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Gene Expression

1Process of transcription and/or translation of a
gene is called gene expression.

Every cell of an organism has the same genetic
material, but different genes are expressed at
different times.

dPatterns of gene expression in a cell is indicative of
Its state.
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Hybridization

AIf two complementary strands of DNA or mRNA
are brought together under the right experimental
conditions they will hybridize.

A hybridizes to B =

® A is reverse complementary to B, or
@ A is reverse complementary to a subsequence of B.

Tt is possible to experimentally verify whether A
hybridizes to B, by labeling A or B with a
radioactive or fluorescent tag, followed by
excitation by laser.
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Measuring gene expression

1Gene expression for a single gene can be measured
by extracting mRNA from the cell and doing a
simple hybridization experiment.

Given a sample of cells, gene expression for every
gene can be measured using a single microarray
experiment.
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Microarray/DNA chip technology

d High-throughput method to study gene expression of
thousands of genes simultaneously.

1 Many applications:
@ Genetic disorders & Mutation/polymorphism detection
® Study of disease subtypes
® Drug discovery & toxicology studies
® Pathogen analysis

@ Differing expressions over time, between tissues, between drugs,
across disease states
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DNA Chips & Images
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Microarray/DNA chips (Simplified)

 Construct probes corresponding to reverse complements of
genes of interest.

1 Microscopic quantities of probes placed on solid surfaces at
defined spots on the chip.

d Extract mRNA from sample cells and label them.

1 Apply labeled sample (MRNA extracted from cells) to every
spot, and allow hybridization.

d Wash off unhybridized material.

 Use optical detector to measure amount of fluorescence
from each spot.
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Affymetrix DNA chip schematic

www.affymetrix.com
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What’s on the slide?

Shining a laser light at GeneChip® array causes tagged DNA fragments that hybridized to glow
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Microarrays: competing technologies

dAffymetrix & Agilent
dDiffer in:

@ method to place DNA: Spotting vs.
photolithography

@®length of probe
@ Complete sequence vs. series of fragments
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Study effect of treatment over time

Sample

Tr'eaf@ Sample(t1)
Treated Sample(t2)
Treated Sample(t3)

Treated Sample(tn)
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How to compare 2 cell samples with Two-Color
Microarrays?

d mRNA from sample 1 is extracted and labeled with a red
fluorescent dye.

1 mRNA from sample 2 is extracted and labeled with a green
fluorescent dye.

1 Mix the samples and apply it to every spot on the
microarray. Hybridize sample mixture to probes.

1 Use optical detector to measure the amount of green and
red fluorescence at each spot.

2/16/15 CAP5510/ CGS 5166 17



Sources of Variations & Experimental Errors

coo0 OO0 O 0O

Variations in cells/individuals

Variations in mMRNA extraction, isolation, infroduction of dye, variation
in dye incorporation, dye interference

Variations in probe concentration, probe amounts, substrate surface
characteristics

Variations in hybridization conditions and kinetics

Variations in optical measurements, spot misalignments, discretization
effects, noise due to scanner lens and laser irregularities

Cross-hybridization of sequences with high sequence identity
Limit of factor 2 in precision of results

Variation changes with intensity: larger variation at low or high
expression levels

Need to Normalize data
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Clustering

dClustering is a general method to study patterns in
gene expressions.

1 Several known methods:
@ Hierarchical Clustering (Bottom-Up Approach)

@ K-means Clustering (Top-Down Approach)
@ Self-Organizing Maps (SOM)
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Hierarchical Clustering: Example
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A Dendrogram




Hierarchical Clustering [Johnson, SC, 1967]

dGiven n points in RY, compute the distance between
every pair of points

dWhile (not done)

® Pick closest pair of points s; and s; and make them part of
the same cluster.

@ Replace the pair by an average of the two s;,

Tr'y the applet at: http://home.dei.polimi.it/matteucc/Clustering/
tutorial_html/AppletH.html
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Distance Metrics

d For clustering, define a distance function:
® Euclidean distance metrics

1/k

d
Dr(X,Y) = L; (Xi - Y)" ] k=2: Euclidean Distance
® Pearson cporrelation coeficient

-1=p,, 21
Ox Oy
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EXHIBIT 3.4 Joint Probability Model for the Ratings of Two People

