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Metabolomics, machine learning and modelling:
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Abstract
In answering the question ‘Systems Biology – will it work?’ (which it self-evidently has already), it is appro-
priate to highlight advances in philosophy, in new technique development and in novel findings. In terms
of philosophy, we see that systems biology involves an iterative interplay between linked activities – for
instance, between theory and experiment, between induction and deduction and between measurements of
parameters and variables – with more emphasis than has perhaps been common now being focused on the
first in each of these pairs. In technique development, we highlight closed loop machine learning and its use
in the optimization of scientific instrumentation, and the ability to effect high-quality and quasi-continuous
optical images of cells. This leads to many important and novel findings. In the first case, these may involve
new biomarkers for disease, whereas in the second case, we have determined that many biological signals
may be frequency rather than amplitude-encoded. This leads to a very different view of how signalling
‘works’ (equations such as that of Michaelis and Menten which use only amplitudes, i.e. concentrations, are
inadequate descriptors), lays emphasis on the signal processing network elements that lie ‘downstream’ of
what are traditionally considered the signals, and allows one simply to understand how cross-talk may be
avoided between pathways which nevertheless use common signalling elements. The language of cells is
much richer than we had supposed, and we are now well placed to decode it.

Introduction
‘Progress in science depends on new techniques, new
discoveries and new ideas, probably in that order’

Sydney Brenner, Nature, June 5, 1980

Following Sydney Brenner’s comment (above), though not
in that order, and as part of a meeting entitled ‘Systems Bio-
logy: will it work?’, I have chosen to highlight three aspects of
our current collaborative work. The first involves the philo-
sophical underpinnings of our scientific strategy and of the
systems biology agenda, which are each characterized by an
iterative interplay [1,2] between a series of linked activities:
these include data and ideas; theory, computation and experi-
ment; and the iterative assessment of model parameters and
variables. The second area relates to the development of ana-
lytical and computational technology, especially in metabolo-
mics, to help provide both high-quality data and modelling.
The third concentrates on conceptual developments follow-
ing from our recent findings [3,4] to the effect that one way to
look at biological signalling pathways is not so much in terms
of changes in the concentrations of signalling intermediates,
but in terms of the downstream ‘signal processing elements’
that respond to their dynamics. This gives a profoundly dif-
ferent view of the significance of networks in systems biology,
and one that allows one a much better understanding of sig-
nalling as signal processing.
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Philosophy of systems biology
Most commentators, including this author [5], take the sys-
tems biology agenda to include, in an iterative manner, both
wet (experimental) and dry (computational and theoretical)
work as part of an iterative cycle. (In this sense systems bio-
logy shares the same agenda as the long-established metabolic
control analysis [6,7].) Figure 1 shows four views of this.
Figure 1(A) stresses the importance of inductive methods of
hypothesis generation; these have unaccountably had far less
emphasis than they should have done because of the tradi-
tional obsession in 20th century biology with hypothesis
testing. Principled hypothesis generation is clearly at least
as important as hypothesis testing, and appropriate experi-
mental designs ensure that the search for good candidate data
is not an aimless fishing expedition but one which is likely to
find novel answers in unexpected places [1,2,8,9]. Figure 1(B)
stresses the importance of first getting the structural model
(the fundamental building blocks of the ‘language’ of cells),
then suitable equations that can represent then parametrize
the kinetic data, as these can be used directly in forward mod-
els (e.g. [10,11]), whereas Figures 1(C) and 1(D) highlight the
basic and iterative relations between computational models
and reality on one hand and between changes in the model that
are invoked and its subsequent dynamic behaviour. If the
answer to ‘Systems Biology – will it work?’ is at least partly
synonymous with the answer to ‘can we make models that
both simulate existing data and make exciting (and ultimately
validated) predictions about the results of experiments not
yet done?’. Then I think we can already answer that in the
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Figure 1 Iterative elements of systems biology
(A) Science advances through an iterative interplay between ideas and

experimental data. (B) A largely bottom-up view, as in the ‘silicon cell’

[67], of one approach to systems biology. First we seek a ‘structural

model’ that defines the players and the qualitative nature of the

interactions between them; then we seek equations that best describe

the relationships, then finally we seek to parametrize those equations

(recognizing that if errors occur in the earlier phases we may need to

return and correct them in the light of further knowledge). (C) Modelling

and comparison of the models with the reality as an iterative process.

