Multiple sequence alignment

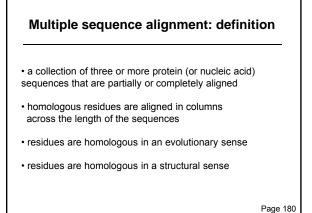
Monday, December 6, 2010

Bioinformatics J. Pevsner pevsner@kennedykrieger.org

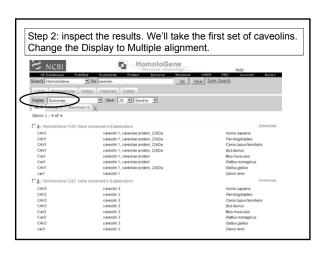
Multiple sequence alignment: today's goals

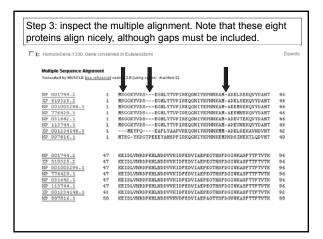
- to define what a multiple sequence alignment is and how it is generated; to describe profile HMMs
- to introduce databases of multiple sequence alignments
- to introduce ways you can make your own multiple sequence alignments
- to show how a multiple sequence alignment provides the basis for phylogenetic trees

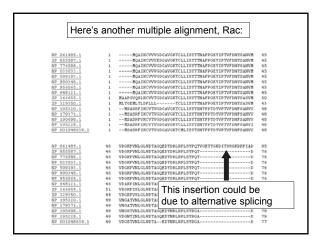
Page 179

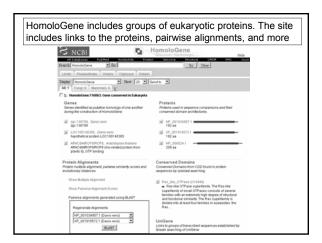

Multiple sequence alignment: outline

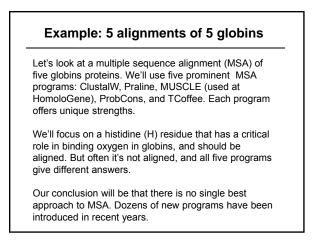
[1] Introduction to MSA Exact methods Progressive (ClustalW) Iterative (MUSCLE) Consistency (ProbCons) Structure-based (Expresso) Conclusions: benchmarking studies

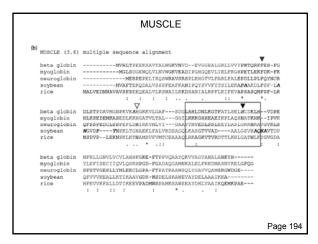

[2] Hidden Markov models (HMMs), Pfam and CDD

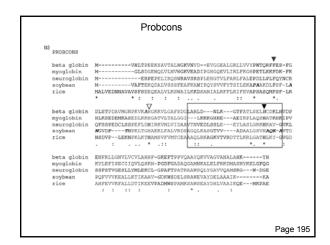

[3] MEGA to make a multiple sequence alignment

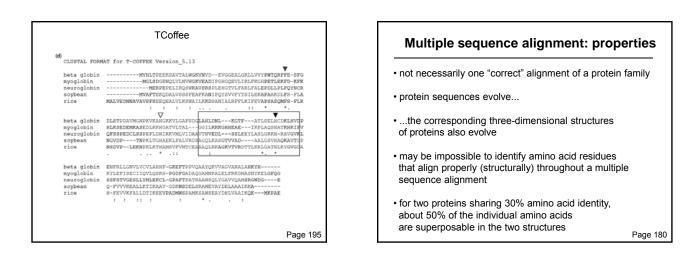

[4] Multiple alignment of genomic DNA

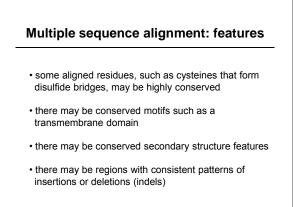



Example: someone is interested in caveolin

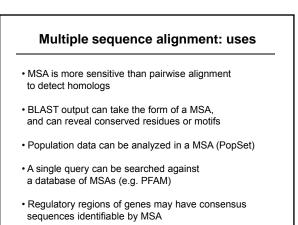







ClustalW					
CLUSTAL W (1	.83) multiple sequence alignment				
beta globin myoglobin neuroglobin soybean rice					
beta globin myoglobin neuroglobin soybean rice	DLSTDDAVMONFWVENGKWVLGAFSDCAMLDNLKGTFATLSELKCNELWUPF 103 HLMSEDENGAGECLKWGGTVLJALGGI KKWCHNEATIRS-ISCHARTWHEFW 103 OFSSBETCLSSPETLMHFWYUTDAFTWEEDSESEEYILAGANRAUVADF WYDFFNFFLIGHERKLFALVRDAGCHAGCHAGCTWVADACGANRAUVADF 103 NSDVFLEKNFRLKTHANSVFVHTCEAAGCHRAGKWTVRDTLFRLGATHLKYGGGA 117				
beta globin myoglobin neuroglobin soybean rice	NFRLIGNVLVCVLAHHF-GKEFTPFV0AAYOKVVAGVANALAHKYH 147 YLEFISECIIOULOSKI-PGDPCADACGANKALELPRKIMASHYKELGFOC 154 SPSTVCSELLVLIKKEL-GAPATPARANGOLVCVVOAMGRCMOGE 151 QFVVVKRALLKTIKAAV-GONBOELSRAMEVAYDELAAAIKKE 144 HFEVVKRALLKTIKAAV-GONBOELSRAMEVAYDELAAAIKCEMKPAE 166 :::::				