@) pxy=0 (®) pxy =%
y y
X 1 2 3 Total x 1 2 3 Total
3 1/9 1/9 1/9 1/3 3 1/18 1/18 4/18 173
2 1/9 1/9 19 1/3 2 1/18 4/18 1/18 1/3
1 1/9 1/9 19 173 1 4/18 1/18 1/18 173
Total 173 173 173 1 Total 1/3 173 1/3 1
(©) pxy = —# (d) pxy = %
Yy y
X 1 2 3 Total x 1 2 3 Total
3 4/18 1/18 1/18 1/3 3 127 227 6/27 173
2 1/18 4/18 1/18 1/3 2 2127 5127 2027 1/3
1 1/18 1/18 4/18 1/3 1 6/27 227 127 173
Total 173 173 173 1 Total 173 1/3 173 1
(e) pxy = -3 ) pxr =%
y y
x 1 2 3 Total x 1 2 3 Total
3 6/27 227 1127 1/3 3 1/36  2/36 9/36 1/3
2 2127 5127 2127 1/3 2 2/36  8/36 2/36 173
1 1127 2127 6/27 1/3 1 9/36 2/36 1/36 1/3
Total 173 1/3 173 1 Total 173 173 1/3 1
®) pxy = -3
y
x 1 2 3 Total
3 9/36 2/36 1/36 173
2 2/36 8/18 2/18 173
1 1/36  2/36 9/36 1/3
Total 1/3 173 173 1
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Clustering of gene expressions

1Represent each gene as a vector or a point in d-
space where d is the number of arrays or
experiments being analyzed.
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Clustering Random vs. Biological
Data
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K-Means Clustering: Example

Example from Andrew Moore’s tutorial on Clustering.
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Start
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1.

K-means

Ask user how many
clusters they'd like.
(e.g. k=5)

Randomly guess k
cluster Center
locations

Copyright © 2001, Andrew W. Moore

futon’s Graphics I |

&l

K-means and Hierarchical Clustering: Siide 7

1.

K-means

Ask user how many
clusters they'd like.
(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to. (Thus
each Center "owns”
a set of datapoints)

Copyright © 2001, Andrew W. Moore

Atan's Graphice Sz |

&

K-means and Hierarchical Clusterng: Side 8

1.

K-means

Ask user how many
clusters they'd like.
(e.g. k=5)
Randomly guess k

cluster Center
locations

Each datapoint finds
out which Center it's
closest to.

Each Center finds
the centroid of the
points it owns

Copyright © 2001, Andrew W. Moore

futon’s Graphics I |

=l

K-means and Hierarchical Clustering: Siide 9

1.

5.
6.

K-means

Ask user how many
clusters they'd like.
(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to.

Each Center finds
the centroid of the
points it owns...

...and jumps there

...Repeat until
terminated!

Copyright © 2001, Andrew W. Moore

Atan's Graphics Tl

K-means and Hierarchical Clustering: Slide 10
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K-means
Start

Advance apologies: in
Black and White this
example will deteriorate

Example generated by
Dan Pelleg’s super-duper
fast K-means system:

Dan Pelleg and Andrew
Moore. Accelerating Exact
k-means Algorithms with
Geometric Reasoning.
Proc. Conference on
Knowledge Discovery in
Databases 1999,

(KDD99) (available on
www autonlab.org/pap html)

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Side 11

K-means
continues

Copyright © 2001, Andrew W, Moore

K-means and Hierarchical Clustering: Siide 12
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K-means
continues

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Side 13

K-means
continues

Copyright © 2001, Andrew W, Moore

K-means and Hierarchical Clustering: Shide 14
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K-means
continues

Copyright © 2001, Andrew W. Moore

I |

K-means and Hierarchical Clustering: Shide 15

K-means
continues

Copyright © 2001, Andrew W. Moore
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K-means
continues

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Shide 17

K-means
continues

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Shide 18
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Start
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K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)
2. Randomly guess k

cluster Center
locations

Copyright © 2001, Andrew W. Moore

 jul

K-meane and Hierarchical Clustering: Siide 7

K-means
continues

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 19

K-means

1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds

out which Center it's
closest to. (Thus
each Center “"owns”
a set of datapoints)

Copyright © 2001, Andrew W, Moore

K-means and Hierarchical Clustering: Slide 8

K-means
terminates

Copyright © 2001, Andrew W, Moore

K-means and Hierarchical Clustering: Slide 20
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K-Means Clustering [McQueen '67]

Repeat

@ Start with randomly chosen cluster centers

@ Assign points to give greatest increase in score
® Recompute cluster centers

@ Reassign points

until (no changes)

Try the applet at: http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/
AppletH.html
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Comparisons

dHierarchical clustering
® Number of clusters not preset.
® Complete hierarchy of clusters
@ Not very robust, not very efficient.

J K-Means

® Need definition of a mean. Categorical data?
® More efficient and often finds optimum clustering.

