November 29, 2010 BLAST: Basic local alignment search tool BLAST! Jonathan Pevsner, Ph.D. Bioinformatics pevsner@kennedykrieger.org

Copyright notice

Many of the images in this powerpoint presentation are from *Bioinformatics and Functional Genomics* by Jonathan PevsnerCopyright © 2009 by John Wiley & Sons, Inc.

These images and materials may not be used without permission from the publisher. We welcome instructors to use these powerpoints for educational purposes, but please acknowledge the source.

The book has a homepage at <u>http://www.bioinfbook.org</u> including hyperlinks to the book chapters.

Outline of today's lecture BLAST Practical use Algorithm Strategies Finding distantly related proteins: PSI-BLAST Hidden Markov models Hidden Markov models

Johns Hopkins School of Medicine

BLAST-like tools for genomic DNA PatternHunter Megablast BLAT, BLASTZ

BLAST

BLAST (Basic Local Alignment Search Tool) allows rapid sequence comparison of a query sequence against a database.

The BLAST algorithm is <u>fast</u>, <u>accurate</u>, and web-<u>accessible</u>.

page 101

Why use BLAST?

BLAST searching is fundamental to understanding the relatedness of any favorite query sequence to other known proteins or DNA sequences.

Applications include

- · identifying orthologs and paralogs
- discovering new genes or proteins
- discovering variants of genes or proteins
- investigating expressed sequence tags (ESTs)
- exploring protein structure and function

page 102

Four components to a BLAST search

- (1) Choose the sequence (query)
- (2) Select the BLAST program
- (3) Choose the database to search
- (4) Choose optional parameters
- Then click "BLAST"

Our starting point: search human insulin against worm RefSeq proteins by blastp using default parameters page 109 (b) Query: human insulin NP_000198
Program: blastp
Database: C. elegans RefSeq
Option: No compositional adjustment
 >[cetiWP_001926.1] I TRuin related family member (ins-1) [Ceenochabditis elegans]
tength-100
Score = 34.7 bits (78), Expect = 0.009
Identities = 00100 (300), fostitives = 41/100 (41%), Caps = 14/100 (14%)
Query 11 LatLateopAaAryoutcockWitALTUVCCENTTRIPEARDUVCQVLICG 70
Byte 17 LatLateopAaAryoutcockWitALTUVCCENTTRIPEARDUVCQVLICG 70
Byte 17 LatLateopAaAryoutcockWitALTUVCCENTTRIPEARDUVCQVLICG 70
Byte 17 LatLateopAaAryoutcockWitALTUVCCENTTRIPEARDUVCQVLICG 70
Byte 17 LatLateopAaAryoutcockWitALTUVCCENTTRIPEARDUVCQVLICG 70
Byte 67 ---APTIRDUPFIERDQUCCENTTCENTORY 109
Note that the bit score, Expect value, and percent identity
all change with the "no compositional adjustment" option

BLAST search output: ta	abul	ar outpi	Jt
Distance tree of results MCM	Score	E	
Sequences producing significant signments: refIP 05552.11 hexaplobin, beta adult anor chain (Bus musculu refIP 05552.11 PEDICTED: similar to Hexaplobin appsilon FZ refIP 05224.21 hexaplobin / ptes-like adult saylor chain (Bus musculu refIP 05224.11 hexaplobin / ptes-like adultynic chain (Bus mu refIP 05224.11 hexaplobin / similar to Hexaplobin heta-2 mubu refIP 0524.11 hexaplobin / multi hexaplobin heta-2 mubu refIP 05455.11 hexaplobin / adultynic heta 1 (Bus musculus) refIP 05455.11 hexaplobin / adultynic heta 1 (Bus musculus) refIP 70455.11 hexaplobin / adultynic heta 1 (Bus musculus) refIP 70455.11 hexaplobin / adultynic heta 1 (Bus musculus) refIP 70455.11 hexaplobin / adultynic heta 1 (Bus musculus) refIP 70457.11 hexaplobin / adultynic hexaplobin heta 1 (Bus musculus) refIP 70457.11 hexaplobin / adultynic hexaplobin heta 1 (Bus musculus) refIP 70457.11 hexaplobin / adultynic hexaplobin heta 1 (Bus musculus)	(B1t3) 244 228 226 223 203 161 154 101 100 94.0 94.0 88.2 73.9 41.6	Value 2c-65 I G 2c-60 G 4c-59 J G 4c-59 J G 4c-53 G 2c-48 G 2c-48 G 2c-40 G 3c-30 J G 3c-22 G 4c-22 J G 4c-22 J G 4c-22 J G 4c-20 J G 2c-14 J G 2c-14 G	High scores low E values Cut-off: .05?
<u>ref(NF,795942.21</u> 5'-mucleotidase, cycosolic II-like 1 protein (M	28.9	1.5 UG	10 -10?

BLAST: background on sequence alignment

There are two main approaches to sequence alignment:

[1] Global alignment (Needleman & Wunsch 1970) using dynamic programming to find optimal alignments between two sequences. (Although the alignments are optimal, the search is not exhaustive.) Gaps are permitted in the alignments, and the total lengths of both sequences are aligned (hence "global").

page 115

BLAST: background on sequence alignment

[2] The second approach is local sequence alignment (Smith & Waterman, 1980). The alignment may contain just a portion of either sequence, and is appropriate for finding matched domains between sequences.

