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Announcements

The moodle quiz from lecture 1 is due one week later—
by today at noon. After then the quiz “closes” and won’t 
be available to you.

The quiz from today’s lecture (“opens” at 10:30 am) is 
d i k l t t B f thdue in one week later at noon. Because of the 
Thanksgiving break, I’m extending the deadline a day to 
Tuesday November 30 (5:00 pm).

Outline: pairwise alignment

• Overview and examples

• Definitions: homologs, paralogs, orthologs

• Assigning scores to aligned amino acids:g g g
Dayhoff’s PAM matrices

• Alignment algorithms: Needleman-Wunsch,
Smith-Waterman

Learning objectives

• Define homologs, paralogs, orthologs

• Perform pairwise alignments (NCBI BLAST)

• Understand how scores are assigned to aligned 
amino acids using Dayhoff’s PAM matrices

• Explain how the Needleman-Wunsch algorithm 
performs global pairwise alignments

Pairwise alignments in the 1950s

-corticotropin (sheep)
Corticotropin A (pig)

ala gly glu asp asp glu
asp gly ala glu asp gluCorticotropin A (pig) asp gly ala glu asp glu

Oxytocin
Vasopressin

CYIQNCPLG
CYFQNCPRG
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Early example of 
sequence alignment: 
globins (1961)

myoglobin globins: 

H.C. Watson and J.C. 
Kendrew, “Comparison 
Between the Amino-Acid 
Sequences of Sperm Whale 
Myoglobin and of Human 
Hæmoglobin.”  Nature
190:670-672, 1961.

• It is used to decide if two proteins (or genes)
are related structurally or functionally

Pairwise sequence alignment is the most 
fundamental operation of bioinformatics

• It is used to identify domains or motifs that
are shared between proteins

• It is the basis of BLAST searching (next week)

• It is used in the analysis of genomes

Page 47

Pairwise alignment: protein sequences
can be more informative than DNA

• protein is more informative (20 vs 4 characters);
many amino acids share related biophysical properties

• codons are degenerate: changes in the third position
often do not alter the amino acid that is specified

• protein sequences offer a longer “look-back” time

• DNA sequences can be translated into protein,
and then used in pairwise alignments

Page 54

Pairwise alignment: protein sequences
can be more informative than DNA

• Many times, DNA alignments are appropriate
--to confirm the identity of a cDNA
--to study noncoding regions of DNA
--to study DNA polymorphisms
--example: Neanderthal vs modern human DNA

Query: 181 catcaactacaactccaaagacacccttacacccactaggatatcaacaaacctacccac 240
|||||||| |||| |||||| ||||| | |||||||||||||||||||||||||||||||  

Sbjct: 189 catcaactgcaaccccaaagccacccct-cacccactaggatatcaacaaacctacccac 247

Outline: pairwise alignment

• Overview and examples

• Definitions: homologs, paralogs, orthologs

• Assigning scores to aligned amino acids:g g g
Dayhoff’s PAM matrices

• Alignment algorithms: Needleman-Wunsch,
Smith-Waterman
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Pairwise alignment
The process of lining up two sequences 
to achieve maximal levels of identity 

Definition: pairwise alignment

(and conservation, in the case of amino acid sequences) 
for the purpose of assessing the degree of similarity 
and the possibility of homology.

Page 53

Homology
Similarity attributed to descent from a common ancestor.

Definition: homology

Page 49

Beta globin
(NP_000509)

2HHB

Page 49

myoglobin
(NP_005359)

2MM1

Orthologs
Homologous sequences in different species 
that arose from a common ancestral gene 
during speciation; may or may not be responsible 
f i il f ti

Definitions: two types of homology 

for a similar function. 

Paralogs
Homologous sequences within a single species 
that arose by gene duplication. 

Page 49

Orthologs:
members of a 
gene (protein)
family in various
organisms.
This tree shows
globin orthologs.

Page 51

You can view these sequences at 
www.bioinfbook.org (document 3.1)

Paralogs: members of a gene (protein) family within a
species. This tree shows human globin paralogs.

Page 52
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Orthologs and paralogs are often viewed in a single tree

Source: NCBI

General approach to pairwise alignment

• Choose two sequences
• Select an algorithm that generates a score
• Allow gaps (insertions, deletions)

S fl t d f i il it• Score reflects degree of similarity
• Alignments can be global or local
• Estimate probability that the alignment
occurred by chance

Calculation of an alignment score

Source: http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Alignment_Scores2.html

Find BLAST from the home page of NCBI 
and select protein BLAST…

Page 52

Choose align two 
or more 
sequences…

Page 52

Enter the two sequences (as 
accession numbers or in the 
fasta format) and click 
BLAST.

Optionally select “Algorithm 
parameters” and note the 
matrix option.
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Pairwise alignment result of human beta globin and myoglobin

Myoglobin RefSeq Information about this alignment: 
score, expect value, identities, 
positives, gaps…

Query = HBB
Subject = MB

Middle row displays identities;
+ sign for similar matches

Page 53

Pairwise alignment result of human beta globin and myoglobin: 
the score is a sum of match, mismatch, gap creation, and gap 
extension scores

Page 53

Pairwise alignment result of human beta globin and myoglobin: 
the score is a sum of match, mismatch, gap creation, and gap 
extension scores

Page 53

V matching V earns +4 These scores come from
T matching L earns -1 a “scoring matrix”!