	Praline						
(a)	Praline multiple	sequence alignment					
	beta globin myoglobin neuroglobin soybean rice Consistency	WVHLTPEEKSAVTALMGKV.NVDEVGGEALGRLLVVYPWTORFFES.FG MGLEDOEMGLJVLNYMGKVEADJPGHOGEVLIRLFKGIFETLERKOR,FK MERFEFELIRGMANNSREJELANUTVLRAIFLAIEGULIFUGVIKK- MVAFFEKGALVMSREJENSKILKKRABANLEPLIRFENJFENJESSAGKFS.FL AUVENNAVAVAFEKGALVMSRILKKRABANLAINFFLIRFENJESSAGKFS.JC 00000000014265438257934573463364343624453686433*35344*50063					
	beta globin myoglobin neuroglobin soybean rice Consistency	DLSTPDAVMONPKVKAJORKVLGAFSDGLAHLDNLKOTPATLSELCDKLMVDP HLKSEDERKASEDLKKHORVULTALGGILKKKCHHEAEIKELAGSKAITKHKIPV GreespetchelsentenningungIPV A.NoVDPNNKLTGHARKLFALVROBGOL.KASGTVADDALGGVHAGKNYTD S.NSUPVERNULKRHMANGVYNCTEALAG.HELKSVAGAGHLGAGHLGVGVD 3166354224776653*43686354244 <u>94513356343335420033354</u> 0000922					
	beta globin myoglobin neuroglobin soybean rice Consistency	ENFRLLGNVLVCVLAHHF.GKEFTPPVGAAYGKVVAGVANALAHKYH KYLEFISHCIIQVLGHKH,BODGADAGGABNRALEIFFKIMBANYKELOFGG SSFSTVGSLLVMLKECL,GFAFTAFTAMSUCIVGVVGMSRGND.GF. POFVVVKALLKTIKAV,GONBOELSPARKAVICULAALITKA					
		Page 19					



Page 181

Multiple sequence alignment: outline

[1] Introduction to MSA

Exact methods Progressive (ClustalW) Iterative (MUSCLE) Consistency (ProbCons) Structure-based (Expresso) Conclusions: benchmarking studies

[2] Hidden Markov models (HMMs), Pfam and CDD

[3] MEGA to make a multiple sequence alignment

[4] Multiple alignment of genomic DNA

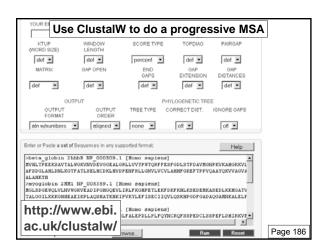
[5] Introduction to molecular evolution and phylogeny

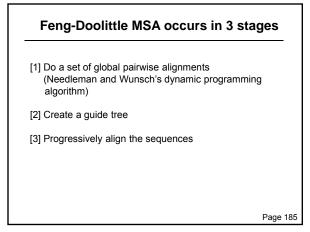
Multiple sequence alignment: methods

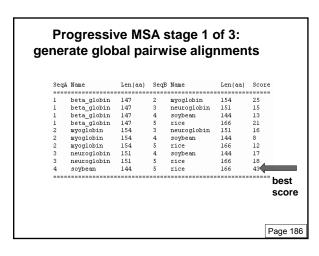
Progressive methods: use a guide tree (related to a phylogenetic tree) to determine how to combine pairwise alignments one by one to create a multiple alignment.

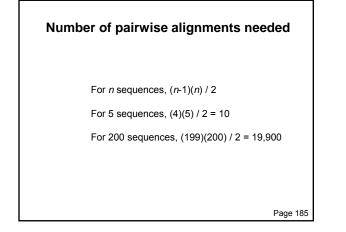
Examples: CLUSTALW, MUSCLE

Page 185

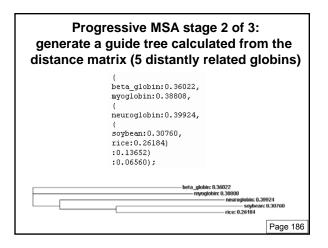

Multiple sequence alignment: methods

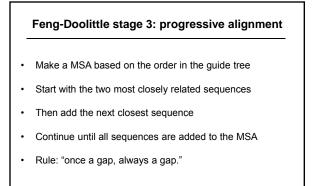

Example of MSA using ClustalW: two data sets


Five distantly related globins (human to plant)