BLAST is a heuristic approximation to local alignment. It examines only part of the search space.

page 115; 84

How a BLAST search works

"The central idea of the BLAST algorithm is to confine attention to segment pairs that contain a word pair of length w with a score of at least T."

Altschul et al. (1990)

(page 115)

How a BLAST search works: 3 phases

Phase 2:

Scan the database for entries that match the compiled list.

This is fast and relatively easy.

Fig. 4.11 page 116

How a BLAST search works: 3 phases

Phase 3:

In the original (1990) implementation of BLAST, hits were extended in either direction.

In a 1997 refinement of BLAST, two independent hits are required. The hits must occur in close proximity to each other. With this modification, only one seventh as many extensions occur, greatly speeding the time required for a search.

Phase 1: compile a	list o	of words ((w=3)
	CTTH	6 E 11	2.2
neighborhood	GSW	6,1,11	18
word hits	ATW	0,5,11	16
> threshold	NTW	0,5,11	16
(T=11)	GTY	6,5,2	13
	GNW		10
neighborhood word hits	GAW		9
< below thresh	old		Fig. 4.11 page 116

For blastn, the word size is typically 7, 11, or 15 (EXACT match). Changing word size is like changing threshold of proteins.

w=15 gives fewer matches and is faster than w=11 or w=7.

For megablast (see below), the word size is 28 and can be adjusted to 64. What will this do? Megablast is VERY fast for finding closely related DNA sequences!

E = Kmn e^{-λS}

This equation is derived from a description of the extreme value distribution

S = the score

E = the expect value = the number of highscoring segment pairs (HSPs) expected to occur with a score of at least S

- m, n = the length of two sequences
- λ . *K* = Karlin Altschul statistics

page 120

How to interpret a BLAST search: expect value

The expect value E is the number of alignments with scores greater than or equal to score S that are expected to occur by chance in a database search.

An *E* value is related to a probability value *p*.

The key equation describing an *E* value is:

 $E = Kmn e^{-\lambda S}$

Some properties of the equation $E = Kmn e^{-\lambda S}$

- The value of E decreases exponentially with increasing S (higher S values correspond to better alignments). Very high scores correspond to very low E values.
- •The E value for aligning a pair of random sequences must be negative! Otherwise, long random alignments would acquire great scores
- Parameter K describes the search space (database).
- For E=1, one match with a similar score is expected to occur by chance. For a very much larger or smaller database, you would expect E to vary accordingly

page 120

From raw scores to bit scores

- There are two kinds of scores: raw scores (calculated from a substitution matrix) and bit scores (normalized scores)
- Bit scores are comparable between different searches because they are normalized to account for the use of different scoring matrices and different database sizes

S' = bit score = $(\lambda S - \ln K) / \ln 2$

0.0001

The *E* value corresponding to a given bit score is: $E = mn 2^{-S}$

Bit scores allow you to compare results between different database searches, even using different scoring matrices. page 121

How to interpret BLAST: E values and p values The expect value *E* is the number of alignments with scores greater than or equal to score S that are expected to occur by chance in a database search. A p value is a different way of representing the significance of an alignment. $p = 1 - e^{-E}$

page 121

				ameter	3
Params	Ungapped		Gapped		
Lambda	0.320339		0.267		
K	0.136843		0.041		
Н	0.422367		0.14		
	Results Statisti	CS			
Length adjustment	:	1	11		
Effective length of	query 147 - 111 = 3	36 з	6	m	
Effective length of	database	1	557619351	n	
Effective search sp	Dace	5	6074296636	mn	
Effective search or	ace used	5	6074296636		

Assessing whether proteins are homologous

><u>2[14505583]ref[HP_00156.1]</u> progestagen-associated endometriai protein (placentai protein 14, pregnancy-associated endometriai alpha-2-piduulin, alpha protein (placenta) protein 14) (Bone asplene) <u>2[190215(b)14440[47:1]</u> (J04129) placentai protein 14 [Nomo asplene] Length = 162

- Score = 32.0 bits (71), Expect = 0.49 Identities = 26/107 (24%), Positives = 48/107 (44%), Gaps = 11/107 (10%)
- Query: 26 RVKENFDKARFSGTWIAMAKKDPEOLFLQINIVAEFSVDETOQHBATAKGRVRLLANND- 84 + K++ + + GTU++MA + L + A V T + +L+ 9+ SDjgt: 5 QTKQDLELPKLAGTWISMAKAT-NNISLMATLKAPLDVHITSLLPTPEDNLEIVLHRWEN 63
- Query:
 85
 -VCADHVGTFDTEDPAKFKHKYWGVASFLGKONDDHWIVDTDYDTY
 130
 C
 T
 4P
 KFK+
 Y
 VA
 ++
 ++
 +0TDYD
 +

 Sbjct:
 64
 NSCVEKKVLGEKTGNPEKFKINY-TVA-----NEATLLDTDYDNF
 102

RBP4 and PAEP:

Low bit score, E value 0.49, 24% identity ("twilight zone"). But they are indeed homologous. Try a BLAST search with PAEP as a query, and find many other lipocalins.