Homology
Similarity attributed to descent from a common ancestor.

Definitions: homology

Page 50

Definitions: identity, similarity, conservation

Identity
The extent to which two (nucleotide or amino acid) 
sequences are invariant.

Similarity

Page 51

Similarity
The extent to which nucleotide or protein sequences 
are related. It is based upon identity plus conservation.

Conservation
Changes at a specific position of an amino acid or 
(less commonly, DNA) sequence that preserve the 
physico-chemical properties of the original residue.

Pairwise alignment

The process of lining up two sequences to achieve 

Definition: pairwise alignment

maximal levels of identity (and conservation, for amino 
acid sequences) for the purpose of assessing the 
degree of similarity and the possibility of homology.

Page 53



11/18/2010

6

Mind the gaps

Page 55

First gap position scores -11
Second gap position scores -1
Gap creation tends to have a large negative score;
Gap extension involves a small penalty

• Positions at which a letter is paired with a null 
are called gaps. 

•  Gap scores are typically negative. 

Si i l i l h i i

Gaps

• Since a single mutational event may cause the insertion 
or deletion of more than one residue, the presence of 
a gap is ascribed more significance than the length 
of the gap. Thus there are separate penalties for gap      

creation and gap extension. 

• In BLAST, it is rarely necessary to change gap values 
from the default.

1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP
.  |||  |     .   |.  .  .  |  : .||||.:|    : 

1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin

51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP
: | |   |   |    ::  | .| .  ||  |:   ||        |.

45 ISLLDAQSAPLRV YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin

Pairwise alignment of retinol-binding protein 
and -lactoglobulin:

Example of an alignment with internal, terminal gaps

45 ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin

98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV...........QYSC 136 RBP
|| ||.        |        :.||||  | .             .|

94 IPAVFKIDALNENKVL........VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin

137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP
. |       |     | :    ||   .      | || |         

136 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI....... 178 lactoglobulin

1 .MKWVWALLLLA.AWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDP 48
::   ||  ||  ||   .||.||. .| :|||:.|:.| |||.|||||

1 MLRICVALCALATCWA...QDCQVSNIQVMQNFDRSRYTGRWYAVAKKDP 47
.         .         .         .         .

49 EGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDVCADMVGTFTDTED 98
|||| ||:||:|||||.|.|.||| ||| :||||:.||.| ||| || |

48 VGLFLLDNVVAQFSVDESGKMTATAHGRVIILNNWEMCANMFGTFEDTPD 97

Pairwise alignment of retinol-binding protein 
from human (top) and rainbow trout (O. mykiss):

Example of an alignment with few gaps

.         .         .         .         .
99 PAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAVQYSCRLLNLDGTCADS 148

||||||:||| ||:|| ||||||::||||| ||: |||| ..||||| |
98 PAKFKMRYWGAASYLQTGNDDHWVIDTDYDNYAIHYSCREVDLDGTCLDG 147

.         .         .         .         .
149 YSFVFSRDPNGLPPEAQKIVRQRQEELCLARQYRLIVHNGYCDGRSERNLL 199

|||:||| | || || ||||  :..|:|   .|| : | |:|:
148 YSFIFSRHPTGLRPEDQKIVTDKKKEICFLGKYRRVGHTGFCESS...... 192

Pairwise sequence alignment allows us
to look back billions of years ago (BYA)

Origin of
life

Origin of
eukaryotes insects

Fungi/animal
Plant/animal

Earliest
fossils

Eukaryote/
archaea

4 3 2 1 0

Page 56

When you do a pairwise alignment of homologous human 
and plant proteins, you are studying sequences that last 
shared a common ancestor 1.5 billion years ago!

fly       GAKKVIISAP SAD.APM..F VCGVNLDAYK PDMKVVSNAS CTTNCLAPLA 
human     GAKRVIISAP SAD.APM..F VMGVNHEKYD NSLKIISNAS CTTNCLAPLA 
plant     GAKKVIISAP SAD.APM..F VVGVNEHTYQ PNMDIVSNAS CTTNCLAPLA 
bacterium GAKKVVMTGP SKDNTPM..F VKGANFDKY. AGQDIVSNAS CTTNCLAPLA 
yeast     GAKKVVITAP SS.TAPM..F VMGVNEEKYT SDLKIVSNAS CTTNCLAPLA 
archaeon  GADKVLISAP PKGDEPVKQL VYGVNHDEYD GE.DVVSNAS CTTNSITPVA 

fly       KVINDNFEIV EGLMTTVHAT TATQKTVDGP SGKLWRDGRG AAQNIIPAST 

Multiple sequence alignment of
glyceraldehyde 3-phosphate dehydrogenases:

example of extremely high conservation

human     KVIHDNFGIV EGLMTTVHAI TATQKTVDGP SGKLWRDGRG ALQNIIPAST 
plant     KVVHEEFGIL EGLMTTVHAT TATQKTVDGP SMKDWRGGRG ASQNIIPSST 
bacterium KVINDNFGII EGLMTTVHAT TATQKTVDGP SHKDWRGGRG ASQNIIPSST 
yeast     KVINDAFGIE EGLMTTVHSL TATQKTVDGP SHKDWRGGRT ASGNIIPSST 
archaeon  KVLDEEFGIN AGQLTTVHAY TGSQNLMDGP NGKP.RRRRA AAENIIPTST 

fly       GAAKAVGKVI PALNGKLTGM AFRVPTPNVS VVDLTVRLGK GASYDEIKAK 
human     GAAKAVGKVI PELNGKLTGM AFRVPTANVS VVDLTCRLEK PAKYDDIKKV 
plant     GAAKAVGKVL PELNGKLTGM AFRVPTSNVS VVDLTCRLEK GASYEDVKAA 
bacterium GAAKAVGKVL PELNGKLTGM AFRVPTPNVS VVDLTVRLEK AATYEQIKAA 
yeast     GAAKAVGKVL PELQGKLTGM AFRVPTVDVS VVDLTVKLNK ETTYDEIKKV 
archaeon  GAAQAATEVL PELEGKLDGM AIRVPVPNGS ITEFVVDLDD DVTESDVNAA 

Page 57
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Outline: pairwise alignment

• Overview and examples

• Definitions: homologs, paralogs, orthologs

• Assigning scores to aligned amino acids:g g g
Dayhoff’s PAM matrices

• Alignment algorithms: Needleman-Wunsch,
Smith-Waterman

Emile Zuckerkandl and Linus Pauling (1965) considered 

lys found at 58% of arg sites

Page 93

substitution frequencies in 18 globins
(myoglobins and hemoglobins from human to lamprey).

Black: identity
Gray: very conservative substitutions (>40% occurrence)
White: fairly conservative substitutions (>21% occurrence)
Red: no substitutions observed

Page 93

A 2        
R -2 6        
N 0 0 2        
D 0 -1 2 4        
C -2 -4 -4 -5 12        
Q 0 1 1 2 -5 4        
E 0 -1 1 3 -5 2 4        
G 1 -3 0 1 -3 -1 0 5        
H -1 2 2 1 -3 3 1 -2 6       
I -1 -2 -2 -2 -2 -2 -2 -3 -2 5      
L -2 -3 -3 -4 -6 -2 -3 -4 -2 -2 6     

Where we’re heading: 
to a PAM250 log odds scoring 
matrix that assigns scores and 
is forgiving of mismatches…
(such as +17 for W to W

or -5 for W to T)

K -1 3 1 0 -5 1 0 -2 0 -2 -3 5    
M -1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6   
F -3 -4 -3 -6 -4 -5 -5 -5 -2 1 2 -5 0 9  
P 1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 6 
S 1 0 1 0 0 -1 0 1 -1 -1 -3 0 -2 -3 1 2
T 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3 0 1 3
W -6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 17
Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10
V 0 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4
 A R N D C Q E G H I L K M F P S T W Y V 

Page 69

A 7                    

R -10 9                   

N -7 -9 9                  

D -6 -17 -1 8                 

C -10 -11 -17 -21 10                

Q -7 -4 -7 -6 -20 9               

E -5 -15 -5 0 -20 -1 8              

G -4 -13 -6 -6 -13 -10 -7 7             

H -11 -4 -2 -7 -10 -2 -9 -13 10            

I -8 -8 -8 -11 -9 -11 -8 -17 -13 9           

L 9 12 10 19 21 8 13 14 9 4 7

…and to a whole series of 
scoring matrices such as 
PAM10 that are strict and 
do not tolerate mismatches
(such as +13 for W to W

or -19 for W to T)

Page 69

L -9 -12 -10 -19 -21 -8 -13 -14 -9 -4 7      

K -10 -2 -4 -8 -20 -6 -7 -10 -10 -9 -11 7         

M -8 -7 -15 -17 -20 -7 -10 -12 -17 -3 -2 -4 12        

F -12 -12 -12 -21 -19 -19 -20 -12 -9 -5 -5 -20 -7 9       

P -4 -7 -9 -12 -11 -6 -9 -10 -7 -12 -10 -10 -11 -13 8      

S -3 -6 -2 -7 -6 -8 -7 -4 -9 -10 -12 -7 -8 -9 -4 7     

T -3 -10 -5 -8 -11 -9 -9 -10 -11 -5 -10 -6 -7 -12 -7 -2 8    

W -20 -5 -11 -21 -22 -19 -23 -21 -10 -20 -9 -18 -19 -7 -20 -8 -19 13   

Y -11 -14 -7 -17 -7 -18 -11 -20 -6 -9 -10 -12 -17 -1 -20 -10 -9 -8 10  

V -5 -11 -12 -11 -9 -10 -10 -9 -9 -1 -5 -13 -4 -12 -9 -10 -6 -22 -10 8 

 A R N D C Q E G H I L K M F P S T W Y V 
 

Dayhoff’s 34 protein superfamilies

Protein PAMs per 100 million years

Ig kappa chain 37
Kappa casein 33
luteinizing hormone b 30
lactalbumin 27
complement component 3 27complement component 3 27
epidermal growth factor 26
proopiomelanocortin 21
pancreatic ribonuclease 21
haptoglobin alpha 20
serum albumin 19
phospholipase A2, group IB 19
prolactin 17
carbonic anhydrase C 16
Hemoglobin  12
Hemoglobin  12