2/16/15 CAP5510/ CGS 5166
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Functionally related
genes behave similarly
across experiments
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(b) Microarray experiment

Figure 1: Expression profiles of the cytoplasmic ribosomal proteins. Figure (a) shows the
expression profiles from the data in [Eisen et al., 1998] of 121 cytoplasmic ribosomal proteins, as
classified by MYGD [MYGD, 1999]. The logarithm of the expression ratio is plotted as a function
of DNA microarray experiment. Ticks along the X-axis represent the beginnings of experimental
series. They are, from left to right, cell division cycle after synchronization with « factor arrest
(alpha), cell division cycle after synchronization by centrifugal elutriation (elu), cell division cycle
measured using a temperature sensitive cdel5 mutant (cdc), sporulation (spo), heat shock (he),
reducing shock (re), cold shock (co), and diauxic shift (di). Sporulation is the generation of a yeast
spore by meiosis. Diauxic shift is the shift from anaerobic (fermentation) to aerobic (respiration)
metabolism. The medium starts rich in glucose, and yeast cells ferment, producing ethanol. When
the glucose is used up, they switch to ethanol as a source for carbon. Heat, cold, and reducing
shock are various ways to stress the yeast cell. Figure (b) shows the average, plus or minus one
standard deviation, of the data in Figure (a).
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Self-Organizing Maps [Kohonen]

1Kind of neural network.

dClusters data and find complex relationships
between clusters.

dHelps reduce the dimensionality of the data.
dMap of 1 or 2 dimensions produced.
dUnsupervised Clustering

Like K-Means, except for visualization

2/16/15 CAP5510/ CGS 5166
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4 2-D 6rid
4 3-D 6rid
d Hexagonal Grid

2/16/15

SOM Architectures
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SOM Algorithm

1 Select SOM architecture, and initialize weight
vectors and other parameters.

dWhile (stopping condition not satisfied) do for each
input point x
@ winning node g has weight vector closest to x.
® Update weight vector of q and its neighbors.
® Reduce neighborhood size and learning rate.
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SOM Algorithm Details

0 Distance between x and weight vector: |x = wi
1 Winning node: g(x) = min
[ Weight update function (for neighbors):

wilk +1) = wi(k) + u(k, x,i)[x(k) — wi(k)]
QdLearning rate:

X — Wi

Vi — FVg(x)

p(k, x, i) =no(k)eXp[ — )
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World Bank Statistics

1 Data: World Bank statistics of countries in 1992.

139 indicators considered e.g., health, nutrition,
educational services, etc.

dThe complex joint effect of these factors can can
be visualized by organizing the countries using the
self-organizing map.
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World Poverty PCA
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World Poverty SOM
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World Poverty Map
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Viewing SOM Clusters on PCA axes
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Input X e—
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Neural Networks
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Weights W
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Learning NN
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Adaptive Algorithm

Desired Response
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Types of NNs

J Recurrent NN
d Feed-forward NN
J Layered

Other issues

[ Hidden layers possible
O Different activation functions possible

2/16/15 CAP5510/ CGS 5166
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Application: Secondary Structure Prediction

X .o,
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W
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A Identical for all positions in the window
A Identical for all positions in the window

A Identical for all positions in the window
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PCR and Sequencing



Polymerase Chain Reaction (PCR)

 For testing, large amount of DNA is needed
® Identifying individuals for forensic purposes
> (0.1 microliter of saliva contains enough epithelial cells)
@ Identifying pathogens (viruses and/or bacteria)

d PCR is a technique to amplify the number of copies of a
specific region of DNA.

1 Useful when exact DNA sequence is unknown
[ Need to know “flanking” sequences
[ Primers designed from “flanking” sequences
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PCR

known sequence

[ Flanking Regions with

DNA

|

Forward

Primer
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Region to be
amplified

Reverse
Primer

Millions of
Copies
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PCR

Polymearase Chain Reaction (PCR)
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Schematic outline of a typical PCR cycle

PCR: Polymerase Chain Reaction

Step 1: ‘
Denaturation M

i |
| i
[T W

| | | "
Step 2: ly,, 7 ¥ U S—
Primer Annealing U o ;

%wﬂvﬁwmm «[—Target DNA

‘ Primers
%hnr,, //
}-

Step 3:
N
Primer Extension I\ [l -

— dNTPs

DNA polymerase
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POLYMERASE CHAIN RERCTION

1.
DN is denatured. Primers attach
to each strand. A new DNA strand
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Gel Electrophoresis

1Used to measure the lengths of DNA fragments.

dWhen voltage is applied to DNA, different size
fragments migrate to different distances (smaller
ones travel farther).
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Gel Pictures
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Gel Electrophoresis: Measure sizes of fragments

1 The phosphate backbone makes DNA a highly
negatively charged molecule.

IDNA can be separated according to its size.