> ~Fig. 4.18 page 126

Score E (bits) Value	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 4.19
	2125 78-07 2545 38-07 475 98-04 121 0.0045 124 0.075 124 0.075 124 0.075 1210 0.045 1220 0.045 1210 0.15 1210 0.15 1210 0.15 1210 0.16 1210 0.17 1210 0.17 1210 0.13 1210 0.14 1210 0.17 1210 0.13 1210 0.14 1210 0.14 1210 0.14 1210 0.14 1210 0.14 1210 0.14 1210 0.14 1210 1.4 1210 1.4 1210 1.4 1210 1.4 1210 6.4 1210 6.4 1210

Page 146

Position specific iterated BLAST: PSI-BLAST

The purpose of PSI-BLAST is to look deeper into the database for matches to your query protein sequence by employing a scoring matrix that is customized to your query. **PSI-BLAST** is performed in five steps

[1] Select a query and search it against a protein database

Page 146

PSI-BLAST is performed in five steps

[1] Select a query and search it against a protein database

[2] PSI-BLAST constructs a multiple sequence alignment then creates a "profile" or specialized position-specific scoring matrix (PSSM)

	А	R	N	D	С	Q	E	G	н	I	L	к	м	F	P	s	т	W	Y	v
1 M -	·1 ·	-2		<u> </u>				-					-	<u> </u>						
2 K -	-1	1	0	1	-4	2	4	-2	0	-3	-3	3	-2	-4	-1	0	-1	- 3	-2	73
3 W 🦱	3.	-3	-4	-5	-3	-2	- 3	- 3	20	ar	nin	0 8	acio	ds	-4	-3	-3	12	2	-3
4 V 1	р.	-3	-3	-4	-1	- 3	-3	-4	-	-					-3	-2	0	- 3	-1	4
5 W	3.	-3	-4	-5	-3	-2	-3	-3	-3	-3	-2	-3	-2	1	-4	-3	-3	12	2	-3
6 A	5.	-2	-2	-2	-1	-1	-1	0	-2	-2	-2	-1	-1	-3	-1	1	0	- 3	-2	0
7 L	2 .	-2	-4	-4	-1	-2	- 3	-4	-3	2	4	- 3	2	0	-3	-3	-1	-2	-1	1
8 L	1 .	-3	- 3	-4	-1	- 3	- 3	-4	-3	2	2	- 3	1	3	-3	-2	-1	-2	0	3
9 L	1 .	-3	-4	-4	-1	-2	-3	-4	-3	2	4	-3	2	0	-3	-3	-1	-2	-1	2
10 L	2 ·	-2	-4	-4	-1	-2	-3	-4	-3	2	4	-3	2	0	-3	-3	-1	-2	-1	1
11 A	5	-2	-2	-2	-1	-1	-1	0	-2	-2	-2	-1	-1	-3	-1	1	0	-3	-2	0
12 A	5	all	th	e a	mi	no	ar	bid		2	-2	-1	-1	-3	-1	1	0	-3	-2	0
13 W	2	, ,		00	· · · ·		2			þ.	4	-3	2	1	-3	-3	-2	7	0	0
14 A	3	tro	m	ро	siti	on	1	to 1	ne	2	-2	-1	-2	-3	-1	1	-1	-3	-3	-1
15 A	2	en	d d	۰ f	01	ır F	2SI	-		з	-3	0	-2	-3	-1	3	0	- 3	-2	-2
16 A	4	5.	~ ~	,	00		0.			2	-2	-1	-1	-3	-1	1	0	-3	-2	-1
	L P	BL	A٤	51	qu	ery	/ p	rote	ein											
37 S	2	-1	0	-1	-1	0	0	0	-1	-2	-3	0	-2	-3	-1	4	1	-3	-2	-2
38 G	ο.	-3	-1	-2	-3	-2	-2	6	-2	-4	-4	-2	-3	-4	-2	0	-2	-3	-3	-4
39 т	ο.	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5	-3	-2	0
40 W	з.	-3	-4	-5	-3	-2	- 3	-3	-3	-3	-2	-3	-2	1	-4	-3	-3	12	2	-3
41 Y	2 ·	-2	-2	-3	-3	-2	-2	-3	2	-2	-1	-2	-1	3	-3	-2	-2	2	7	-1
42 A	4 ·	-2	-2	-2	-1	-1	-1	0	-2	-2	-2	-1	-1	-3	-1	1	0	- 3	-2	0
																			Fig	. 5.
																			Pag	ge '