(D) Producing and refining a model: data on kinetic parameters allow

one to run a forward model, whereas invoking such parameters from

measured ’omics data (fluxes and concentrations) is an inverse or system

identification problem.

affirmative [12,13] – but solving the inverse problem is by far
the hardest of these challenges [14–16].

Metabolomics technology
If we consider metabolic systems, most analyses take discrete
samples and provide ‘metabolic snapshots’ [6]. Typical model
microbes such as baker’s yeast [17] contain upwards of
1000 metabolites, most with MR < 1000 [5]. An important
area of metabolomics thus consists of maximizing the number
of metabolites that may be measured reliably [18,19], as
a prelude to exploiting such data via a chemometric and
computational pipeline [20]. The problem here is that optim-
izing scientific instrumentation is a combinatorial problem
that scales exponentially with the number of experimental
parameters. Thus if there are 14 adjustable settings on an
electrospray mass spectrometer, each of which can take ten
values, the number of combinations to be tested by exhaustive
search is 1014 [21]. Although heuristic methods that find
good but not provably optimal solutions (such as methods
based on genetic algorithms [21,22]) have proved successful,
they are still slow because there is a human being in the
loop, and the number of experiments that can be evaluated is
correspondingly small.

More recently, in a manner related to the computationally
driven supervised [23] and inductive [2] discovery of new
biological knowledge [24], we have contributed to the Robot
Scientist project [25]. Here a computational system is used
(i) to hold background knowledge about a biological domain
(amino acid biosynthesis, modelled as a logical graph), (ii) to
use that knowledge to design the ‘best’ (most discriminatory)
experiment to find the biochemical location in that graph of a
specific genetic lesion, (iii) to perform that experiment using
microbial growth tests, and to analyse the results, and (iv) on
the basis of these to design, perform and evaluate the next
experiment, the whole continuing in an iterative manner (i.e.
in a closed loop, without human intervention) until only one
possible hypothesis remains.

We have now combined these two set of ideas to use genetic
search methods in an automated closed loop (the ‘Robot
Chromatographer’) to maximize simultaneously the number
of peaks observed and a signal/noise metric while also mini-
mizing the run time [26]. Depending on the sample (serum
[19] or yeast supernatant [27,28]), this has doubled or trebled
the number of metabolite peaks that we can reliably observe
using GC-MS [26], thereby allowing us to discover important
new biomarkers for metabolic diseases.

Network motifs, sensitivity analysis, signal
processing and credit assignment in
systems biology models
A hallmark of post-genomics is the development of high-
throughput methods for the analysis of complex biological
systems. In consequence, it is increasingly commonplace to
have access to large datasets of variables (’omics data) against
which to test a mathematical model of the system that might
generate such data. In these cases, the model will usually be
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an ODE (ordinary differential equation) model, and finding
a good model is a system identification problem [10].

Much less frequently, the kinetic and binding constants
are available, and a reliable ‘forward’ model can be generated
directly. One such case is the NF-κB (nuclear factor κB)
signalling pathway [29]. NF-κB is a nuclear transcription
factor that is normally held inactive in the cytoplasm by
being bound to an IκB (inhibitory κB). When IκB is phos-
phorylated by a kinase (inhibition of κB kinase), it is degraded
and free NF-κB can translocate to the nucleus, where it
induces the expression of genes (including those such as IκB
that are involved in its own dynamics). The NF-κB system
is considered to be ‘involved’ in both cell proliferation and
in apoptosis, although how a cell chooses which of these
orthogonal processes to follow simply from the changes in the
concentration of NF-κB in a particular location is neither ob-
vious nor known. Earlier experimental measurements showed
oscillations in NF-κB in single cells, though these were
damped when assessed as an ensemble since individual cells
were necessarily out of phase ([30], and see also [31,32] for
a similar philosophy underpinning flow cytometry). More
recently, with improved constructs and detector technology,
the oscillations could clearly be measured accurately in
individual cells alone [4].