 Gel: allow hot 1% solution of purifed agarose to cool
and solidify/polymerize.

I DNA sample added to wells at the top of a gel and
voltage is applied. Larger fragments migrate through
the pores slower.

dVarying concentration of agarose makes different pore
sizes & results.

J Proteins can be separated in much the same way,
only acrylamide is used as the crosslinking agent.
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Gel Electrophoresis
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Gel Electrophoresis
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Sequencing
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Why sequencing?

JUseful for further study:

@ Locate gene sequences, requlatory elements
@ Compare sequences to find similarities

® Identify mutations

® Use it as a basis for further experiments

Next 4 slides contains material prepared by Dr. Stan Metzenberg. Also see:
http://stat-www.berkeley.edu/users/terry/Classes/s260.1998 /Week8b/week8b/node9.html

2/16/15 CAP5510/ CGS 5166
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History

1 Two methods independently developed in 1974
@® Maxam & Gilbert method
@ Sanger method: became the standard

dNobel Prize in 1980

2/16/15 CAP5510/ CGS 5166
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Original Sanger Method

1 (Labeled) Primer is annealed to template strand of denatured DNA. This
primer is specifically constructed so that its 3' end is located next to
the DNA sequence of interest. Once the primer is attached to the DNA,
the solution is divided into four tubes labeled "G", "A", "T" and "C". Then
reagents are added to these samples as follows:

@® "G" tube: ddGTP, DNA polymerase, and all 4 dNTPs
@® "A" tube: ddATP, DNA polymerase, and all 4 dNTPs
® "T" tube: ddTTP, DNA polymerase, and all 4 dNTPs
@ "C" tube: ddCTP, DNA polymerase, and all 4 dNTPs

O DNA is synthesized, & nucleotides are added to growing chain by the
DNA polymerase. Occasionally, a ddNTP is incorporated in place of a
dNTP, and the chain is terminated. Then run a gel.

O All sequences in a tube have same prefix and same last nucleotide.

d http://www.wellcome.ac.uk/Education-resources/Teaching-and-
education/Animations/DNA/WTDV026689.htm
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Sanger Method

O Example of sequences seen in gel from "G" tube:

2/16/15

S'-GAATGTCCTTTCTCTAAGTCCTAAG
3'-GGAGACTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATCAAG-5"

S'-GAATGTCCTTTCTCTAAGTCCTAAGTCCTCCG
3'-GGAGACTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATCAAG-5"

S'-GAATGTCCTTTCTCTAAGTCCTAAGTCCTCCGG
3'-GGAGACTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATCAAG-5"

S'-GAATGTCCTTTCTCTAAGTCCTAAGTCCTCCGGATG
3'-GGAGACTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATCAAG-5"

S'-GAATGTCCTTTCTCTAAGTCCTAAGTCCTCCGGATGG
3'-GGAGACTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATCAAG-5"

S'-GAATGTCCTTTCTCTAAGTCCTAAGTCCTCCGGATGGTACTTCTAG
3'-GGAGACTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATCAAG-5"

CAP5510/ CGS 5166
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Modified Sanger

O Reactions performed in a single tube containing all four ddNTP's, each
labeled with a different color dye

dye label
, chain te rmination with ddGTE

5'- TCCTCCG
3 ' -GGAGACTTACAGGAAAGAGATTCAGGATTICAGGAGGCCTACCATGAAGATCAAG-5"

Q chain te rmination with ddATE

5'- TCCTCCGGA
3 ' -GGAGACTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATCAAG-5"

, chain te rination with ddTTP
5'- TCET
3' -GEAGACTTACAGGAAAGAGATTC AGGATTCAGGAGGCCTACCATEAAGATCAAG-5"

Q chain te rmination with ddCTP
5'- TCC
3 -GEAGACTTACAGGAAAGAGATTC AGGATTC AGGAGGCCTACCATGAAGATCAAG-5"
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Sequencing Gels: Separate vs Single Lanes

GCCAGGTGAGCCTTTGCA

A C G T
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Sequencing

345 CHAPTER THIRTEEN  Sequence Assembly and Finishing Methods

le: gvit1hi 1yl Gel na

chine: Cochise-1414-017

Spacing: 15,
T3730POP7{BDVA Signal: C: 1728
177803 Baseos: 803

54 G 2538 T
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FIGURE 13.3 A sample chromatogram, as viewed with the vtrace program (Ewing, 2002). Signal intensities
corresponding to fragments ending with A (green), C (blue), G (black), and T (red) are shown out to approximately
722 bases.
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Shotgun Sequencing

