CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools

Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/BioinfS15.html

Genetics & GWAS

Basic Population Genetics

Allele: one of two or more forms of DNA sequence of a particular gene

- The word "allele" is a short form of allelomorph ('other form')
- Diploid: organisms with two sets of chromosomes
 - Homozygous alleles: if both copies of the allele are the same
 - Heterozygous alleles
- Alleles may be
 - Dominant: allele that is more often expressed in heterozygous individuals
 - Recessive

Genotype: set of alleles in an individual, i.e., genetic composition

Genetic Characters

Characters can be

- Mendelian, i.e., single-gene effects, OR
- Polygenic, i.e., caused by combined effect of multiple genetic factors, OR
- Environmental
- Characters can be:
 - discrete (e.g., disease) or
 - continuous (e.g., height)

Gene loci involved in continuous characters are called Quantitative Trait Loci (QTL)

Hardy-Weinberg Principle

G.H. Hardy & Wilhelm Weinberg (1908)

<u>Allele</u> and <u>genotype</u> frequencies in a population remain constant.

		Females			
		A (p)	a (q)		
Malaa	A (p)	AA (p²)	Aa (pq)		
Males	a (q)	Aa (pq)	aa (q²)		

Assumptions:

- > Diploid; sexual reproduction; non-overlapping generations
- Biallelic loci; Allele frequencies independent of gender
- > Mating is random
- Population size is infinite
- > Mutations can be ignored
- Migration is negligible
- Natural selection does not affect allele in question
- > Equilibrium attained in one generation

Genetic Linkage

Meiosis: Cell division necessary for sexual reproduction

- Produces gametes like sperm and egg cells.
- Meiosis: Starts with one diploid cell with 2 copies of each chromosome and produces four haploid cells, each with one copy of each chromosome. Each chromosome is recombined from the 2 copies.
 - At start of meiosis, chromosome pair recombine and exchange sections. Then they separate into two chromosomes.
 - Recombination: alleles on same chromosome may end up in different daughter cells
 - If two alleles are far apart, then there is a higher probability of a crossover event between them putting them on different chromosomes.
 - Genetically linked traits are caused by alleles sufficiently close to each other. Used to produce genetic maps or linkage maps.

Linkage Disequilibrium (D)

D = Difference between observed and expected allelic frequencies
Given 2 bi-allelic loci A and B

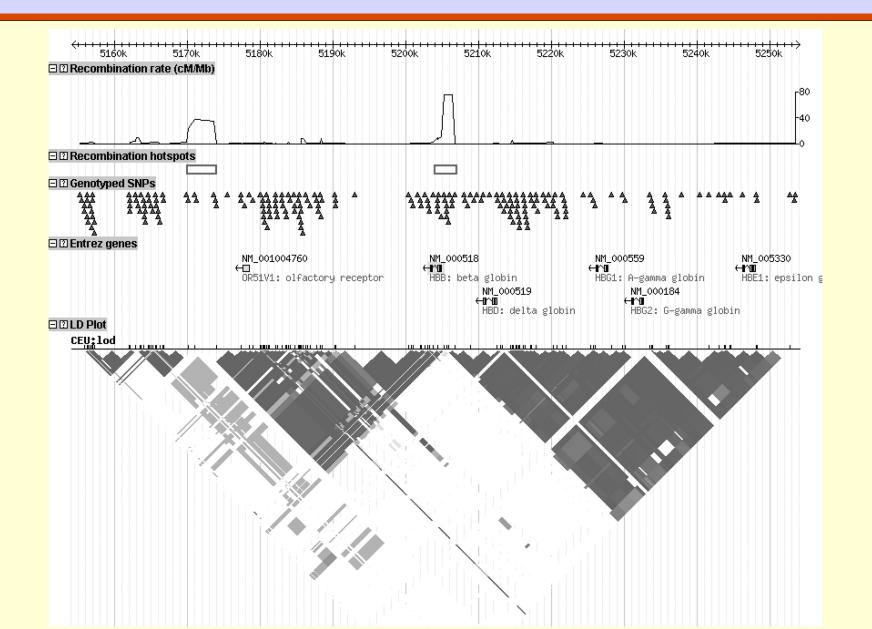
AB	×11
Ab	x ₁₂
۵B	× ₂₁
ab	×22

Allele	Frequency				
A	$P_1 = x_{11} + x_{12}$				
a	$P_2 = x_{21} + x_{22}$				
В	$q_1 = x_{11} + x_{21}$				
b	$q_2 = x_{12} + x_{22}$				

D = $x_{11} - p_1 q_1$

	A	۵	Total
В	$x_{11} = p_1q_1 + D$	x ₂₁ = p ₂ q ₁ - D	q ₁
b	x ₁₂ = p ₁ q ₂ - D	x ₂₂ = p ₂ q ₂ + D	q ₂
Total	P ₁	P ₂	1

Linkage Disequilibrium


- Linkage (dis)equilibrium: when genotype at loci are (not) independent
- Assumptions of basic population genetics
 - Transmission of alleles (across generations) at two loci are independent
 - Fitness of genotypes at different loci are independent
- Both assumptions are not true in general
- There exists non-random associations of alleles at different loci
- The extent of these associations are measured by Linkage Disequilibrium

SNPs

SNP: single nucleotide polymorphism

- Mutations in single nucleotide position
- Occurred once in human history
- Passed on through heredity
- ~10M SNPs in human genome
- 1 SNP every 300 bp, most with a frequency of 10-50%
- Most variations within a population characterized by SNPs
- Want to correlate SNPs to human disease
- Genotype
 - Gives bases at each SNP for both copies of chromosome, but loses information as to the chromosome on which it appears. NO LABEL!
- Haplotype
 - Gives bases at each SNP for each chromosome. LABELED!

