Decision Tree Learning

- Decision tree representation
- ullet ID3 learning algorithm
- $\bullet\,$ Entropy, Information gain
- Overfitting

Decision Tree for PlayTennis

A Tree to Predict C-Section Risk

Learned from medical records of 1000 women

Negative examples are C-sections

```
[833+,167-] .83+ .17-
Fetal_Presentation = 1: [822+,116-] .88+ .12-
| Previous_Csection = 0: [767+,81-] .90+ .10-
| | Primiparous = 0: [399+,13-] .97+ .03-
| | Primiparous = 1: [368+,68-] .84+ .16-
| | | Fetal_Distress = 0: [334+,47-] .88+ .12-
| | | | Birth_Weight < 3349: [201+,10.6-] .95+ .05-
| | | Birth_Weight >= 3349: [133+,36.4-] .78+ .22-
| | Fetal_Distress = 1: [34+,21-] .62+ .38-
| Previous_Csection = 1: [55+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-
```

Decision Trees

Decision tree representation:

- Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

How would we represent:

- $\bullet \ \land, \lor, \ \mathrm{XOR}$
- $(A \wedge B) \vee (C \wedge \neg D \wedge E)$
- M of N

When to Consider Decision Trees

- Instances describable by attribute-value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data

Examples:

- Equipment or medical diagnosis
- Credit risk analysis
- Modeling calendar scheduling preferences

Top-Down Induction of Decision Trees

Main loop:

- 1. $A \leftarrow$ the "best" decision attribute for next node
- 2. Assign A as decision attribute for node
- 3. For each value of A, create new descendant of node
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?

Entropy

- ullet S is a sample of training examples
- p_{\oplus} is the proportion of positive examples in S
- p_{\ominus} is the proportion of negative examples in S
- \bullet Entropy measures the impurity of S

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Entropy

Entropy(S) =expected number of bits needed to encode class $(\oplus \text{ or } \ominus)$ of randomly drawn member of S (under the optimal, shortest-length code)

Why?

Information theory: optimal length code assigns $-\log_2 p$ bits to message having probability p.

So, expected number of bits to encode \oplus or \ominus of random member of S:

$$p_{\oplus}(-\log_2 p_{\oplus}) + p_{\ominus}(-\log_2 p_{\ominus})$$

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Information Gain

Gain(S, A) = expected reduction in entropy due to sorting on A

$$Gain(S,A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Training Examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

10

Selecting the Next Attribute

Which attribute is the best classifier?

Which attribute should be tested here?

$$S_{sunny} = \{D1,D2,D8,D9,D11\}$$
 $Gain (S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$
 $Gain (S_{sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$
 $Gain (S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$

Converting A Tree to Rules

 $\text{IF} \qquad \quad (Outlook = Sunny) \land (Humidity = High) \\$

 ${\bf THEN} \quad PlayTennis = No$

 $IF \qquad (Outlook = Sunny) \land (Humidity = Normal)$

 $THEN \quad PlayTennis = Yes$

. . .

Continuous Valued Attributes

Create a discrete attribute to test continuous

- \bullet Temperature = 82.5
- (Temperature > 72.3) = t, f

Temperature:	40	48	60	72	80	90
Play Tennis:	No	No	Yes	Yes	Yes	No

Attributes with Costs

Consider

- \bullet medical diagnosis, BloodTest has cost \$150
- robotics, $Width_from_1ft$ has cost 23 sec.

How to learn a consistent tree with low expected cost? One approach: replace gain by

• Tan and Schlimmer (1990)

$$\frac{Gain^2(S,A)}{Cost(A)}.$$

• Nunez (1988)

$$\frac{2^{Gain(S,A)} - 1}{(Cost(A) + 1)^u}$$

where $w \in [0,1]$ determines importance of cost

Unknown Attribute Values

What if some examples missing values of A? Use training example anyway, sort through tree

- If node n tests A, assign most common value of A among other examples sorted to node n
- \bullet assign most common value of A among other examples with same target value
- assign probability p_i to each possible value v_i of A
 - assign fraction p_i of example to each descendant in tree

Classify new examples in same fashion