Page 59
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Dayhoff’s 34 protein superfamilies

Protein PAMs per 100 million years

Ig kappa chain 37
Kappa casein 33
luteinizing hormone b 30
lactalbumin 27
complement component 3 27complement component 3 27
epidermal growth factor 26
proopiomelanocortin 21
pancreatic ribonuclease 21
haptoglobin alpha 20
serum albumin 19
phospholipase A2, group IB 19
prolactin 17
carbonic anhydrase C 16
Hemoglobin  12
Hemoglobin  12

human (NP_005203) versus mouse (NP_031812)

Dayhoff’s 34 protein superfamilies

Protein PAMs per 100 million years

apolipoprotein A-II 10
lysozyme 9.8
gastrin 9.8
myoglobin 8.9
nerve growth factor 8.5nerve growth factor 8.5
myelin basic protein 7.4
thyroid stimulating hormone b 7.4
parathyroid hormone 7.3
parvalbumin 7.0
trypsin 5.9
insulin 4.4
calcitonin 4.3
arginine vasopressin 3.6
adenylate kinase 1 3.2

Page 59

Dayhoff’s 34 protein superfamilies

Protein PAMs per 100 million years

triosephosphate isomerase 1 2.8
vasoactive intestinal peptide 2.6
glyceraldehyde phosph. dehydrogease 2.2
cytochrome c 2 2cytochrome c 2.2
collagen 1.7
troponin C, skeletal muscle 1.5
alpha crystallin B chain 1.5
glucagon 1.2
glutamate dehydrogenase 0.9
histone H2B, member Q 0.9
ubiquitin 0

Page 59

Pairwise alignment of human (NP_005203) 
versus mouse (NP_031812) ubiquitin

Dayhoff’s approach to assigning scores 
for any two aligned amino acid residues

Dayhoff et al. defined the score of two aligned residues i,j 
as 10 times the log of how likely it is to observe these two 
residues (based on the empirical observation of how 
often they are aligned in nature) divided by the 
background probability of finding these amino acids by 
chance This provides a score for each pair of residueschance. This provides a score for each pair of residues. 

Page 58

A
Ala

R
Arg

N
Asn

D
Asp

C
Cys

Q
Gln

E
Glu

G
Gly

A
R 30

109 17

Dayhoff’s numbers of “accepted point mutations”:
what amino acid substitutions occur in proteins?

N 109 17

D 154 0 532

C 33 10 0 0

Q 93 120 50 76 0

E 266 0 94 831 0 422

G 579 10 156 162 10 30 112

H 21 103 226 43 10 243 23 10

Page 61Dayhoff (1978) p.346.
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fly       GAKKVIISAP SAD.APM..F VCGVNLDAYK PDMKVVSNAS CTTNCLAPLA 
human     GAKRVIISAP SAD.APM..F VMGVNHEKYD NSLKIISNAS CTTNCLAPLA 
plant     GAKKVIISAP SAD.APM..F VVGVNEHTYQ PNMDIVSNAS CTTNCLAPLA 
bacterium GAKKVVMTGP SKDNTPM..F VKGANFDKY. AGQDIVSNAS CTTNCLAPLA 
yeast     GAKKVVITAP SS.TAPM..F VMGVNEEKYT SDLKIVSNAS CTTNCLAPLA 
archaeon  GADKVLISAP PKGDEPVKQL VYGVNHDEYD GE.DVVSNAS CTTNSITPVA 

Multiple sequence alignment of
glyceraldehyde 3-phosphate dehydrogenases:

columns of residues may have high or low conservation

fly       KVINDNFEIV EGLMTTVHAT TATQKTVDGP SGKLWRDGRG AAQNIIPAST 
human     KVIHDNFGIV EGLMTTVHAI TATQKTVDGP SGKLWRDGRG ALQNIIPAST 
plant     KVVHEEFGIL EGLMTTVHAT TATQKTVDGP SMKDWRGGRG ASQNIIPSST 
bacterium KVINDNFGII EGLMTTVHAT TATQKTVDGP SHKDWRGGRG ASQNIIPSST 
yeast     KVINDAFGIE EGLMTTVHSL TATQKTVDGP SHKDWRGGRT ASGNIIPSST 
archaeon  KVLDEEFGIN AGQLTTVHAY TGSQNLMDGP NGKP.RRRRA AAENIIPTST 

fly       GAAKAVGKVI PALNGKLTGM AFRVPTPNVS VVDLTVRLGK GASYDEIKAK 
human     GAAKAVGKVI PELNGKLTGM AFRVPTANVS VVDLTCRLEK PAKYDDIKKV 
plant     GAAKAVGKVL PELNGKLTGM AFRVPTSNVS VVDLTCRLEK GASYEDVKAA 
bacterium GAAKAVGKVL PELNGKLTGM AFRVPTPNVS VVDLTVRLEK AATYEQIKAA 
yeast     GAAKAVGKVL PELQGKLTGM AFRVPTVDVS VVDLTVKLNK ETTYDEIKKV 
archaeon  GAAQAATEVL PELEGKLDGM AIRVPVPNGS ITEFVVDLDD DVTESDVNAA 