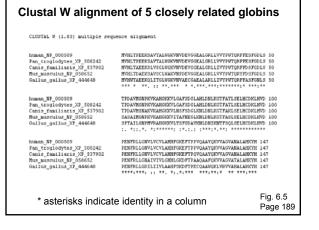

Five closely related beta globins

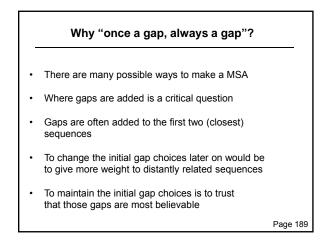
Obtain your sequences in the FASTA format! You can save them in a Word document or text editor. Visit www.bioinfbook.org for web documents 6-3 and 6-4

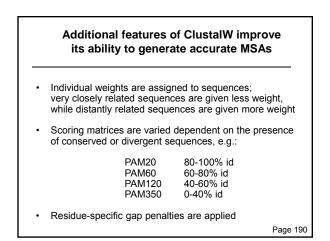


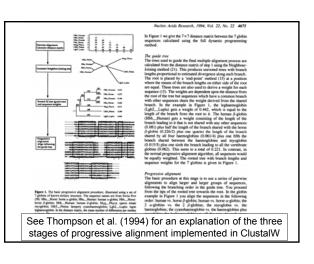

Feng-Doolittle stage 2: guide tree

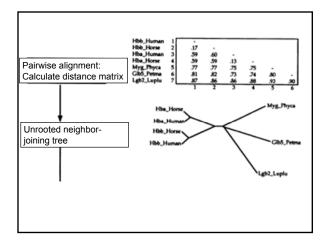
- Convert similarity scores to distance scores
- A tree shows the distance between objects
- Use UPGMA (defined in the phylogeny lecture)
- ClustalW provides a syntax to describe the tree

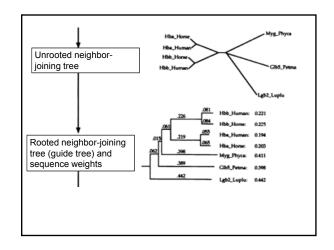

Page 187

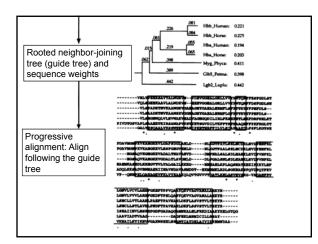


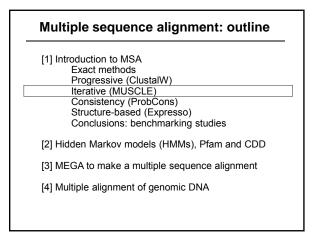

	Name	Len(aa)	SeqB	Naze	Len(aa)	Scor
1	human NP 000509	147	2	Pan troglodytes XP 508242	147	100
1	human NP 000509	147	3	Canis familiaris XP 537902	147	89
1	human NP 000509	147	4	Mus musculus NP 058652	147	80
1	human NP 000509	147	5	Gallus gallus XP 444648	147	69
2	Pan troglodytes XP 508242	147	3	Canis familiaris XP 537902	147	89
2	Pan_troglodytes_XP_508242	147	4	Mus_musculus_NP_058652	147	80
2	Pan_troglodytes_XP_508242	147	5	Gallus gallus XP 444648	147	69
3	Canis_familiaris_XP_537902	147	4	Mus_musculus_NP_058652	147	78
3	Canis_familiaris_XP_537902	147	5	Gallus_gallus_XP_444648	147	71
4	Mus_musculus_NP_058652	147	5	Gallus_gallus_XP_444648	147	66
	:0.05272, Canis_fas	iliaris_>	P_537	902:0.04932)	ated	
		alus_NP_05 allus_XP_4		0.12075, GIC :0.21259);	obins	5
	Mus_musc Gallus_gr hurman_NI	ellus_XP_4 000509:0 odytes_XP_5 liaris_XP_5	.00000 508242 37902:	:0.21259); :0.00000 0.04932 NP_058652: 0.12075		
	Nus_muscr Gallus_gr human_NI Pan_trogk	ellus_XP_4 000509:0 odytes_XP_5 liaris_XP_5	.00000 508242 37902:	:0.21259);		




	lignment of 5 distantly related globin	S
beta_globin cytoglobin myoglobin neuroglobin leghemoglobin	- HVHLTPEEKSATTALUG KVWVDEVGEALGRLLVVYPUTGRFF 43 HEKVVGENE IERGESSELSSAERKAVOANGALVANCEDVOVALLVPRFTUFFSAKOFF 60 	
beta_globin cytoglobin myoglobin ncuroglobin leghemoglobin	ES-FODLSTPDAVHGNFKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELBCDKLHY 99 50-FJEMEDPLENESSD(JEKRIACKVMGALTVVSNLHDPDKYSSVLALVGKATLKKKK 119 DN-FVHLSBCHKSSDLKGHGATVTALGGLIKKGHREAETKFLALGGKATKKKI 100 OVECOPSSEEDCLSSEETLDHITKVMLVTDAAVTVVDLSSLEEVLASLGNGMTAVC ¥ 101 SFLKUSAEVVDSFKLQAHAEKVFGWYDDSAIOLPASGEVVLGDATLGATHIOKGVV 99	
beta_globin cytoglobin myoglobin neuroglobin leghemoglobin	DPENFELLGNVLVCVLAHHFGKEFTPPVQAAYQKYVAGVANALAHKTH	
beta_globin cytoglobin myoglobin neuroglobin leghemoglobin	 TPPATLF55GP 190 Fig. 6 Page	







