COP 4516: Competitive Programming and Problem Solving

Giri Narasimhan & Kip Irvine
Phone: x3748 & x1528
{giri,irvinek}@cs.fiu.edu
Evaluation

- Exam/Competition: 50%
- Solving Problems: 40%
- Attendance: 5%
- Class Participation: 5%
The great thinkers of our field:

- **Euclid**, 300 BC
- **Bhaskara**, 6\(^{th}\) century
- **Al Khwarizmi**, 9th century
- **Fibonacci**, 13\(^{th}\) century
- **Babbage**, 19\(^{th}\) century
- **Turing**, 20\(^{th}\) century
- **von Neumann, Knuth, Karp, Tarjan**, …
Al Khwarizmi’s algorithm

- **43 X 17**
 - 43 17
 - 21 34
 - 10 68 (ignore)
 - 5 136
 - 2 272 (ignore)
 - 1 544

731
Euclid’s Algorithm

- $\text{GCD}(12,8) = 4$; $\text{GCD}(49,35) = 7$;
- $\text{GCD}(210,588) = ??$
- $\text{GCD}(a,b) = ??$

- **Observation**: [a and b are integers and $a \geq b$]
 - $\text{GCD}(a,b) = \text{GCD}(a-b,b)$

- **Euclid’s Rule**: [a and b are integers and $a \geq b$]
 - $\text{GCD}(a,b) = \text{GCD}(a \mod b, b)$

- **Euclid’s GCD Algorithm**:
 - $\text{GCD}(a,b)$
 - If $(b = 0)$ then return a;
 - return $\text{GCD}(a \mod b, b)$
If you like Algorithms, nothing to worry about!

"Calculus is my new Versace. I get a buzz from algorithms. What's going on with me, Raymond? I'm scared."
Search

• You are asked to guess a number X that is known to be an integer lying in the range A through B. How many guesses do you need in the worst case?
 - Use binary search; Number of guesses = $\log_2(B-A)$

• You are asked to guess a positive integer X. How many guesses do you need in the worst case?
 - **NOTE**: No upper bound is known for the number.
 - **Algorithm**:
 - figure out B (by using **Doubling Search**)
 - perform binary search in the range $B/2$ through B.
 - Number of guesses = $\log_2B + \log_2(B - B/2)$
 - Since X is between $B/2$ and B, we have: $\log_2(B/2) < \log_2X$,
 - Number of guesses < $2\log_2X - 1$
Polynomial Evaluation

• **Given a polynomial**

 \[p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1} + a_n x^n \]

 compute the value of the polynomial for a given value of \(x \).

• **How many additions and multiplications are needed?**

 – **Simple solution:**
 • Number of additions = \(n \)
 • Number of multiplications = \(1 + 2 + \ldots + n = \frac{n(n+1)}{2} \)

 – **Reusing previous computations:** \(n \) additions and \(2n \) multiplications!

 – **Improved solution using Horner’s rule:**
 • \(p(x) = a_0 + x(a_1 + x(a_2 + \ldots x(a_{n-1} + x a_n)) \ldots)) \)
 • Number of additions = \(n \)
 • Number of multiplications = \(n \)
Sorting

• Input is a list of n items that can be compared.
• Output is an ordered list of those n items.
• Fundamental problem that has received a lot of attention over the years.
• Used in many applications.
• Scores of different algorithms exist.
• Task: To compare algorithms
 - On what bases?
 • Time
 • Space
 • Other
Figure 2.1 Sorting a hand of cards using insertion sort.
Sorting Algorithms

- Number of Comparisons
- Number of Data Movements
- Additional Space Requirements
Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- MergeSort
- HeapSort
- QuickSort
- Bucket & Radix Sort
- Counting Sort
SelectionSort

SelectionSort(array A)

1. $N \leftarrow \text{length}[A]$
2. for $p \leftarrow 1$ to N
3. do Compute j, the index of the smallest item in $A[p..N]$
SelectionSort