Page 57

The relative mutability of amino acids

Asn 134 His 66
Ser 120 Arg 65
Asp 106 Lys 56
Glu 102 Pro 56
Ala 100 Gly 49
Thr 97 Tyr 41
Ile 96 Phe 41
Met 94 Leu 40
Gln 93 Cys 20
Val 74 Trp 18

Page 63

Normalized frequencies of amino acids

Gly 8.9% Arg 4.1%
Ala 8.7% Asn 4.0%
Leu 8.5% Phe 4.0%
Lys 8.1% Gln 3.8%
Ser 7.0% Ile 3.7%
Val 6.5% His 3.4%
Thr 5.8% Cys 3.3%
Pro 5.1% Tyr 3.0%
Glu 5.0% Met 1.5%
Asp 4.7% Trp 1.0%

• blue=6 codons; red=1 codon
• These frequencies fi sum to 1

Page 63

A
Ala

R
Arg

N
Asn

D
Asp

C
Cys

Q
Gln

E
Glu

G
Gly

A
R 30

109 17

Dayhoff’s numbers of “accepted point mutations”:
what amino acid substitutions occur in proteins?

N 109 17

D 154 0 532

C 33 10 0 0

Q 93 120 50 76 0

E 266 0 94 831 0 422

G 579 10 156 162 10 30 112

H 21 103 226 43 10 243 23 10

Page 61

Dayhoff’s PAM1 mutation probability matrix

A
Ala

R
Arg

N
Asn

D
Asp

C
Cys

Q
Gln

E
Glu

G
Gly

H
His

A 9867 2 9 10 3 8 17 21 2

R 1 9913 1 0 1 10 0 0 10

N 4 1 9822 36 0 4 6 6 21

D 6 0 42 9859 0 6 53 6 4

Original amino acid

D
C 1 1 0 0 9973 0 0 0 1

Q 3 9 4 5 0 9876 27 1 23

E 10 0 7 56 0 35 9865 4 2

G 21 1 12 11 1 3 7 9935 1

H 1 8 18 3 1 20 1 0 9912

I 2 2 3 1 2 1 2 0 0

Page 66

Dayhoff’s PAM1 mutation probability matrix

A
Ala

R
Arg

N
Asn

D
Asp

C
Cys

Q
Gln

E
Glu

G
Gly

H
His

A 9867 2 9 10 3 8 17 21 2

R 1 9913 1 0 1 10 0 0 10

N 4 1 9822 36 0 4 6 6 21

D 6 0 42 9859 0 6 53 6 4D
C 1 1 0 0 9973 0 0 0 1

Q 3 9 4 5 0 9876 27 1 23

E 10 0 7 56 0 35 9865 4 2

G 21 1 12 11 1 3 7 9935 1

H 1 8 18 3 1 20 1 0 9912

I 2 2 3 1 2 1 2 0 0

Each element of the matrix shows the probability that an original
amino acid (top) will be replaced by another amino acid (side)
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A substitution matrix contains values proportional 
to the probability that amino acid i mutates into 
amino acid j for all pairs of amino acids. 

Substitution matrices are constructed by assembling 
a large and diverse sample of verified pairwise alignments

Substitution Matrix

a large and diverse sample of verified pairwise alignments
(or multiple sequence alignments) of amino acids.

Substitution matrices should reflect the true probabilities 
of mutations occurring through a period of evolution. 

The two major types of substitution matrices are
PAM and BLOSUM.

PAM matrices are based on global alignments 
of closely related proteins. 

The PAM1 is the matrix calculated from comparisons 
of sequences with no more than 1% divergence. At an 

l ti i t l f PAM1 h h

PAM matrices:
Point-accepted mutations

evolutionary interval of PAM1, one change has 
occurred over a length of 100 amino acids.

Other PAM matrices are extrapolated from PAM1. For 
PAM250, 250 changes have occurred for two proteins 
over a length of 100 amino acids.

All the PAM data come from closely related proteins
(>85% amino acid identity).