Multiple sequence alignment methods Iterative methods: compute a sub-optimal solution and keep modifying that intelligently using dynamic programming or other methods until the solution converges. Examples: MUSCLE, IterAlign, Praline, MAFFT

Page 190

MUSCLE: next-generation progressive MSA

[1] Build a draft progressive alignment

Determine pairwise similarity through k-mer counting (not by alignment)

Compute distance (triangular distance) matrix

Construct tree using UPGMA

Construct draft progressive alignment following tree

Page 191

MUSCLE: next-generation progressive MSA

[2] Improve the progressive alignment

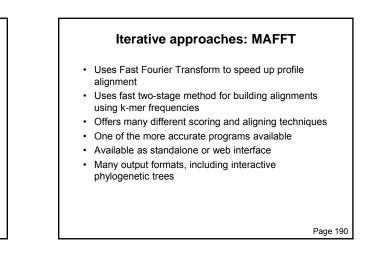
Compute pairwise identity through current MSA

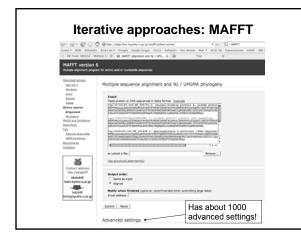
Construct new tree with Kimura distance measures

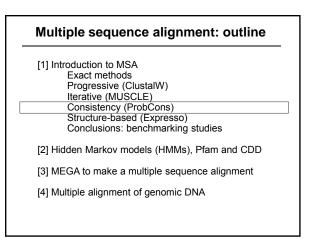
Compare new and old trees: if improved, repeat this step, if not improved, then we're done

Page 191

MUSCLE: next-generation progressive MSA

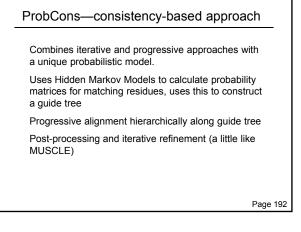

[3] Refinement of the MSA

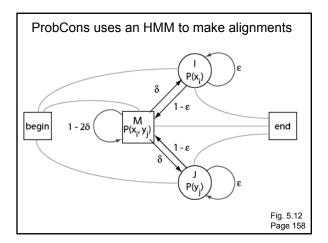

Split tree in half by deleting one edge

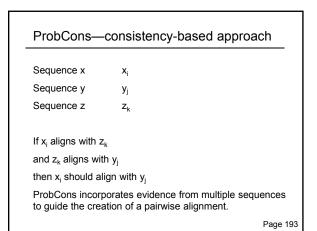

Make profiles of each half of the tree

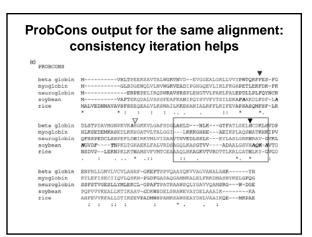
- Re-align the profiles
- Accept/reject the new alignment

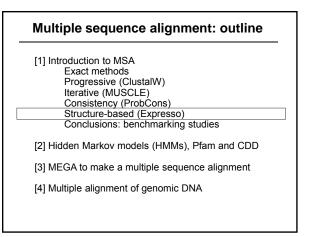
BBBLINDL	-CDI Bioinformatics	Institute						
EBI Home About			Toolb	Databa		ownloads	Submissions	
EDI HATTE ADAL	EBI GROUP	s oervide		Contact	SEQUENCI		500111551015	
		_						
 Help Index 	MUSCL	Submiss	ion Form	1				
 General Help 		_						
 Formats 	MUSCLE sta MUSCLE is a	nds for MUltiple Se laimed to achieve	quence Compa	rison by Log-Exp	ectation.	MUSC	LE	
* Gaps	than CLUSTA	LW or T-Coffee, de	pending on the	chosen options.	ino perser op	200	and simplifying	
 Matrix 	@ Downloa	d Software				484.54	complexity	
 References 	EMAIL	RESLATS	ALIONMENT	OUTPUT FOR				
 Muscle Help 	EMAL	RESULTS	TITLE	OUTPUT FOR	OMAT	OUTPUT TP	OUTPUT TREE	
 Jakiew Help 		interactive *	Sequence	fasta	10	ine .		
Ouide Tree		1	1	1				
Alignment Colours	Enter or Past	te a set of Sequen	ces in any sunn	orted format			Help	
• Colours								
Similar Applications								
Custally								
T-Cottee								