\textbf{SelectionSort}(array } A \textbf{)}

1. \(N \leftarrow \text{length}[A] \)
2. \textbf{for } p \leftarrow 1 \textbf{ to } N \textbf{ do} \triangleright \text{Compute } j
3. \hspace{1em} j \leftarrow p
4. \hspace{1em} \textbf{for } m \leftarrow p + 1 \textbf{ to } N \textbf{ do if } (A[m] < A[j])
5. \hspace{2em} \textbf{then } j \leftarrow m \triangleright \text{Swap } A[p] \text{ and } A[j]
6. \textbf{end do}
7. \hspace{1em} temp \leftarrow A[p]
8. \hspace{1em} A[p] \leftarrow A[j]
9. \hspace{1em} A[j] \leftarrow temp
SelectionSort

SelectionSort(array A)

1 $N \leftarrow \text{length}[A]$
2 $\textbf{for } p \leftarrow 1 \textbf{ to } N \textbf{ do } \triangleright \text{Compute } j$
3 \hspace{1em} $j \leftarrow p$
4 $\textbf{for } m \leftarrow p + 1 \textbf{ to } N \textbf{ do if } (A[m] < A[j])$
5 \hspace{1em} $\textbf{then } j \leftarrow m$
6 \hspace{1em} $\triangleright \text{Swap } A[p] \text{ and } A[j]$
7 $\text{temp} \leftarrow A[p]$
8 $A[p] \leftarrow A[j]$
9 $A[j] \leftarrow \text{temp}$

O(n²) time
O(1) space
Solving Recurrence Relations

Page 62, [CLR]

<table>
<thead>
<tr>
<th>Recurrence; Cond</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = T(n-1) + O(1))</td>
<td>(T(n) = O(n))</td>
</tr>
<tr>
<td>(T(n) = T(n-1) + O(n))</td>
<td>(T(n) = O(n^2))</td>
</tr>
<tr>
<td>(T(n) = T(n-c) + O(1))</td>
<td>(T(n) = O(n))</td>
</tr>
<tr>
<td>(T(n) = T(n-c) + O(n))</td>
<td>(T(n) = O(n^2))</td>
</tr>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>(T(n) = O(n \log n))</td>
</tr>
<tr>
<td>(T(n) = aT(n/b) + O(n); \quad a = b)</td>
<td>(T(n) = O(n \log n))</td>
</tr>
<tr>
<td>(T(n) = aT(n/b) + O(n); \quad a < b)</td>
<td>(T(n) = O(n))</td>
</tr>
<tr>
<td>(T(n) = aT(n/b) + f(n); \quad f(n) = O(n^{\log_b a-\epsilon}))</td>
<td>(T(n) = O(n))</td>
</tr>
<tr>
<td>(T(n) = aT(n/b) + f(n); \quad f(n) = O(n^{\log_b a}))</td>
<td>(T(n) = \Theta(n^{\log_b a \log n}))</td>
</tr>
<tr>
<td>(T(n) = aT(n/b) + f(n); \quad f(n) = \Theta(f(n)); \quad af(n/b) \leq cf(n))</td>
<td>(T(n) = \Omega(n^{\log_b a \log n}))</td>
</tr>
</tbody>
</table>
Insertion-Sort(A)

1. **for** $j \leftarrow 2$ **to** $\text{length}[A]$
2. **do** $key \leftarrow A[j]$
4. $i \leftarrow j - 1$
5. **while** $i > 0$ and $A[i] > key$
6. **do** $A[i + 1] \leftarrow A[i]$
7. $i \leftarrow i - 1$
8. $A[i + 1] \leftarrow key$

Loop invariants and the correctness of insertion sort
Insertion-Sort(A)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cost and Times