	ARM	NDC	QEG	ні	ьĸ	MF	PST	w y v
1 M	-1 -2 -2	2 - 3 - 2 -	1 -2 -3	-2 1	2 - 2	60	-3 -2 -1	-2 -1 1
2 K	-1 1 0	0 1 -4	2 4 - 2	0 - 3	-3 3	-2 -4	-1 0 -1	-3 -2 -3
3 W	-3 -3 -4	4 -5 -3 -	2 - 3 - 3	-3 -3	-2 -3	-2 1	-4 -3 -3	12 2 - 3
4 V	0 -3 -3	3 -4 -1 -	3 - 3 - 4	-4 3	1 -3	1 -1	-3 -2 0	-3 -1 4
5 W	-3 -3 -4	4 -5 -3 -	2 - 3 - 3	-3 -3	-2 -3	-2 1	-4 -3 -3	12 2 - 3
6 A	5 - 2 - 2	2 -2 -1 -	1 -1 0	-2 -2	-2 -1	-1 -3	-1 1 0	-3 -2 0
7 L	-2 -2 -4	4 -4 -1 -	2 - 3 - 4	-3 2	4 - 3	2 0	-3 -3 -1	-2 -1 1
8 L	-1 -3 -3	3 -4 -1 -	3 - 3 - 4	-3 2	2 - 3	1 3	-3 -2 -1	-2 0 3
9 г	-1 -3 -4	4 -4 -1 -	2 - 3 - 4	-3 2	4 - 3	2 0	-3 -3 -1	-2 -1 2
10 L	-2 -2 -4	4 -4 -1 -	2 - 3 - 4	-3 2	4 - 3	2 0	-3 -3 -1	-2 -1 1
11 A	5 - 2 - 2	2 -2 -1 -	1 -1 0	-2 -2	-2 -1	-1 -3	-1 1 0	-3 -2 0
12 A	5 - 2 - 2	2 -2 -1 -	1 -1 0	-2 -2	-2 -1	-1 -3	-1 1 0	-3 -2 0
13 W	-2 -3 -4	4 - 4 - 2 -	2 - 3 - 4	-3 1	4 - 3	2 1	-3 -3 -2	7 0 0
14 A	3 - 2 - 1	1 -2 -1 -	1-24	-2 -2	-2 -1	-2 -3	-1 1 -1	-3 -3 -1
15 A	2 -1 (0 -1 -2	2 0 2	-1 -3	-3 0	-2 -3	-1 3 0	-3 -2 -2
16 A	4 - 2 - 1	1 -2 -1 -	1 -1 3	-2 -2	-2 -1	-1 -3	-1 1 0	-3 -2 -1
37 S	2 -1 (0 -1 -1	0 0 0	-1 -2	-3 0	-2 -3	-1 4 1	-3 -2 -2
38 G	0 -3 -1	1 -2 -3 -	2 - 2 6	-2 -4	-4 -2	-3 -4	-2 0 -2	-3 -3 -4
39 T	0 -1 0	0 -1 -1 -	1 -1 -2	-2 -1	-1 -1	-1 -2	-1 1 5	-3 -2 0
40 W	-3 -3 -4	4 -5 -3 -	2 - 3 - 3	-3 -3	-2 -3	-2 1	-4 -3 -3	12 2 - 3
41 Y	-2 -2 -2	2 - 3 - 3 -	2 - 2 - 3	2 -2	-1 -2	-1 3	-3 -2 -2	2 7 -1
42 A	4 - 2 - 2	2 -2 -1 -	1 -1 0	-2 -2	-2 -1	-1 -3	-1 1 0	-3 -2 0
								Fig. 5.5
								Dogo 140
								rage 149

A R N D C Q E G H I L X M F P S T W Y V 1 M $-1 -2 -2 -3 -2 -1 -2 -3 -2 1 2 -2 6 0 -3 -2 -1 -2 -1 1 1 2 X -1 1 0 1 -4 2 4 -2 0 -3 -3 3 2 -2 4 -1 0 -1 -3 -2 -3 -2 -3 2 3 -2 -4 -1 0 -1 -3 -2 -3 -3 -3 -3 -3 -2 -3 -2 -3 -2 -1 -3 -3 -1 1 0 -3 -2 0 -3 -3 -1 -2 -1 1 -3 -3 -4 -3 -2 -1 -3 -3 -1 1 0 -3 -2 0 -3 -3 -1 -2 -1 1 -3 -2 -1 1 -3 -2 -1 -2 -1 -3 -1 1 0 -2 -2 -2 -2 -3 -3 -4 -3 -2 -2 -3 -3 -1 -2 -1 -2 -1 -3 -1 1 0 -3 -2 0 -3 -3 -1 -2 -1 -2 -1 -3 -1 1 0 -3 -2 0 -3 -3 -1 -2 -1 -2 -1 -3 -1 1 0 -3 -2 0 -3 -3 -1 -2 -1 -2 -1 -3 -1 1 0 -3 -2 0 -3 -3 -1 -2 -1 -2 -1 -3 -1 1 0 -3 -2 0 -3 -3 -1 -2 -1 -2 -1 -3 -1 1 0 -3 -2 0 -3 -3 -1 -2 -1 -2 -1 -3 -1 1 0 -3 -2 0 -3 -3 -1 -2 -1 -2 -1 -3 -1 1 0 -3 -2 0 -3 -3 -1 -2 -1 -2 -1 -3 -1 1 0 -3 -2 0 -3 -3 -1 -2 -1 -2 -1 -3 -1 1 0 -3 -2 0 -3 -3 -1 -2 -1 -2 -1 -2 -1 -3 -1 1 0 -3 -2 0 -3 -3 -1 -2 -1 -2 -1 -3 -1 1 0 -3 -2 0 -3 -3 -1 -2 -1 -2 -1 -3 -1 1 0 -3 -2 0 -3 -3 -1 -2 -2 -2 -3 -3 -2 -2 -2 -3 -3 -1 -2 $
--

PSI-BLAST is performed in five steps

[1] Select a query and search it against a protein database

[2] PSI-BLAST constructs a multiple sequence alignment then creates a "profile" or specialized position-specific scoring matrix (PSSM)

[3] The PSSM is used as a query against the database

[4] PSI-BLAST estimates statistical significance (E values)

