437 46 0 16 0 2451 32
FLD 14 16 0 2437 46| 0 16 0 2451 32
Table 2: Comparison of error rates for various classification methods. Classes are as described c45 2 16 0 2449 4| - - = _ -
in Table 1. The methods are the radial basis function SVM, the SVMs using the scaled dot product MOC1 6 16 0 2445 B - - - - -

kernel raised to the first, second and third power, Parzen windows, Fisher’s linear discriminant, and
the two decision tree learners, C4.5 and MOCI. The next five columns are the false positive, false
negative, true positive and true negative rates summed over three cross-validation splits, followed
by the cost, which is the number of false positives plus twice the number of false negatives. These
five columns are repeated twice, first using the threshold learned from the training set, and then
using the threshold that minimizes the cost on the test set. The threshold optimization is not
possible for the decision tree methods, since they do not produce ranked results.

for Table 2.
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Class Kernel Cost for each split ~ Total
Tricarboxylic acid Radial 18 21 15 22 21 97
Dot-product-1 | 15 22 18 23 22| 100
Dot-product-2 | 16 22 17 22 22 99
Dot-product-3 | 16 22 17 23 22| 100
Respiration Radial 16 18 23 20 16 93
Dot-product-1 | 24 24 29 27 23| 127
Dot-product-2 | 19 19 26 24 23| 111
Dot-product-3 | 19 19 26 22 21| 107
Ribosome Radial 8 12 15 11 13 59
Dot-product-1 | 13 18 14 16 16 77
Dot-product-2 | 11 16 14 16 15 72
Dot-product-3 | 9 15 11 15 15 65
Proteasome Radial 14 10 9 11 11 55
Dot-product-1 | 16 12 12 17 19 76
Dot-product-2 | 16 13 15 17 17 78
Dot-product-3 | 16 13 16 16 17 79
Histone Radial 4 4 4 4 4 20
Dot-product-1 | 4 4 4 4 4 20
Dot-product-2 | 4 4 4 4 4 20
Dot-product-3 | 4 4 4 4 4 20

Table 4: Comparison of SVM performance using various kernels. For each of the MYGD

classifications, SVMs were trained using four different kemel functions on five different random

three-fold splits of the data, training on two-thirds and testing on the remaining third. The first
column contains the class, as described in Table 1. The second column contains the kernel function,
as described in Table 2. The next five columns contain the threshold-optimized cost (i.e., the

number of false positives plus twice the number of false negatives) for each of the five random
three-fold splits. The final column is the total cost across all five splits.
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Family Gene Locus Error Description
TCA  YPROOIW CIT3 FN  mitochondnal citrate synthase
YORI142W LSC1 FN  « subunit of succinyl-CoA ligase
YNROOIC CIT1 FN  mitochondrial citrate synthase
YLR174W IDP2 FN isocitrate dehydrogenase
YILI25W  KGD1 FN  a-ketoglutarate dehydrogenase
YDR143C KGD2 FN component of a-ketoglutarate dehydrogenase
complex in mitochondria
YDLO66W IDP1 FN  mitochondrial form of isocitrate dehydrogenase
YBLO15W ACHI FP acetyl CoA hydrolase
Resp  YPRI9IW QCR2 FN  ubiquinol cytochrome-c reductase core protein 2
YPL271W ATP15 FN  ATP synthase epsilon subunit
YPL262W FUMI FP fumarase
YML120C NDI1 FP mitochondrial NADH ubiquinone 6 oxidoreductase
YKLO85W MDH1 FP mitochondrial malate dehydrogenase
YDLO67C COX9 FN subunit VIIa of cytochrome ¢ oxidase
Ribo YPL0O37C EGDI FP /3 subunit of the nascent-polypeptide-associated
complex (NAC)
YLR406C RPL31B FN  ribosomal protein L31B (L34B) (YL28)
YLRO75W RPL10 FP ribosomal protein L10
YALOO3W EFBI FP translation elongation factor EF-143
Prot YHR027C RPNI1 FN subunit of 26S proteasome (PA700 subunit)
YGR270W YTA7 FN member of CDC48/PAS1/SECI18 family of ATPases
YGR048W UFDI1 FP ubiquitin fusion degradation protein
YDRO69C DOA4 FN ubiquitin isopeptidase
YDL020C RPN4 FN  involved in ubiquitin degradation pathway
Hist YOL012C HTA3 FN  histone-related protein
YKL049C CSE4 FN required for proper kinetochore function