Fig 19.21 from Pevsner

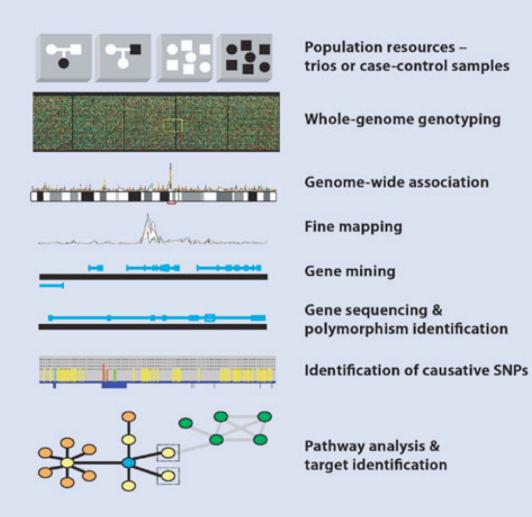
Genotype vs Haplotype

□ If the first locus is bi-allelic with two possible alleles (say, A & G)

- Genotypes: AA, GG, AG
- If a second bi-allelic locus has alleles T & C
 - Genotypes: TT, CC, TC

Genotypes & Haplotypes for the two loci are:

بعماهما		Second Locus				
<u>Haploty</u>	<u>pes</u>	TT	ТС	СС		
— ••••••	AA	ΑΤΑΤ	ΑΤΑΟ	AC AC		
First Locus	AG	ATGT	AT GC or AC GT	AC GC		
Locus	GG	GTGT	GT GC	GC GC		


□ Interesting problem: Haplotype Phasing

Given genotypes, resolve the haplotypes

Genome-wide Association Studies (GWAS)

- To identify patterns of polymorphisms that vary systematically between individuals with different disease states
 - To identify risk-enhancing or risk-decreasing alleles
- Examples of GWAS (900 studies; 3500 associations)
 - Prostate Cancer: Nature Genetics, 1 Apr 2007
 - Type 2 Diabetes: Science Express, 26 Apr 2007
 - Heart Diseases: Science Express, 3 May 2007
 - Breast Cancer, Nature & Nature Genetics, 27 May 2007
 - ...
 - See: http://www.genome.gov/Pages/About/OD/ReportsPublications/ GWASUpdateSlides-9-19-07.pdf
- Since variation is inherited in blocks / groups, it is enough to study a sample of the population, instead of looking at the whole population.
- GWA databases at NIH: dbGaP, caBIG, and CGEMS

GWAS Process

Analysis

- Summary statistics for quality control
 - Allele, genotypes frequencies, missing genotype rates, inbreeding stats, non-Mendelian transmission in family data, Sex checks based on X chromosome SNPs
- Population stratification detection
 - Complete linkage hierarchical clustering
 - Multidimensional scaling analysis to visualise substructure
 - Significance test for whether two individuals belong to the same population
- Association Testing:
 - Case vs Control
 - Standard allelic test, Fisher's exact test, Cochran-Armitage trend test, Mantel-Haenszel and Breslow-Day tests for stratified samples, Dominant/recessive and general models, Model comparison tests
 - Family-based associations
 - QTLs

Software

PLINK: for analysis of genotype, phenotype data
EIGENSOFT: for population structure analysis
IMPUTE, SNPTEST, MACH, ProbABEL, BimBam, QUICKTEST

Genetics Software: STRUCTURE

Structure

Use multi-locus genotype data to investigate population structure

- Inferring presence of distinct populations
- Assigning individuals to populations
- Studying hybrid zones
- Identifying migrants and admixed invidividuals
- Estimating allele frequencies in populations
- Types of markers
 - Microsatellites, RFLPs, SNPs
- Papers
 - http://pritch.bsd.uchicago.edu/publications/structure.pdf
 - Pritchard, Stephens, and Donnelly, Genetics 155:945-959, June 2000
 - http://pritch.bsd.uchicago.edu/publications/FalushEtAl03_Genetics.pdf
 - > Falush, Stephens, Pritchard, *Genetics* 164:1567-1587, August 2003