Page 146

a b	g1[6978523]ref[NP 036909.1] apolipoprotein D [Rattus norvegicus]	147	4e-35
9 R	gi 1542847 dbj BAA13453.1 (D87752) alpha1-microglobulin/bikunin	144	6e-34
9 E	gi 619383 gb AAB32200.1] apolipoprotein D, apoD [human, plasma,	143	8e-34
9 R	gi 5419092 emb CAB46409.1 (X02024) FBP (am 101-172) [Homo sapiens]	139	1e-32
9 R	gil4502163/ref/NP 001638.11 apolipoprotein D precursor [Homo sap	128	4e-32
9 R	gi1584763 #p P37153 APD RABIT APOLIFOFROTEIN D FRECURSOR >g1 482	134	4e-31
9 E	gi 1703341 #p P51909 APD_CAVPO_APOLIPOPROTEIN_D_PRECURSOR >gi 11	133	7e-31
9 R	gi[2095204]gb]AAC02945.1] (AF025334) mutant retinol binding prot	00	94-15
9 R	gi 1246096 gb AAB35919.1] (S80440) apolipoprotein D, apoD (C-ter	77	0e-14
9 R	gi 2895206 gb AAC02946.1 (AF025335) mutant retinol binding prot	67	8e-11
HEN DE	gi 1346419 sp P49291 LATA SCHAM LATARILLO PROTEIN PRECURSOR >gi	63	1e-09
HEN D	gi 2506821 sp P00978 AMBP BOVIN AMBP PROTEIN PRECUBSOR [CONTAINS	63	2e-09
HEN D	gi 2497696 sp Q07456 AEBP HOUSE AMBP PROTEIN PRECUBSOR [CONTAINS	63	2e-09
HEN IN	gi 6680684 ref NP 031469.1 alpha 1 microglobulin/bikunin [Mus m	62	2e-09
HEV IV	gi 12836446(db) BAB23659.1 (AKOD4907) putative [Bus musculus]	62	3e-09
NEW D	gi[6978497]ref[NP_037033.1] alpha-1 microglobulin/bikunin [Pattu	62	3e-09
HEV D	gij2507586[sp]P04366[AMBP PIG AMBP PROTEIN PRECURSOR [CONTAINS:	61	8e-09
New P	gi 1085207 pir 3C2556 alpha-1-microglobulin/inter-alpha-trypsin	60	1c-00
HEN D	gi[2988354]dbj[8AA25305.1] (AB006444) alpha-1-microglobulin/biku	.59	2e-08
New Do	gi 108233 pir 513493 alpha-1-microglobulin - pig	.59	2e-00
HEN (2)	gi[1002]emb[CAA36306.1] (X52007) precursor codes for two protein	59	2e-00
Hev D	g1 9181923 gb AAF85707.1 AF276505 1 (AF276505) neural Lazarillo	59	3e-08
New Do	gi[7296083]gb]&&F51378.1] (&E003586) NLaz gene product [Drosophi	58	3e=08
ites (P)	gi 117330 sp P80007 CRA2_BOMGA CRUSTACTANIN A2 SUBUNIT >gi 10275	57	8e-08
HEY DO	gi 2497695 sp Q60559 AHBP MESAU AMBP PROTEIN PRECURSOR [CONTAINS	57	1e-07
Rev D	gi 102968 pir S22400 insecticyanin Å = tobacco hornworm >gi 971	56	1e-07
in p	gi 4502067 ref NP_001624.1 alpha-1-microglobulin/bikunin precur	56	2e-07
nex [A	gi 1146408 gb AAA85089.1 (L41641) gallerin [Galleria mellonella]	56	2e-07
tex [2	g1 2497694 sp Q62577 AMBP MERUN AMBP PROTEIN PRECURSOR [CONTAINS	55	3e-07
100 D	gi[1213589[db][BAA12075.1] (D83712) Frostaglandin D Synthase [Xe	_54	5e=07
	gi[539717 pir] A61233 retinol-binding protein - cat (fragment)	_54	8e-07
104 P	gi 266472 sp Q01584 LIPO BUFMA LIPOCALIN PRECURSOR >gi 104284 pi	52	1e-06
	gi[265042[gb]AAB25283.1] retinol-binding protein, PSP (N-termins	.52	3e-06
ies p	gi 1079295 pir 552354 gene cpl=1 protein = African claved frog	52	3e-06
HEV (P	g1 732003 sp P39281 BLC ECOLI OUTER MEMBRANE LIPOPROTEIN BLC PRE	51	9e-06

PSI-BLAST is performed in five steps

[1] Select a query and search it against a protein database

[2] PSI-BLAST constructs a multiple sequence alignment then creates a "profile" or specialized position-specific scoring matrix (PSSM)

[3] The PSSM is used as a query against the database

[4] PSI-BLAST estimates statistical significance (E values)

[5] Repeat steps [3] and [4] iteratively, typically 5 times. At each new search, a new profile is used as the query.