<table>
<thead>
<tr>
<th></th>
<th>cost</th>
<th>times</th>
</tr>
</thead>
<tbody>
<tr>
<td>c₁</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>c₂</td>
<td>n−1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>n−1</td>
<td></td>
</tr>
<tr>
<td>c₄</td>
<td>n−1</td>
<td></td>
</tr>
<tr>
<td>c₅</td>
<td>(\sum_{j=2}^{n} t_j)</td>
<td></td>
</tr>
<tr>
<td>c₆</td>
<td>(\sum_{j=2}^{n} (t_j - 1))</td>
<td></td>
</tr>
<tr>
<td>c₇</td>
<td>(\sum_{j=2}^{n} (t_j - 1))</td>
<td></td>
</tr>
<tr>
<td>c₈</td>
<td>n−1</td>
<td></td>
</tr>
</tbody>
</table>

O(n²) time

O(1) space
Figure 2.4 The operation of merge sort on the array $A = (5, 2, 4, 7, 1, 3, 2, 6)$. The lengths of the sorted sequences being merged increase as the algorithm progresses from bottom to top.
Figure 2.3 The operation of lines 10–17 in the call **MERGE**(A, 9, 12, 16), when the subarray
A[9…16] contains the sequence (2, 4, 5, 7, 1, 2, 3, 6). After copying and inserting sentinels, the
array \(L \) contains (2, 4, 5, 7, \(\infty \)), and the array \(R \) contains (1, 2, 3, 6, \(\infty \)). Lightly shaded positions
in \(A \) contain their final values, and lightly shaded positions in \(L \) and \(R \) contain values that have yet
to be copied back into \(A \). Taken together, the lightly shaded positions always comprise the values
originally in \(A[9…16] \), along with the two sentinels. Heavily shaded positions in \(A \) contain values
that will be copied over, and heavily shaded positions in \(L \) and \(R \) contain values that have already
been copied back into \(A \). (a)–(h) The arrays \(A, L, \) and \(R, \) and their respective indices \(k, i, \) and \(j \)
prior to each iteration of the loop of lines 12–17. (i) The arrays and indices at termination. At this
point, the subarray in \(A[9…16] \) is sorted, and the two sentinels in \(L \) and \(R \) are the only two elements
in these arrays that have not been copied into \(A \).
Assumption: Array A is sorted from positions p to q and also from positions $q+1$ to r.

```
MERGE(A, p, q, r)
1    n_1 ← q - p + 1
2    n_2 ← r - q
3    create arrays $L[1..n_1 + 1]$ and $R[1..n_2 + 1]$
4    for $i ← 1$ to $n_1$
5        do $L[i] ← A[p + i - 1]$
6    for $j ← 1$ to $n_2$
7        do $R[j] ← A[q + j]$
8    $L[n_1 + 1] ← ∞$
9    $R[n_2 + 1] ← ∞$
10   $i ← 1$
11   $j ← 1$
12   for $k ← p$ to $r$
13       do if $L[i] ≤ R[j]$
14          then $A[k] ← L[i]$
15          $i ← i + 1$
16       else $A[k] ← R[j]$
17          $j ← j + 1$
```
\textbf{MERGE-SORT}(A, p, r)

1 \textbf{if} \, p < r

2 \textbf{then} \, q \leftarrow \lfloor (p + r)/2 \rfloor

3 \textbf{MERGE-SORT}(A, p, q)

4 \textbf{MERGE-SORT}(A, q + 1, r)

5 \textbf{MERGE}(A, p, q, r)
Figure 2.5 The construction of a recursion tree for the recurrence $T(n) = 2T(n/2) + cn$. Part (a) shows $T(n)$, which is progressively expanded in (b)–(d) to form the recursion tree. The fully expanded tree in part (d) has $\log{n} + 1$ levels (i.e., it has height \log{n}, as indicated), and each level contributes a total cost of cn. The total cost is $cn \log{n} + cn$, which is $\Theta(n \log{n})$.