Structure: Methods

- Model-based clustering method
- Assumptions
 - K populations (K may be unknown), each characterized by a set of allele frequencies at each locus
 - Within each population, loci are at Hardy-Weinberg equilibrium, and at linkage equilibrium
 - Objective is to assign individuals to populations to achieve the equilibria
 - Markers are not in LD within subpopulations (cannot handle markers extremely close together; weakly linked markers can be handled in Version 2.0)
 - Organisms may be diploid of non-diploid
- Do not assume a particular mutation process

Data

For diploid organisms, data for each individual can be											
Stored in 2 successive rows with each locus in one column											
	George	1	-9	145	66	0	92				
	George	1	-9	-9	64	0	94				
🕚 Or s	stored in 1 rov	v with ea	ch locus	in 2 cons	ecutive a	columns	94 S				
	George	1	1	-9	-9	145	-9	66			
	64	0	0	92	94						

Phase/Haplotype Information

					itributio	info on s ab	Aissing data; e.g., no nfo on second X chr .able (MARKOVP' SE = 0) available (MARK PHASE = 1)		
	102 100	156 148	165 163	101 101	143 143	105 -9	104 -9	101 -9	5 unphased (e.g., autosomal microsatellite)
	0.5	0.5	0.5	0.5	0.5	1.0	1.0	1.0	loci and 3 phased (e.g., X chr) loci
									Perfectly in phase with previous allele
	102	156	165	101	143	105	104	101 🥌	
	100	148	163	101	143	-9	-9	-9	
	0.5	0.5	0.5	0.5	0.5	0.5	1.0	1.0	

Ancestry Models

No admixture

- Pure discrete populations
- Output: Posterior probability that i is from population j
- Occasionally better than admixture model at detecting subtle structure

Admixture

- Individuals with mixed ancestry
- Output: Posterior mean estimates of fraction that i inherited from pop j
- Flexible, realistic model and good starting point
- Difficulty if there are very few representations of the parental populations

Linkage

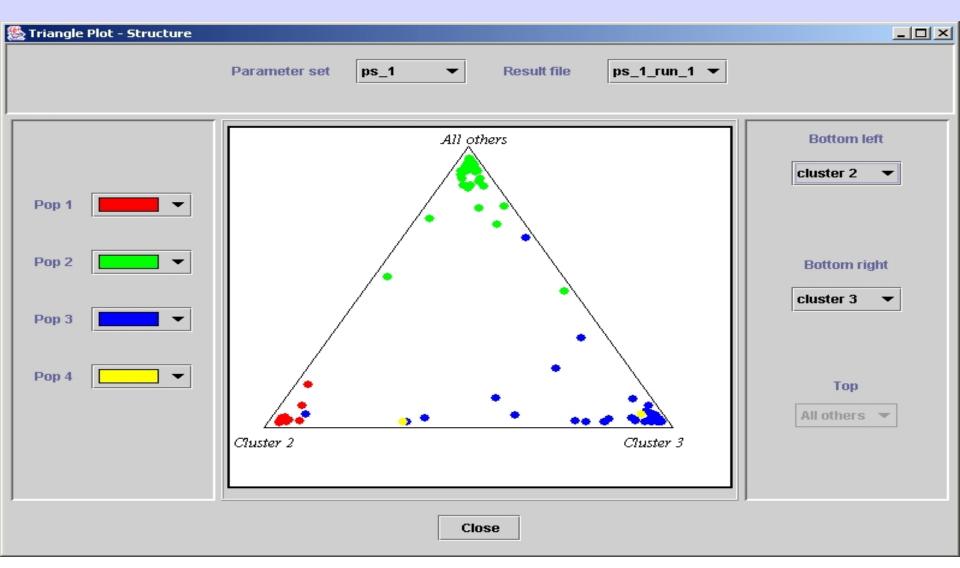
Generalizes the Admixture model

Ancestry Models (Cont'd)

Linkage

- Generalizes the Admixture model
- Assumes an admixture event t generations in the past, at which time the chromosome inherited distinct chunks from ancestors
- LD arises because linked alleles are often on the same chunk, and therefore come from ancestral population
- Sizes of chunks are independent exponential random variables with mean length 1/t
- Recombination rate r dictates rate of switching from a chunk to a future chunk
- MCMC algorithm integrates over the possible chunk sizes and break points
- Needs location of markers (genetic map)
- Reports ancestry of each individual
- Slower computations, but practical for hundreds of loci & individuals

Variants


Can handle prior info on population

- Useful to test if an individual is an immigrant to that population or has recent immigrant ancestors
- Useful to incorporate training data and to classify individuals of unknown origin
- Parameter called MIGPRIOR to allow for limited misclassification
- Can handle 2 models for allele frequencies
 - $\bullet\,$ Allele frequency in each population are independently drawn from a distribution with parameter λ
 - Can be determined by fixing K = 1, and then estimating λ
 - Allele frequencies are correlated, i.e., different populations may have similar allele frequencies
- □ K has to be estimated carefully.

Miscellaneous

Missing data (as long as it is independent of the allele)
Dominant Loci

Results

Applications

- Diversity and introgression in Scottish wildcats (Beaumont et al., Mol Ecol, 10:319-336)
- Study of 20 chicken breeds (Rosenberg et al., *Genetics*, 159:699-713)