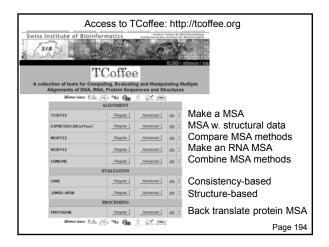


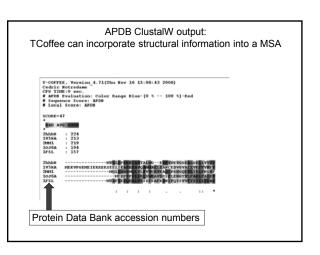

Multiple sequence alignment: consistency


Consistency-based algorithms: generally use a database of both local high-scoring alignments and long-range global alignments to create a final alignment


These are very powerful, very fast, and very accurate methods


Examples: T-COFFEE, Prrp, DiAlign, ProbCons





Multiple sequence alignment: outline

[1] Introduction to MSA Exact methods Progressive (ClustalW) Iterative (MUSCLE) Consistency (ProbCons) Structure-based (Expresso) Conclusions: benchmarking studies

[2] Hidden Markov models (HMMs), Pfam and CDD

[3] MEGA to make a multiple sequence alignment

[4] Multiple alignment of genomic DNA

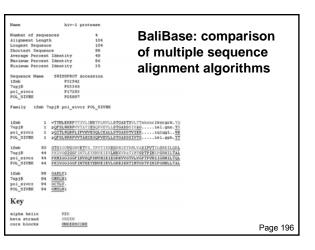
Multiple sequence alignment: methods

How do we know which program to use?

There are benchmarking multiple alignment datasets that have been aligned painstakingly by hand, by structural similarity, or by extremely time- and memory-intensive automated exact algorithms.

Some programs have interfaces that are more userfriendly than others. And most programs are excellent so it depends on your preference.

If your proteins have 3D structures, **use these** to help you judge your alignments. For example, try Expresso at http://www.tcoffee.org. Page 196


Strategy for assessment of alternative multiple sequence alignment algorithms

[1] Create or obtain a database of protein sequences for which the 3D structure is known. Thus we can define "true" homologs using structural criteria.

[2] Try making multiple sequence alignments with many different sets of proteins (very related, very distant, few gaps, many gaps, insertions, outliers).

[3] Compare the answers.

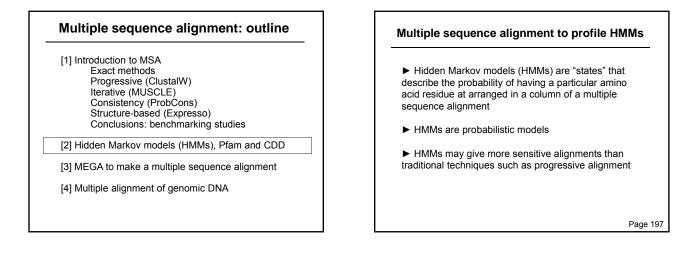
Page 196

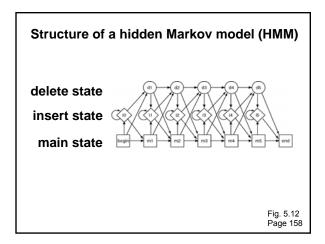
Multiple sequence alignment: methods

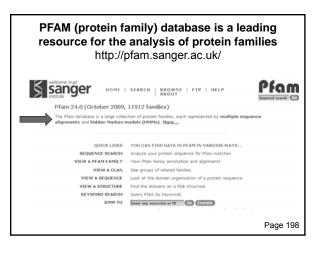
Benchmarking tests suggest that ProbCons, a consistency-based/progressive algorithm, performs the best on the BAIiBASE set, although MUSCLE, a progressive alignment package, is an extremely fast and accurate program.

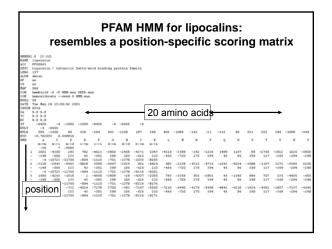
ClustalW is the most popular program. It has a nice interface (especially with ClustalX) and is easy to use. But several programs perform better. There is no one single best program to use, and your answers will certainly differ (especially if you align divergent protein or DNA sequences)

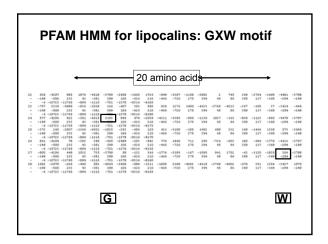
Page 196

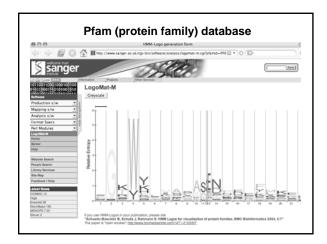

Multiple sequence alignment: review questions

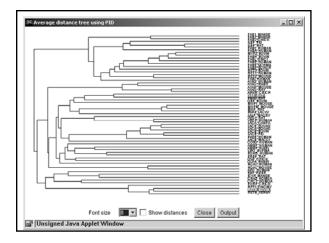

[1] Explain how ClustalW works.