Page 63

Dayhoff’s PAM1 mutation probability matrix

A
Ala

R
Arg

N
Asn

D
Asp

C
Cys

Q
Gln

E
Glu

G
Gly

H
His

A 9867 2 9 10 3 8 17 21 2

R 1 9913 1 0 1 10 0 0 10

N 4 1 9822 36 0 4 6 6 21

D 6 0 42 9859 0 6 53 6 4D
C 1 1 0 0 9973 0 0 0 1

Q 3 9 4 5 0 9876 27 1 23

E 10 0 7 56 0 35 9865 4 2

G 21 1 12 11 1 3 7 9935 1

H 1 8 18 3 1 20 1 0 9912

I 2 2 3 1 2 1 2 0 0

Page 66

Dayhoff’s PAM0 mutation probability matrix:
the rules for extremely slowly evolving proteins

PAM0 A
Ala

R
Arg

N
Asn

D
Asp

C
Cys

Q
Gln

E
Glu

A 100% 0% 0% 0% 0% 0% 0%
R 0% 100% 0% 0% 0% 0% 0%
N 0% 0% 100% 0% 0% 0% 0%N 0% 0% 100% 0% 0% 0% 0%
D 0% 0% 0% 100% 0% 0% 0%
C 0% 0% 0% 0% 100% 0% 0%
Q 0% 0% 0% 0% 0% 100% 0%
E 0% 0% 0% 0% 0% 0% 100%
G 0% 0% 0% 0% 0% 0% 0%

Top: original amino acid
Side: replacement amino acid Page 68

Dayhoff’s PAM2000 mutation probability matrix:
the rules for very distantly related proteins

PAM A
Ala

R
Arg

N
Asn

D
Asp

C
Cys

Q
Gln

E
Glu

G
Gly

A 8.7% 8.7% 8.7% 8.7% 8.7% 8.7% 8.7% 8.7%
R 4.1% 4.1% 4.1% 4.1% 4.1% 4.1% 4.1% 4.1%
N 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0%
D 4.7% 4.7% 4.7% 4.7% 4.7% 4.7% 4.7% 4.7%
C 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3%
Q 3.8% 3.8% 3.8% 3.8% 3.8% 3.8% 3.8% 3.8%
E 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0%
G 8.9% 8.9% 8.9% 8.9% 8.9% 8.9% 8.9% 8.9%

Top: original amino acid
Side: replacement amino acid Page 68

PAM250 mutation probability matrix
 A R N D C Q E G H I L K M F P S T W Y V 
A 13 6 9 9 5 8 9 12 6 8 6 7 7 4 11 11 11 2 4 9 

R 3 17 4 3 2 5 3 2 6 3 2 9 4 1 4 4 3 7 2 2 

N 4 4 6 7 2 5 6 4 6 3 2 5 3 2 4 5 4 2 3 3 

D 5 4 8 11 1 7 10 5 6 3 2 5 3 1 4 5 5 1 2 3 

C 2 1 1 1 52 1 1 2 2 2 1 1 1 1 2 3 2 1 4 2 

Q 3 5 5 6 1 10 7 3 7 2 3 5 3 1 4 3 3 1 2 3 

E 5 4 7 11 1 9 12 5 6 3 2 5 3 1 4 5 5 1 2 3 

G 12 5 10 10 4 7 9 27 5 5 4 6 5 3 8 11 9 2 3 7 

H 2 5 5 4 2 7 4 2 15 2 2 3 2 2 3 3 2 2 3 2 

I 3 2 2 2 2 2 2 2 2 10 6 2 6 5 2 3 4 1 3 9I 3 2 2 2 2 2 2 2 2 10 6 2 6 5 2 3 4 1 3 9

L 6 4 4 3 2 6 4 3 5 15 34 4 20 13 5 4 6 6 7 13 

K 6 18 10 8 2 10 8 5 8 5 4 24 9 2 6 8 8 4 3 5 

M 1 1 1 1 0 1 1 1 1 2 3 2 6 2 1 1 1 1 1 2 

F 2 1 2 1 1 1 1 1 3 5 6 1 4 32 1 2 2 4 20 3 

P 7 5 5 4 3 5 4 5 5 3 3 4 3 2 20 6 5 1 2 4 

S 9 6 8 7 7 6 7 9 6 5 4 7 5 3 9 10 9 4 4 6 

T 8 5 6 6 4 5 5 6 4 6 4 6 5 3 6 8 11 2 3 6 

W 0 2 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 55 1 0 

Y 1 1 2 1 3 1 1 1 3 2 2 1 2 15 1 2 2 3 31 2 

V 7 4 4 4 4 4 4 5 4 15 10 4 10 5 5 5 7 2 4 17 

 
Top: original amino acid
Side: replacement amino acid Page 68
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A 2                
R -2 6               
N 0 0 2              
D 0 -1 2 4             
C -2 -4 -4 -5 12            
Q 0 1 1 2 -5 4           
E 0 -1 1 3 -5 2 4          
G 1 -3 0 1 -3 -1 0 5         
H -1 2 2 1 -3 3 1 -2 6        
I -1 -2 -2 -2 -2 -2 -2 -3 -2 5       
L -2 -3 -3 -4 -6 -2 -3 -4 -2 -2 6      

PAM250 log odds
scoring matrix

K -1 3 1 0 -5 1 0 -2 0 -2 -3 5     
M -1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6    
F -3 -4 -3 -6 -4 -5 -5 -5 -2 1 2 -5 0 9   
P 1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 6  
S 1 0 1 0 0 -1 0 1 -1 -1 -3 0 -2 -3 1 2 
T 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3 0 1 3
W -6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 17
Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10
V 0 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4
 A R N D C Q E G H I L K M F P S T W Y V 
 

Page 69

Why do we go from a mutation probability
matrix to a log odds matrix?