Table 6: Consistently misclassified genes. The table lists all 25 genes that are consistently mis-

classified by SVMs trained using the MYGD classifications listed in Table 1. Two types of errors
are included: a false positive (FP) occurs when the SVM includes the gene in the given class but
the MYGD classification does not; a false negative (FN) occurs when the SVM does not include
the gene in the given class but the MYGD classification does.
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SVM [ SVM
Dataset Features | FP | FN | FP FN

Table 1: Error rates for ovarian cancer tissue experiments.
For each setting of the SVM consisting of a kernel and diagonal factor (DF), each tissue was classified. Column
2 is the number of features (clones) used. Reported are the number of normal tissues misclassified (FP), tumor
tissues misclassified (FN), tumor tissues classified correctly (TP), and normal tissues classified correctly (TN).
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Figure 1: SVM classification margins for ovarian tissues. When classifying, the SYM calculates a margin
which is the distance of an example from the decision boundary it has learned. In this graph, the margin for
each tissue sample caleulated using (10) is shown. A positive value indicates a correct classification, and a
negative value indicates an incorrect classification. The most negative point corresponds to tissue N039. The
second most negative point corresponds to tissue HWBC3.

Ovarian(original) 97802 46 | 4.8 5 3

= - - Ovarian(modified) 97802 44 | 34 0 [1]
i AML/ALL train | 7129 |06 |28 [ 0 0
dot-produc 4] il 2
dotprodiict 2 2 5 2 19 19 AML treatment 7129 48 | 3.5 3 2
dot-product 5 25 4 2 12 13 Colon 2000 [38]37] 3 3
dot-product 10 | 25 4 2 12 13
dot-product 0 50 I 2 12 13 .
dot-product 2 50 3 2 12 14 Table 5: Results for the perceptron on all data sets. The results are averaged over 5 shufflings of the data
dot-product 5 50 3 2 12 i as this algorithm is sensitive to the order in which it receives the data points. The first column is the dataset
:}3::”“3“2 (1]0 1311[:) z ; ﬁ g used and the second is number of features in the dataset. For the ovarian and colon datasets, the number
dot_ppﬁdﬁﬂ 5 100 5 3 11 12 of normal tissues misclassified (FP) and the number of tumor tissues misclassified (FN) is reported. For the
dot-product 5 100 5 3 1 12 AML/ALL training dataset, the number of AML samples misclassified (FP) and the number of ALL patients
dot-product 10 | 100 5 3 11 12 misclassified (FN) is reported. For the AML treatment dataset, the number of unsuccessfully treated patients
dotproduct; ] 00 | & 5 @l 12 misclassified (FP) and the number of successfully treated patients misclassified (FN) is reported. The last two
dot-product 2 500 4 3 11 13 | he b btained by the SVM on that dataset
dot-product 5 500 4 3 11 13 columns report the best score obtained by the on that dataset.
dot-product 10 [ 500 4 3 11 13
dot-product 0 1000 7 3 11 10
dot-product 2 | 1000 | 5 3 11 12
dot-product 5 1000 5 3 11 12
dot-product 10 1000 5 3 11 12
dot-product 0 | 97802 | 17 0 14 0
dot-product 2 | 97802 | 9 2 12 8
dot-product 5 97802 7 3 11 10
dot-product 10 | 97802 | 5 3 11 12

32