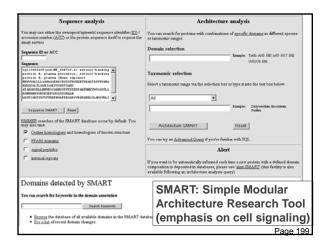

[2] Name two alternative methods. How do they work? What is the evidence that they are better than ClustalW?

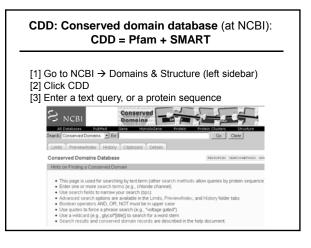

[3] What does it mean to do a benchmarking study, and why is it important?

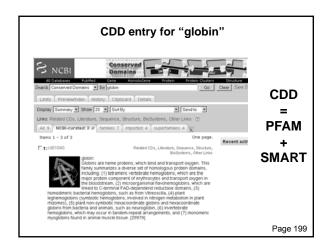

[4] Why is it important that various programs that make MSAs often give different answers?

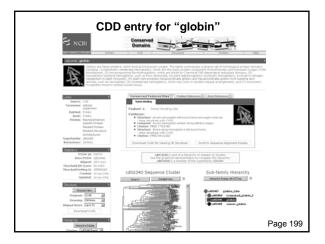


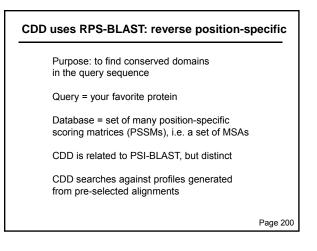


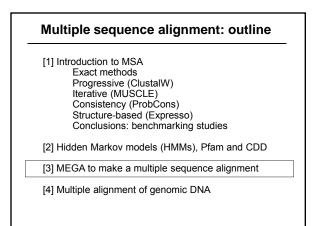


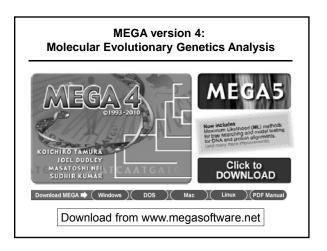

PFAM GCG MSF format							
	I						
	1				50		
A1AG_HUMAN_38-183				FFYFTPNKTE			
A1AG_RABIT_38-183	QLSHKWF.FT						
A1AH_MOUSE_39-184	WLSDKWF.FI	GAAVLNPDYR	. QE IQKTQMV	FFNLTPNLIN	DTMELR.EYH		
A1AG_RAT_39-183	WLSDKWF.YM	GAAFRDPVFK	.QAVQTIQTE	YFYLTPNLIN	DTIELR.EFQ		
APHR CRICR 21-165	ELQGKWY.TI	VIAADNLEKI	.EEGGPLRFY	FRHIDCYKNC	SEMEIT.FYV		
OBP_RAT_27-170		YIVADNVEKV	. AEGGSLRAY	FQHMECGDEC	QELKII.FNV		
PBAS RAT 27-170				FRRIECGK.R			
MUP1 MOUSE 32-175	KINGEWH.TI	ILASDKREKI	.EDNGNFRLF	LEQIHVLE	NSLVLK.FHT		
MUPM_HOUSE_36-179	QISGYWF.SI	AEASYEREKI	.EEHGSMRAF	VENITVLE	NSLVFK.FHL		
MUP_RAT_33-176	KLNGDWF.SI	VVASNKREKI	.EENGSMRVF	MQHIDVLE	NSLGFK.FRI		
OBP_BOVIN_12-156	ELSGPWR.TV	YIGSTNPEKI	.QENGPFRTY	FRELVFDDEK	GTVDFY.FSV		
CO8G_HUMAN_46-188	QFAGTWL.LV	AVGSACRFLQ	.EQGHRAEAT	TLHVAPQG	TAMAVS.TFR		
AMBP_HUMAN_39-188	RIYGKWY.NL	AIGSTCPWLK	.KIMDRMTVS	TLVLGEGATE	AEISMT.STR		
AMBP_PLEPL_41-189	RFVGTWH.DV	ALTSSCPHMQ	RNRADAAI	GKLVLEKDTG	NKLKVT.RTR		
LIPO_BUFMA_32-179	KILGKWY.GI	GLASNSNWFQ	.SKKQQLKMC	TTVITPTA.D	GNLDVV.ATF		
PGHD_HUMAN_38-186	KFLGRWF.SA	GLASNSSWLR	.EKKAALSMC	KSVVAPAT.D	GGLNLT.STF		
NGAL HUMAN 46-195	QFQGKWY.VV	GLAG.NAILR	.EDKDPQKMY	AT.IYELK.E	DKSYNV.TSV		
NGAL MOUSE 46-197	QFRGRWY.VV	GLAG.NAVQK	KTEGSFTM	YSTIYELQ.E	NNSYNV.TSI		
ERBP RAT 32-176	KFLGFWY.EI	AFASKMGTPG	LAHKEEKM	GAMVVELK.E	NLLALT.TTY		
QSP_CHICK_29-173	EVAGKWY. IV	ALASNTDFFL	. REKGKMKMV	MARISFLG.E	DELEVS.YAA		
ESP4_LACVV_33-167	KTVGKWH.PI	GMASKLPEVP	EYEQKISP	MDHMVELT.D	GDMKLT.ANY		
OLFA_RANPI_30-174	KVTGVWY.GI	AAASNCKQFL	QMKSDNMPAP	VNIYSLNN	GHMKSS.TSF		
LALP MACEU 28-171	PSEGTYY.VQ	VIAV. DKEFP	.EDEIPRDIS	PLTITYLN.N	GKMEAK.FTV		
VEG1 RAT 29-172	DVSGTWY.LK	AAAW.DKEIP	DKKFGSVSVT	PMKIKTLE.G	GNLQVK.FTV		