Results	of a PS	I-BLAST search	1
		# hits	
Iteration	<u># hits</u>	> threshold	
1	104	49	
2	173	96	
3	236	178	
4	301	240	
5	344	283	
6	342	298	
7	378	310	
8	382	320	Table 5-2
			Tage 140

	PSI-BLAST search: human RBP versus RefSec	q, iteratio	n 1
	Sequences with E-value BETTER that	n threshold	
Seque	aces producing significant alignments:	(Bits) Va	Elue
NEW NEW NEW Run	F ref:HP_006735.21 retinol-binding protein 4, plasma precursor [No F ref:HP_001639.11 apolipoptotein D precursor [Nomo sapiens] F ref:HP_001639.11 glycodelin precursor [Nomo sapiens] >ref: F ref:HP_001634.11 alpho-1-microglobulin/bikumin precursor [Nomo sapiens] F ref:HP_001634.11 alpho-1-microglobulin/bikumin precursor [Nomo sapiens] F ref:HP_001634.11 alpho-1-microglobulin/bikumin precursor [Nomo sapiens] FSB:Blast Meradon 2	398 1e-1 57.4 7e-0 36.2 0.01 35.8 0.02	111 UG 199 UG 199 UG 191 UG
	Sequences with E-value MDRSE than	h threshold	
Run	ref(HF_000597.1] complement component 0, gmmma polypeptide [Homo ref(HF_076222.1] HSFL2541 [Homo smpiens] ref(HF_06015.2) hypothetical protein 10C57724 [Homo smpiens] PSbHatfHermion 2	33.9 0.07 28.5 3.8 27.3 7.5	7 UG Ug Ug
		See Pag	Fig. 5.6 je 150

		Sequences with E-value BETTER that	a thresho	1.6		
Sequences	producing signifi	cant alignments:	Score (Bits)	Valu		
9p	xef1NP_006735.21	retinol-binding protein 4, plasma precursor (No	358	24-99	UG	
97	ref1NP_000597.11	complement component 8, gamma polypeptide [Homo	1.40	6e-34	UG	
9F	ref(MP_001638.1)	apolipoprotein D precursor [Homo sapiens]	133	7e-32	UG	
92	ref \$7_976222.11	MSFL2541 [Homo sepiens]	128	2e-30	UG	
ΘĘ	ref(%) 001018059.	11 glycodelin precursor [Homo sepiens] >ref(119	1e-27	UG	
	zef187_001624.11	alpha-1-microglobulin/bikunin precursor [Homo s	112	2e-25	UG	
9 P	zef133P_001129927.	11 PREDICTED: similar to Glycodelin precurso	60.8	7e-10	G	
9 P	xef133P_944162.11	PREDICTED: similar to Glycodelin precursor (60.4	8e-10	G	
. ek	xef1NP_000945.31	prostaglandin H2 D-isomerase [Homo sapiens]	58.1	4e-09	ШG	
9 F	ref N7_848564.21	lipocalin 8 [Homo sepiens]	42.7	2e-04	UG	
9F	ref \$7_001001676.	1) lipocalin 9 [Homo sepiens]	42.3	3e-04	UG	
NON IP	zef(NP_945104.1)	lipocalin 6 [Nomo sapiens]	41.5	4e-04	ШG	
NOM IN	xec1NP_055397.11	odocant binding protein 2A precursor [Homo sepi	28.4	0.003	UG	
NON IN	xed1NP_055396.11	odocant binding protein 28 [Homo sapiens]	36.5	0.016	UG	
Run PSI-	Elastideration 4	lipocalin 1 precursor [Homo sepiens]	34.9	0.039	UG	
		Sequences with E-value MHRSE than	thresho	14		
	zef1MP_040631.21	lipocalcin 12 [Homo sepiens]	31.1	0.66	UG	
	ref \$7_001001712.	21 lipocalin 10 [Homo sapiens]	30.7	0.82	UG	
	zed189_536341.11	septin 4 isoform 3 [Homo supiens]	30.3	0.99	UG	
	zef189_004565.11	septin 4 isoform 1 (Homo sepiens)	30.3	0.99	UG	
	xed189_246273.21	phosphodiesterase 5A isoform 3 [Homo sepiens]	27.6	5.9	UG	
	refINP_001074.21	phosphodiesterase 5A isoform 1 [Homo sepiens]	27.6	5.9	ШG	
	ref(MP_236914.2)	phosphodiesterase 5A isoform 2 [Homo sepiens]	27.6	5.9	ШG	~
	zef(MP_003977.1)	gamma-butyrobetaine dicorygenase [Homo sapiens]	27.2	8.5	υG	Se

RB	P4	match to ApoD, PSI-BLAST iteration 3 E value 6e-34	
> [ref Length	NP_00 189	01630.1 UC apolipoprotein D precursor [Homo sapiens]	
Score Ident:	= l. Lties	46 bits (368), Expect = 6e-34, Method: Composition-based stat = 41/163 (25%), Positives = 76/163 (46%), Gaps = 20/163 (12%)	s.
Query	14	GSGRAERDCRVSSFRVKENFDKARFSGTWYAMAKKDFEGLFLQDNIVAEFSVDETGQMSA	73
Sbjct	18	G+A + + V+ENFD ++ G WY + +K P I A +S+ E G++ AEGQAFHLGKCPNFPVQENFDVNKYLGRWYEI-EKIFTFFENGRCIQANYSLMENGKIKV	76
Query	74	${\tt TAKGRVRLLNNVDVCADHVGTFTDTEDPAKFKMKY-WGVASFLQKGNDDHWIVDTDYDTY$	132
Sbjct	77	THE T THE T THE THE TELEVISION OF THE	128
Query	133	AV0YSCRLLNLDGTCADSYSFVFSRDPNGLPPEA0KIVR 171	
Sbjct	129	A+ TBC L ++D ++++ +R+PN P + ALVYSCTCIIQLFHVDFANILARNPNLPPETVDSLKN 165	
			Fig. 5.6

PSI-BLAST: the problem of corruption

Corruption is defined as the presence of at least one false positive alignment with an E value < 10^{-4} after five iterations.

