Comp 7713: Advanced Algorithms

NOTES FOR CLASS TAKEN ON 11/18/98

Taken by: Anup T Vachali

TOPIC

INTRODUCTION TO RANDOMIZED ALGORITHMS

INTRODUCTION

A randomized algorithm is one that makes random choices during its execution. For many problems a randomized algorithm is the simplest, the fastest, or both. Currently the best known algorithms for many geometric problems are randomized.

Complex problems often require tremendously slow processes to solve. Randomized algorithms save time by choosing a starting point arbitrarily, rather than deciding where the best starting point is. As a result, the algorithm will have a high probability of producing the correct solution. Several iterations may be required to ensure a correct solution, but this is often much faster than executing a complicated, deterministic algorithm one time. In addition, after three or four iterations of a randomized algorithm, the probability of success is near 100%.

As stated earlier, randomized algorithm makes random choices during its execution. This allows savings in execution time of a program. The disadvantage of this method is the possibility that an incorrect solution may occur. A well-designed randomized algorithm will have a very high probability of returning a correct answer. A failure to do so will simply result in another execution of the algorithm. Multiple executions will almost certainly have at least one successful pass.

Randomized or probabilistic algorithms are those containing statements of the form:

                                  x := outcome of  a fair coin toss.

Monte-Carlo and Las Vegas Algorithms are examples of Randomized Algorithms. Both these algorithms are very similar. The Monte Carlo type will always produce some solution to the given problem. Occasionally, however, the solution may be incorrect. The Las Vegas algorithm only produces a solution when the right answer is found. It never returns an incorrect solution. In essence therefore, a Las Vegas algorithm is a Monte Carlo algorithm with verification. In a nutshell we could say that, Monte-Carlo algorithms are always right fast and probably correct and Las Vegas algorithms are probably fast and always right.

EXAMPLE

Consider an algorithm to find the element that is atleast as large as the median of an array. A deterministic approach would be to choose a pivot element near the median of the list and partition the list around that element. Most of the overall computation time of this algorithm will be spent on choosing an element near the median. Once this pivot is found, the remainder of the process will run quickly. The time complexity is O (n log n).

The randomized approach to this problem would be to choose a pivot at random, thus saving time at the beginning of the process. This approach would find the median in linear time, O (n). This simple example shows the most dramatic improvement in time complexity. The disadvantage is that if a terrible (bad) choice is made, that is if either the highest or lowest element is chosen, then this process will run extremely slowly. However, the probability that the worst element is chosen is very low. Thus the risk of failure may be worth taking in order to save time.

See Reference 3 for a more comprehensive explanation.

DEFINITIONS

· For disjoint events A1, A2, …. The probability that one of the events will occur is: 

Prob((i Ai) = ( Prob(Ai)



           i

· Expected value of random variable X:

E[X] = ( i Prob (X = i ) = ( i f (i ) 

                         i                                            i

· Linearity of Expectation:

E [( Xi ] = ( E[Xi]

       i                     i 

This is independent of what the Random Variable is associated with.

· Markov’s inequality:


Prob{ X ( ( } (  E [X] / (
· Chebychev’s inequality:

Prob{ |X-(|  (  t( } (  1/ t2


where, ( is the expected value of the Random Variable.

· Harmonic Distribution:

Xi = ((i) with probability 1/i

Prob{ ( Xi ( c( Hn } ( e –Hn [ 1+ c|n (c /e ) ]

           
           i

We looked at the Sorting Problem in class

Sorting problem 

Given a set N of n points on the real line R, find the partition H(N) of R formed by the given set of points N.

N ( H (N)

Partition: Set of points in N, intervals in R, and adjacencies between points and intervals.

This is in fact very much like Quicksort, where an array is partitioned into two subarrays and then sorting each subarray recursively.

The sorting problem was solved using Randomized Quick Sort in both the recursive and incremental methods.

Randomized Quick sort (Recursive)

Algorithm:

· Pick a random point s ( N.

· Partition N into N( and N(( using s as pivot.