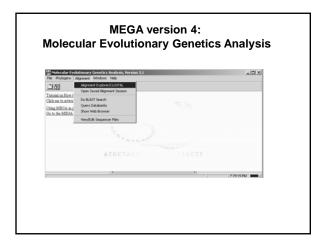


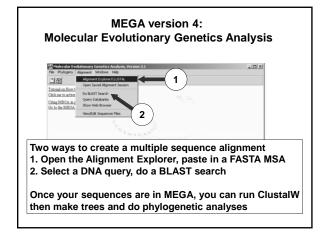

N Jalview alignment editor File Edit Fort View Colour					_03
File Edit Font View Colour	Colouiste Algr Help Consensus	0 40	50	60 70	80
	H-DVALTSSCPHMQPNPADA Y-GIGLASNSNMFQ-SKKQQLM F-SAGLASNSSMLR-EKKAALS Y-VVGLAG-NAILR-EDKDPQM	MCTTVITPTA-DGNLDVV MCKSVVAPAT-DGGLNLT MYAT-IYELK-EDKSYNV	EYITTHNT- EYHTIDDH FYVITHNQ- FYVITHNQ- FYVITHNQ- FNVKLDSE FNLVHEE- FKLIVHEE- FKLVHEE- FSVKRDK- TFRKENGE- FSVKRDK- STRHÆKKV- STFLFKKK- TSVLFFKKK	FYHST IVA YYHST IVA YYHFT IVA SHT YA COTHT YA OQFK IVA SHT YA COTHT YA	VQR-28.0TLSERDOL 100-28.0TLSECAGA VQR-28.0TLQECEGAGA VQR-28.0TLQECEGA RES-00.0TLQECEGA RES-00.VTLATEGG RES-00.VTLATEGG RES-00.VTLATEGG RES-00.0TLATEGG
ERBP RAT/32-176 KFL F QSP CHICK/29-173 EVAN ESP4 LACVV/33-167 KTV N CLFA RANPI/30-174 KVTV LALP MACEU/28-171 PSE T	T-EIATASIMOTPGLARGER T-IVALASHTOFTJ-REKGING H-PICHASILDEVPBYRQKI T-GIAAASHCKOFLOHISDAMP TT-VQVIAV-DKEFF-EDEIFFD T-LKAAAM-DKEIFDKKFGSVS T-LKAAM-DKEIFDKKFGSVS	KNGAMVVELK-ENLLALT WVMARISPLG-EDELEVS SPHDHDVELT-DGDMKLT APVNIYSLNNGHMKSS	TTTYSEDH YAAPSPKG ANY-MDGV TSFQTEKG FTVKKDNN FTVLIAGR VIMLISGR	CVLERVTAT CREATAHLS CQMDVEP CEEINLTLE CREMSTVLE CQEVKAVLE	EGDGPAKPQVTRUS KTSDDGEVYTSEEA HTDKPGVFKFTG TTVEKGHYKMDYQQ KIDEPAKITTRHU KTDEPAKYTADGGK