• We want a scoring matrix so that when we do a pairwise
alignment (or a BLAST search) we know what score to
assign to two aligned amino acid residues.

• Logarithms are easier to use for a scoring system.  They 
allow us to sum the scores of aligned residues (rather 
than having to multiply them).

Page 69

How do we go from a mutation probability
matrix to a log odds matrix?

• The cells in a log odds matrix consist of an “odds ratio”:

the probability that an alignment is authentic
the probability that the alignment was randomthe probability that the alignment was random

The score S for an alignment of residues a,b is given by:

S(a,b) = 10 log10 (Mab/pb)

As an example, for tryptophan,

S(trp,trp) = 10 log10 (0.55/0.010) = 17.4
Page 69

What do the numbers mean
in a log odds matrix?

A score of +2 indicates that the amino acid replacement
occurs 1.6 times as frequently as expected by chance.

A score of 0 is neutral.

A score of –10 indicates that the correspondence of two 
amino acids in an alignment that accurately represents
homology (evolutionary descent) is one tenth as frequent
as the chance alignment of these amino acids.

Page 58

Rat versus 
mouse globin

Rat versus 
bacterial
globin

More conserved Less conserved

two nearly identical proteins

two distantly 
related proteins

page 72
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BLOSUM matrices are based on local alignments. 

BLOSUM stands for blocks substitution matrix.

BLOSUM Matrices

BLOSUM62 is a matrix calculated from comparisons of 
sequences with no less than 62% divergence. 

Page 70

BLOSUM Matrices
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All BLOSUM matrices are based on observed alignments; 
they are not extrapolated from comparisons of 
closely related proteins. 

BLOSUM Matrices

The BLOCKS database contains thousands of groups of
multiple sequence alignments.

BLOSUM62 is the default matrix in BLAST 2.0. 
Though it is tailored for comparisons of moderately distant 
proteins, it performs well in detecting closer relationships. 
A search for distant relatives may be more sensitive 
with a different matrix. 

Page 72

Blosum62 scoring matrix
A 4                    
R -1 5                
N -2 0 6               
D -2 -2 1 6              
C 0 -3 -3 -3 9             
Q -1 1 0 0 -3 5            
E -1 0 0 2 -4 2 5           
G 0 -2 0 -1 -3 -2 -2 6          
H -2 0 1 -1 -3 0 0 -2 8         
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4        
L 1 2 3 4 1 2 3 4 3 2 4

Page 73

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4       
K -1 2 0 -1 -1 1 1 -2 -1 -3 -2 5      
M -1 -2 -2 -3 -1 0 -2 -3 -2 1 2 -1 5     
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6    
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7   
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4  
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4
 A R N D C Q E G H I L K M F P S T W Y V 
 

PAM matrices are based on global alignments 
of closely related proteins. 

The PAM1 is the matrix calculated from comparisons 
of sequences with no more than 1% divergence. At an 

l ti i t l f PAM1 h h

PAM matrices:
Point-accepted mutations

evolutionary interval of PAM1, one change has 
occurred over a length of 100 amino acids.

Other PAM matrices are extrapolated from PAM1. For 
PAM250, 250 changes have occurred for two proteins 
over a length of 100 amino acids.

All the PAM data come from closely related proteins
(>85% amino acid identity). Page 74
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At PAM1, two proteins are 99% identical
At PAM10.7, there are 10 differences per 100 residues
At PAM80, there are 50 differences per 100 residues
At PAM250, there are 80 differences per 100 residues
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Differences per 100 residues

“twilight zone”

Page 75

PAM: “Accepted point mutation”

• Two proteins with 50% identity may have 80 changes
per 100 residues. (Why? Because any residue can be
subject to back mutations.)

• Proteins with 20% to 25% identity are in the “twilight zone”
and may be statistically significantly related.

• PAM or “accepted point mutation” refers to the “hits” or 
matches between two sequences (Dayhoff & Eck, 1968)

Page 75

Outline: pairwise alignment

• Overview and examples

• Definitions: homologs, paralogs, orthologs

• Assigning scores to aligned amino acids:g g g
Dayhoff’s PAM matrices

• Alignment algorithms: Needleman-Wunsch,
Smith-Waterman

We will first consider the global alignment algorithm
of Needleman and Wunsch (1970).

We will then explore the local alignment algorithm

Two kinds of sequence alignment: 
global and local

p g g
of Smith and Waterman (1981).

Finally, we will consider BLAST, a heuristic version
of Smith-Waterman. We will cover BLAST in detail
on Monday.

Page 76

• Two sequences can be compared in a matrix
along x- and y-axes.