Hierarchical shotgun sequencing

’:v a2 _"’
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Genomic DNA
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BAC library ('JJ. £,52 /\,’\w

N
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clone contigs /

BAC to be AL

sequenced

Shot 7 R ~ A
otgun R ’; ~ D -~ P/
- -~ ~ ) —~y
clones PRk AL il Al A e
Shotgun .. .ACCGTAAATGGGCTGATCATGCTTAAA
sequence TGATCATGCTTAAACCCTGTGCATCCTACTG. . .
Assembly . ..ACCGTAAATGGGCTGATCATGCTTAAACCCTGTGCATCCTACTG. . .

From http://www.tulane.edu/~biochem/lecture/723/humgen.html
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Sequencing

FIGURE 13.1 Shotgun cloning. Genomic DNA
sequencing begins with isolated genomic DNA in green
at the top of the figure. In the hierarchical clone-based
shotgun approach on the left, DNA is sheared and the
size is selected for large fragments on the order of

200 Kb, then ligated to a suitable vector, such as a BAC
vector shown in blue. Individually isolated clones in turn
are sheared independently, generating fragments of
approximately 4 Kb, which are then ligated to a
small-scale vector, typically a plasmid (red bar) suitable
for sequencing reactions. The whole genome shotgun
approach bypasses the intermediate large-insert clone
and generates large numbers of small fragments,
typically 4 Kb and 10 Kb.
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Sequencing: Generate Contigs

O Short for "contiguous sequence”. A continuously covered
region in the assembly.

B Collapsing into a single sequence

O Jang W et al (1999) Making effective use of human genomic sequence data.
Trends Genet. 15(7): 284-6.
Kent WJ and Haussler D (2001) Assembly of the working draft of the human

genome with GigAssembler. Genome Res 11(9): 1541-8.
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Paired Reads

O Scaffold (supercontig): formed when two contigs with no
sequence overlap can be linked

@ Data from paired end reads help create scaffolds with known gaps

> If two reads end up in two different contigs, then we can link contigs to form
scaffold.
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Mpnpped
ScafTolds:

From

2/16/15

Shotgun Sequencing

STS

T Tt T T T TTT

I - o t
Read pair (mates) Gap (mean & std. dev. Known)
—— e — Consensus
—_—— Reads (of several haplotypes)
® SNPs
= BAC Fragments
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Human Genome Project

dMany videos available on youtube.com,
dnatube.com, and elsewhere.

JFind some and watch them.
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Assembly: Simple Example

O ACCGT, CGTGC, TTAC, TACCGT
d Total length = ~10

Q

e —-ACCGT--
¢ -—--CGTGC
e TTAC-—---
e -TACCGT-

* TTACCGTGC
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Assembly: Complications

A Errors in input sequence fragments (~3%)
® Indels or substitutions

 Contamination by host DNA
 Chimeric fragments (joining of non-contiguous fragments)
[ Unknown orientation

 Repeats (long repeats)
@® Fragment contained in a repeat
® Repeat copies not exact copies
® Inherently ambiguous assemblies possible
® Inverted repeats

[ Inadequate Coverage
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Assembly: Complications

w = AGTATTGGCAATC
z = AATCGATG

u = ATGCAAACCT

x = CCTTTTGG

y = TTGGCAATCACT

- == -TTGGCAATCACT----~-==~-~=--~-
AGTATTGGCAATCACTAATCGATGCAAACCTTTTGG

FIGURE 4.20

A bad solution for an assembly problem, with a multiple
alignment whose consensus is a shortest common
superstring. This solution has length 36 and is generated by
the Greedy algorithm. However, its weakest link is zero.

AGTATTGGCAATCGATGCAAACCTTTTGGCAATCACT

FIGURE 4.21

Solution according to the unique Hamiltonian path. This
solution has length 37, but exhibits better linkage. Its
weakest link is 3.
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Assembly: Complications

A X B X o X D
A X C X B X D
FIGURE 4.8
Target sequence leading to ambiguous assembly because of
repeats of the form X X X.
X B Y C X D Y
X D Y C X B Y
FIGURE 4.9
Target sequence leading to ambiguous assembly because of
repeats of the form XY XY .

X B Y C X D Y
X D Y C X B Y
FIGURE 4.9
Target sequence leading to ambiguous assembly because of
repeats of the form XY XY .

X rotate | 180° X

-~

X X
FIGURE 4.10

Target sequence with inverted repeat. The region marked X
is the reverse complement of the region marked X.