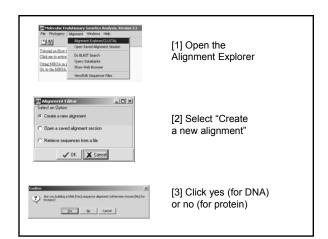


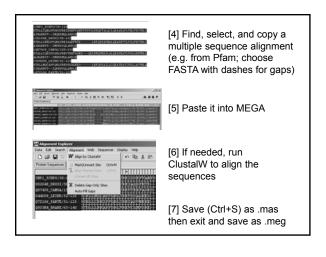


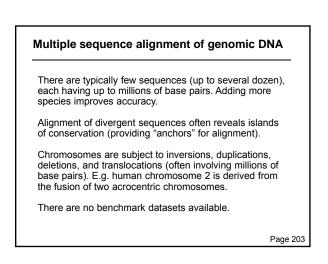


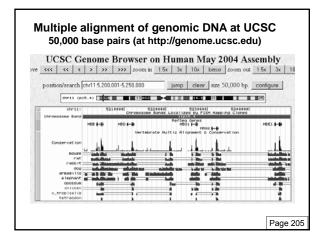


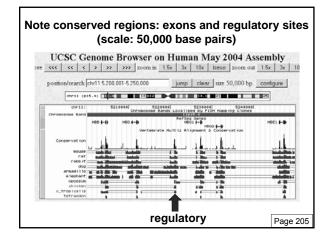

	CDD entry for "globin"								
	g								
quence Alignment									
quence Algnment									
Reformat Formal	: Hypertext 🔹 Row Display: Up to 10 💌 Color Bits: 2.0 bit 💌 Type Selection: [the most div	rerse members							
	10 20 30 40 50 60 70 80								
Feature 1	1 1 11 11								
	ANKTRELCHESLehakvdtsnearQOGIDLTEHMFENTppLREYFEsreeytaedvqndpfFAEQGQEILLA 72								
	SAADRONVKAAWghvgghesEYGAEALERHFLSFptTKTYFphfdlshgseqVKGBGAEVAAA 61								
	SDSEEELVRDAWapihgdlqGTANTWFYNYLKEYpSNQDEFetlkghpldevkdtanFKLIAGRIFTI 7: TARFRETKORIOMinkydtaLFCSOFTDNLIARD:								
	TARPESTEQRIGENEV								
	TPHQIFDVQRSvenic								
	DKESCEVVADSWrivesrssametsaCFGLFVFQRVFSKIpmLRPLFglsesddvfdlpdnhpVRRHARLFTSI 21								
	SPEHORLIKRSWar1phaor GRASLEAF ITAA2VTHAIFvdketENREVKYFVDL 12								
	SPYQGELLVGCWsmivttgasgFfANSLTSTLSSENakAKELLakadgvavfsksdfdcSVHBCFVTVEI								
g1 20571530 36	TLSERLALRQAWnivrpferRTGQDVFTSFLNDTyWGIKKFrngseInvksLNSHALRFINF 97	7							
	90 100 110 120 130 140 150								
Feature 1	88 8 8 8 8								
	CHVLCAtyddret-fnaytrELLDRHARdhvhmppeVWTDFWKLFEEYLgkkttldeptKQAWHEIGREFAKEI 14								
	LTK&VEhiddlpgalsELSDLE&ScirvdpvNFKLLSHELLVTLaships-dftpavH&SLDKFL&VVSTVL 130								
	FINCVEnvgndkg-fqkviaDMSGPHVAcpithgsYNDLRGVIYDSHHldsthGAAWNKHHDWFFYVF 140								
	LDSAIDwlenvhv-lddyivELGKRESRilgiktvGFEVHOKAFHTTLgdrfgs-fltlelENLWGQLYSTLANCH 291								
	LDTHISeaddklq-llgninTHRYTHTErgiprePVEDFSRLLLDVLgskgvstddldsvEOVLAVFVNOVSPIK 34								
	LQKVBQsidepdk-isklcqEIGQKHAKyrrskgskidYWDKLGEAITETIreyqgw-kihresLRAATVLVSYVVDQL 161								
	LHISVEnvdeleaqvaptvfETGERHTRpditphmteeNVRVFCAQIVCTVfdficdteatpkcAESWIELHRTLGQKL 314 VCSCVDmlenletgvkpwldLIGRGHANfkitgkHWEKFGESLLTTAtevngpgrrhketVKAVEVHSSFLADRL 187								
	VQSCVDnlenletgvkpwidLIGRGHANIK1====tgkHwEKFGESLLTTAtewngpgrinketVKAVHVHSSFLADHL 18 LDTVIKnldndharitgyltEIGKQHERikaeg-lssaVWDDLGDTIHDCArrroeavrkhkelRRAWLAIIAYIHDNL 29:								
	FGLL TEskdowyfglminDNNFTNRshvgsvNIGHLAGELVDVVIkythk-vssos1EGGLSKLVEKFONVO 165								
Ar soc.7220 20	Construction of the relation o	-							
	r	Daga 100							
	F	Page 199							

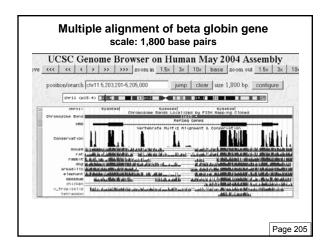


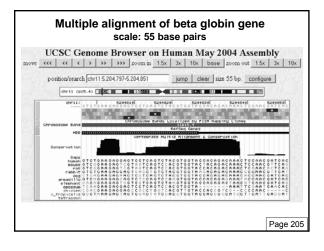











Multiple sequence alignment: outline [1] Introduction to MSA Exact methods Progressive (ClustalW) Iterative (MUSCLE) Consistency (ProbCons) Structure-based (Expresso) Conclusions: benchmarking studies [3] Hidden Markov models (HMMs), Pfam and CDD [4] MEGA to make a multiple sequence alignment [5] Multiple alignment of genomic DNA