· Sort N( and N(( recursively.

Randomized Quick sort (Incremental)

Algorithm:

UNFOLD THE RECURSION

· Get a random permutation of the input N.

Now iterate:

· Pick the next point s from the permutation.

· Update existing partition : H(N i-1) ( H(Ni)

· Update the appropriate conflict list.

Conflict List for an interval I is the unordered list L(I) of unadded points contained in that interval.

If the pivot is truthful to the permutation, then they are equivalent in that they cause the same set of comparisons.

Analysis:  Expected time complexity of Quick sort.

Model of Analysis 

Analysis must be independent of how points are distributed in space. There need not be a “uniform distribution”. Also assume that insertions happen in random order, i.e., all permutations of input order are equally likely.

Naïve Analysis of recursive version 

Sub-problems have expected size of half of original set. Hence expected time complexity: O (n log n).
Non-Recursive version

The cost of  the ( i +1)-th iteration is the size of the conflict list of the interval from which the (i+1)-th point was picked.

Expected time complexity of quick sort = sum of expected sizes of the conflict sets from which the points are chosen.

Observation:

Given a random permutation of n points: p1,p2,…….pn. Then,

· Point pj is equally likely to be one of the n-j items from { pj, p j+1,…,pn }.

· Point pj is equally likely to be one of the j items from {p1,p2,…,pj}

Reverse Analysis of Quick sort 

For reverse analysis, we use the second statement in the observation above instead of the first.

First fix N i+1. Then each point in N i+1 is equally likely to have occurred as the (i +1)-th point. The expected cost of the ( i +1)-th iteration is:

1/ (i +1) ( J ( H ( Ni +1) ( size (J)) (  2n / (i +1)

where size (J) is the size of the conflict set.

Total cost =  n (i  1/(i +1) = O (n log n)
This is because 1 / (i +1) = 1/1 +1/2 + 1/3 +…..   = ln n.

Searching Problem

Associate a search structure S(N) with H(N) so that, given any points q ( R, one can “efficiently” locate the interval H(N) containing q.



H(N) ( S(N)

Randomized Binary Search Trees


H(N) ( B(N)

Idea 

As you insert points and refine the partition, construct a binary search tree. So quicksort can also give B(N). 

There is a recursive view as well as an incremental view of this process.

Incremental View: HISTORY

H (N0)( H (N1)( …….( H (Nn) = H (N)

B (N0)( B (N1)(……..( B (Nn) = B (N)

Construction Time for B(N) : O(n log n ).
Query Time Analysis

Assume the points p0, p1,…….pn are inserted in that order.

History: H (N0)( H (N1)( …….( H (Nn) = H (N)

Query point p, is in some interval of each partition.

· For i = 1,………..,n 

Let Yi = 1, if the same interval of the partition H(ni-1) contains both p and pi. 

Otherwise let Yi =0.

Therefore, Query Time for point p is (i Yi
Reverse Analysis

Assume that the points p0, p1,……….,pn are deleted in reverse of that order.

Reverse History: H (N) = H (Nn) ( …….( H (N1) (H (N0)

· For i = n,…………,1

Let Xi =1 if the same interval of the partition H(Ni) contains p and has pi as one of its endpoints.

Otherwise let Xi=0.

Prob (Xi =1) = 2/ i

Hence, query cost =  ((1/i) = O (log n)

Randomized algorithms can be used to solve a wide variety of real world problems. Like approximation algorithms, they can be used to more quickly solve tough NP-Complete problems. An advantage over the approximation algorithms, however, is that a randomized algorithm will eventually yield an exact answer if executed enough times. 

Additional References:

1. http://www.cs.bham.ac.uk/teaching/examples/simjava/ ----Java Simulation of a few examples of Randomized Algorithms.

2. http://www.cs.wvu.edu/~wallacec/a3/a3.html   .…..      A survey of Randomized Algorithms.

3. http://www.ics.uci.edu/~eppstein/161/960125.html …… Comprehensive explanation of  the median and   

 other such problems.  