Three approaches to stopping corruption:

- [1] Apply filtering of biased composition regions
- [2] Adjust E value from 0.001 (default) to a lower value such as E = 0.0001.
- [3] Visually inspect the output from each iteration. Remove suspicious hits by unchecking the box.

				posi	tion		
		Probability	1	2	3	4	5
4 - 0 -		p(A) p(I)	1.0	0.4 0.2			
1D8U 10J6A 2hhbB 1FSL 2MM1	HAMSV HIRKV HGKKV HAEKL HGATV	p(G) p(M) p(R) p(K) p(E) p(A)		0.4	0.2 0.2 0.2 0.2 0.2		
		p(S) p(K) <u>p(T)</u> p(V) p(L)				0.2 0.6 0.2	0.8 0.2
				I	[Fig. { Page	5.11 9 157

HMMER: calibrate a hidden Markov model

HMM file:lipocalins.hmmLength distribution mean: 325Length distribution s.d.: 200Number of samples:5000random seed:1034351005histogram(s) saved to:[not saved]POSIX threads:2

HMM : x mu : -123.894508 lambda : 0.179608 max : -79.334000

Fig. 5.13 Page 159

		Description	Score	E-value	N
ji 20888903 re	f XP_129259.1	(XM_129259) ret	461.1	1.9e-133	1
31 1324u / sp F	204916 RETB_RAT	Plasma retinoi-	458.0	1.7e-132	1
31 20548120 re	ST XP_005907.5	(XM_005907) Bim	454.9	1.40-131	1
j1 5803139 rei	: NP_006735.1	(NM_006/44) rec	454.0	1.7e-131	1
ji 20141667 sp	P02753 RETB_HUMAN	Plasma retinoi-	451.1	1.9e-130	1
e					
	4 Jun 463003 3 J	(222,0023,023,005,000)	210.0	1 0 - 00	
11 16/6/200 re	ST NP_463203.1	(NC_003197) out	318.2	1.96-90	1
gi 5803139 ref	! NP_006735.1 : domain *->mkwVMkLLLLaAL	l of 1, from 1 to 3 agvfgaAErdAfsvgkCrvp	195: sco psPPRGfr1	re 454 .6, E /keNFDv	= 1.7e-13
gi 5803139 ref gi 5803139	<pre>% NP_006735.1 : domain *->mkwVMkLLLLaAL mkwV+LLLLaA 1 MKWVWALLLLAA-</pre>	1 of 1, from 1 to 3 agvfgaAErdAfsvgkCrvy + +aAErd Crv -WAAAERDCRVS	195: sco >sPPRGfr' ⊦s fr' }SFR	re 454 .6, E /keNFDv /keNFD+ /KENFDK 33	t = 1.7e-13
gi 5803139 ref gi 5803139	<pre>f NP_006735.1 : domain *->mkwVMkLLLLaAL mkwV++LLLLaA 1 MKWVWALLLLAA- evr/lgHWaIaKbDw;</pre>	: 1 of 1, from 1 to : agyfgaAErdAfsvgkCrvy + +aAErd Crv -WAAAERDCRVS	195: sco psPPRGfr +s fr 3SFR VGeMesta	re 454 .6, E /keNFDv /keNFD+ /KENFDK 33	2 = 1.7e-13
gi 5803139 ref gi 5803139	<pre>[NP_006735.1]: domain *->mkwWMKLLLLaAL mkwV++LLLLaA 1 MKWVWALLLAA- ery1GtWYe1aKKDpr; *>idfWY+aKkDpr;</pre>	i l of l, from l to : agyfgaAErdAfsvgkCrvy + +aAErd Crv- -WAAAERDCRVS FErGLllgdkItAeySleEL F GLardeLtAgeSleEL	195: sco: psPPRGfr +s fr 3SFR 1GsMsatae	re 454 .6, E /keNFDv VkeNFD+ /KENFDK 33 :GrirVL	2 = 1.7e-13
gi 5803139 ref gi 5803139	<pre>t NP_006735.1 : domain *->mkwVMkLLLLaAL mkwV++LLLaA 1 MKWVWALLLLAA ery1GtWYeIAKkDpr: +r++GtWY++aKkDp 4 aprecentyAmkYDp.</pre>	<pre>i l of l, from l to : agvfgaAErdAfsvgkCrvp + +aAErd Crv -WAAAERDCRV FErgLllqdkItAeySleEH E GL+lqd+I+Ae+S++E cdFrOMVUAPESUMP</pre>	195: sco: psPPRGfr +s fr 3SFR 1GsMsataa GsMsataa 	re 454.6, E JkeNFDv VkeNFD+ VKENFDK 33 MGrirVL MGr+rL (GPUBLL 80	2 = 1.7e-13
gi 5803139 ref gi 5803139 gi 5803139 gi 5803139	<pre>f NP_006735.1 : domain *->mkwVMtLLLBAL mkwV+LLLLBA MKWVHLLLLBA- erylGtWYEIAKKDp: +r++GtWY++AKKDp 34 ARFSGTWYAMAKKDP-</pre>	: 1 of 1, from 1 to : agvfgaAErdAfsvgkCrvy + +aAErd Crv- -WAAAERDCRV3 FErGL1qdkItAeySleEH E GL+1qd+I+Ae-S+HE- -E-GLFLQDNIVAEFSVDE?	195: sco: psPPRGfr +s fr 3SFR 1GsMsata +G+Msata IGQMSATAN	re 454 .6, E /keNFDv /keNFD+ /KENFDK 33 eGrirVL +Gr+r+L (GRVRLL 80	2 = 1.7e-13
gi 5803139 ref gi 5803139 gi 5803139	<pre>t NP_006735.1 : domain *->mkwVWKLLLLaAL mkwV+LLLLaA erylGtWYeIaKkDpr +r++GtWY++aKkDp 34 ARPSGTWYAMAKKDP- ekkelcADkvGTvtci</pre>	<pre>il of 1, from 1 to : agyfgaAErdAfsvgkCry + +aAErd Crv- </pre>	195: sco: psPPRGfr' +s fr' 3SFR' 1GsMsata +G+Msata IGQMSATAJ /aGVaSfl	re 454.6, E /keNFDv /keNFD+ /KENFDK 33 eGrirVL \Gr\rL 80 mpGfddv	2 = 1.7e-13
gi 5803139 ref gi 5803139 gi 5803139	<pre>[NP_006735.1]: domain *>mkwWMkLLLLAAL mkvWwHLLLLAA 1 MKWWAALLLAA erylGkWYeIAKKDP: +++GkW++AKKDP 34 ARFSGTWYAMAKKDP- eNkelcADkvGTVtqi +++-GcADvGTVtqi</pre>	<pre>i l of l, from l to : agvfgaAErdAfavgkCrvy + +aAErd Crv- -WAAAERDCRV; PErGLllqdkltAeySleE E GL+lqd+l+Ae+S++E- -E-GLFJQDNIVAEFSVDE; EGeasevfLtadPaklklK; E dPak+t+K;</pre>	195: sco: psPPRGfr' +s fr' SSFR' 1GsMsata +G+Msata rGQMSATAJ /aGVaSfl /+GVaSfl	re 454.6, E /keNFDv /KENFDk 33 eGrirVL +Gr+r+L (GRVRLL 80 µpGfddy +G+d+	2 = 1.7e-13
gi 5803139 ref gi 5803139 gi 5803139 gi 5803139	<pre>[NP_006735.1]: domain *>mkwWWKLILLaAL mkwWWKLILLAAL 1 MKWWWALLILAA ery1CENYsIAKKDp: +r++0ENY++aKkDp 34 ARF3GTWFIAMKKDP- ekkel-DAbwGTYtEI +X+++cAD+vGT+E++ 81 NNWVCADWGTFTDT</pre>	1 of 1, from 1 to aqufgaAkrdAfwg&Cry + +aART Cry -WAAAERDCRV FErGL11qdkItAeySleEI E GL+1qd+I+AeS+He EGLFLQDNUAFSVDE EGGeasevfLtadPaklkIK E dPak+k-K, EDPAKFMKU	195: sco psPPRGfr +s fr SSPR GSMsata +G+Msata rGQMSATAJ /aGVaSfl /+GVaSfl	re 454.6, E /keNFDv /keNFDt /kENFDk 33 eGrirVL +Gr+r+L (GRVRLL 80 pGfddy +Gfdd+ +KGNDH 120	2 = 1.7e-13