Based on the model of Hoffmann et al. [29], and using
Gepasi [10] we have modelled the ‘downstream’ parts of this
pathway (there are 64 reactions and 23 variables), and per-
formed sensitivity analysis (a generalized form of metabolic
control analysis [33], useful in many other domains [34]).
This showed [3] that only approx. 8 of the 64 reactions
exerted any serious control over the timings and amplitudes
of the oscillations in the NF-κB concentration, and most
importantly that it was not so much the concentration of
NF-κB but its dynamics that is responsible for controlling
downstream activities [4]. This leads to a profound emphasis
on the role of ‘network motifs’ [35–37] as downstream signal
processing elements that can discriminate the dynamical pro-
perties of inputs that otherwise use the same components.
Biological signalling is then best seen or understood as signal
processing, a major field (mainly developed in areas such as
data communications, image processing [38] and so on), in
which we recognize that the structure, dynamics and perfor-
mance of the receiver entirely determine which properties of
the upstream signal are actually transduced into downstream
(and here biological) events. The crucial point is that, in the
signal processing world, these signals are separated by their
dynamical, frequency-dependent properties. Normally, we
model enzyme kinetics on the basis of a static concentra-
tion [e.g. the irreversible Michaelis–Menten reaction v =
VmS/(S + Km) includes only the ‘instantaneous’ concentra-
tion but not the dynamics of S]. However, if detectors have
frequency-sensitive properties, this allows one in principle
to solve the ‘cross-talk problem’. (How do cells distinguish
identical changes in the ‘static’ NF-κB concentration that
might lead either to apoptosis or to proliferation, when these
are in fact entirely orthogonal processes?) Although other
factors can always contribute usefully (e.g. further transcrip-

Figure 2 The importance of signal dynamics and of downstream

signal processing in affecting biological responses

(A) A simple system illustrating how two different filters can transduce

different features of the identical signal into two different events.

(B) Simple RC filters (above) can act as a delay line when they are

concatenated.

tion factors that act as a logical AND, OR or NOT [39]),
encoding effective signals in the frequency domain allows
one to separate signals independently of their amplitudes (i.e.
concentrations).

In the most simplistic way, one could imagine a structure
(Figure 2A) in which there was an input signal that could be
filtered by a low-pass or high-pass filter before being passed
downstream – a low-frequency signal would ‘go one way’
(i.e. be detected by only one ‘detector’ structure) and a high-
frequency signal the other way. In this manner, the same com-
ponents can change their concentrations, such that they may
be at the same instantaneous levels while nevertheless having
entirely different outcomes, solely because of the signal pro-
cessing, frequency response characteristics of the detectors.
Of course, the real system and its signal-processing elements
will be much more complex than this. There is also precedent
for the nonlinear frequency-selective (bandpass) responses
of individual multistate enzymes to exciting alternating elec-
trical fields [40–44].

Although the recognition that electrical circuit (signal pro-
cessing) elements and biological networks are fundamentally
similar representations is not especially new (e.g. [36,45–
53]), Alon and co-workers [35,37,54] have developed these
ideas particularly well. Thus, any element (Figure 2) in a
metabolic or signal transduction pathway acts as a resistor-
capacitor element [45] (as indeed do any ‘relaxing’ elements
responding to an input, such as an alternating electrical signal
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[55]), whereas a series of them acts as a delay line (see [56]
or any other textbook of electrical filters, and in a biological
context [57]). Similarly, a suitably configured (‘coherent’)
feedforward network provides resistance to small input per-
turbations (noise – or at least an amount of signal not worth
chasing) while transducing large ones (signals) into biological
effects [58,59]. Other network structures – which are better
seen as signal processing elements – exhibit robustness of
their output to sometimes extreme variations in parameters
[50,51,60–63].

Thus the recognition that we need to concentrate more on
the dynamics of signalling pathways, rather than instant-
aneous concentrations of their components, means that we
need to sample very frequently – preferably effectively in real
time – and using single cell measurements to avoid oscillations
and other more complex and functionally important dyna-
mics being hidden through the combination signals from
individual, out-of-phase cells. It also means that assays for
signalling activity, for instance in drug development, should
not concentrate just on the signalling molecules but on the
structures that the cell uses to detect them.

Other areas and concluding remarks
In the short presentation at the meeting of which this repre-
sents the transaction, I covered only the three main aspects
described above. However, there are many other pertinent
areas that need to be stressed, including the need to integrate
SBML models into post-genomic databases with schemas
such as those for genomics (GIMS [64]), proteomics (PEDRo
[65]) and metabolomics (ArMet [66]). Only then can we have
a truly integrative Systems Biology.
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