• If they are identical, a path along a diagonal 
can be drawn

Global alignment with the algorithm
of Needleman and Wunsch (1970)

can be drawn

• Find the optimal subpaths, and add them up to achieve
the best score. This involves

--adding gaps when needed
--allowing for conservative substitutions
--choosing a scoring system (simple or complicated)

• N-W is guaranteed to find optimal alignment(s) 
Page 76
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[1] set up a matrix

[2] score the matri

Three steps to global alignment 
with the Needleman-Wunsch algorithm

[2] score the matrix

[3] identify the optimal alignment(s)

Page 76

Four possible outcomes in aligning two sequences

1

[1] identity (stay along a diagonal)
[2] mismatch (stay along a diagonal)
[3] gap in one sequence (move vertically!)
[4] gap in the other sequence (move horizontally!)

2

Page 77

Page 77

Start Needleman-Wunsch with an identity matrix

Page 77

Start Needleman-Wunsch with an identity matrix

Page 77

Fill in the matrix using “dynamic programming”

Page 78
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Fill in the matrix using “dynamic programming”

Page 78

Fill in the matrix using “dynamic programming”

Page 78

Fill in the matrix using “dynamic programming”

Page 78

Fill in the matrix using “dynamic programming”

Page 78

Fill in the matrix using “dynamic programming”

Page 78

Fill in the matrix using “dynamic programming”

Page 78
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Traceback to find the optimal (best) pairwise alignment

Page 79

N-W is guaranteed to find optimal alignments, although 
the algorithm does not search all possible alignments.

It is an example of a dynamic programming algorithm:

Needleman-Wunsch: dynamic programming

It is an example of a dynamic programming algorithm:
an optimal path (alignment) is identified by
incrementally extending optimal subpaths.
Thus, a series of decisions is made at each step of the
alignment to find the pair of residues with the best score.

Page 80

Try using needle to implement a Needleman-
Wunsch global alignment algorithm to find the 
optimum alignment (including gaps): 

http://www.ebi.ac.uk/emboss/align/

Page 81

Queries:
beta globin (NP_000509)
alpha globin (NP_000549)

Global alignment (Needleman-Wunsch) extends
from one end of each sequence to the other.

Local alignment finds optimally matching 
regions within two sequences (“subsequences”).

Global alignment versus local alignment

Local alignment is almost always used for database
searches such as BLAST. It is useful to find domains
(or limited regions of homology) within sequences.

Smith and Waterman (1981) solved the problem of 
performing optimal local sequence alignment. Other
methods (BLAST, FASTA) are faster but less thorough.

Page 82
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Global alignment (top) includes matches 
ignored by local alignment (bottom)

15% identity

page 81NP_824492, NP_337032

30% identity

How the Smith-Waterman algorithm works

Set up a matrix between two proteins (size m+1, n+1)

No values in the scoring matrix can be negative! S > 0

The score in each cell is the maximum of four values:The score in each cell is the maximum of four values:
[1] s(i-1, j-1) + the new score at [i,j] (a match or mismatch)

[2] s(i,j-1) – gap penalty
[3] s(i-1,j) – gap penalty
[4] zero

Page 82

Smith-Waterman algorithm allows the alignment 
of subsets of sequences

Page 83

Try using SSEARCH to perform a rigorous Smith-
Waterman local alignment: 
http://fasta.bioch.virginia.edu/ 

Queries:
beta globin (NP_000509)
alpha globin (NP_000549)

Rapid, heuristic versions of Smith-Waterman:
FASTA and BLAST

Smith-Waterman is very rigorous and it is guaranteed
to find an optimal alignment. 

But Smith-Waterman is slow. It requires computer
space and time proportional to the product of the two
sequences being aligned (or the product of a query 
against an entire database). 

Gotoh (1982) and Myers and Miller (1988) improved the
algorithms so both global and local alignment require
less time and space.

FASTA and BLAST provide rapid alternatives to S-W.

Page 84
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Statistical significance of pairwise alignment

We will discuss the statistical significance of 
alignment scores in the next lecture (BLAST). A 
basic question is how to determine whether a 

ti l li t i lik l t hparticular alignment score is likely to have 
occurred by chance. According to the null 
hypothesis, two aligned sequences are not 
homologous (evolutionarily related). Can we 
reject the null hypothesis at a particular 
significance level alpha?

Pairwise alignments with dot plots:
graphical displays of relatedness with NCBI’s BLAST

[1] Compare human cytoglobin (NP_599030, length
190 amino acids) with itself. The output includes a dot 
plot. The data points showing amino acid identities
appear as a diagonal line. 

Page 85

[2] Compare cytoglobin with a globin from the snail
Biomphalaria glabrata (accession CAJ44466, length 2,148 
amino acids. See lots of repeated regions!

Pairwise alignments with dot plots:
cytoglobin versus itself yields a straight line

Page 85

Pairwise alignments with dot plots:
cytoglobin versus itself 

(but with 15 amino acids deleted from one copy)

Page 85

Pairwise alignments with dot plots:
cytoglobin versus a snail globin

Page 85

Next in the course...

Take the quiz (on pairwise alignment), due in a week 
(because of the Thanksgiving break, it’s due TUESDAY 
at 5 pm). 

Next Monday: BLAST