BLAST-related tools for genomic DNA The analysis of genomic DNA presents special challenges: There are exons (protein-coding sequence) and introns (intervening sequences). There may be sequencing errors or polymorphisms The comparison may between be related species (e.g. human and mouse)

	MegaB	LAST	output					
Sequences pro (Click header	ducing significant alignments: s to sect columns)							
Accession	Description	Max score	Total score	Query coverage	E value	Max ident		
M92296.1	Pongo pygmaeus gamma-1 and gamma-2 globin genes, co	1.805±+04	2.046e+04	26%	0.0	95%		
M18038.1	Orangutan (P.pygmaeus) beta- and eta-globin pseudogene:	1.095e+04	1.156e+04	15%	0.0	94%		
X05035.1	Orangutan epsilon-globin gene with Alu repeats in flanking	6547	0190	10%	0.0	96%		
M18796.1	Orangutan beta- and delta-globin gene intergenic region wi	5171	5889	7%	0.0	96%		
M21825.1	Orangutan delta globin gene, complete cds	2616	4516	5%	0.0	97%		
M16209.1	Orangutan gamma-2-fetal globin gene, complete ods	2950	6424	9%	0.0	94%		
M16206.1	Orangutan gamma-1-fetal globin gene, complete ods	2935	6667	9%	0.0	94%		
					Fig. 5.19 Page 167			

Outline of today's lecture

Practical use Algorithm Strategies

Finding distantly related proteins: PSI-BLAST Hidden Markov models

BLAST-like tools for genomic DNA PatternHunter Megablast BLAT, BLASTZ

Where we are in the course

--We started with "access to information" (Chapter 2)

--We next covered pairwise alignment (Chapter 3), then BLAST in which one sequence is compared to a database (Chapters 4, 5)

--Next we'll describe multiple sequence alignment (Chapter 6)

--We'll then visualize multiple sequence alignments as phylogenetic trees (Chapter 7). That topic spans molecular evolution.