Tree Augmentation

Giri Narasimhan
Programming Team
Fall 2019
The Problem: CodeChef CHN15E

• Given tree T, the **augmented tree** G_T is defined as the graph obtained by joining every pair of vertices at distance 2 from each other.

• The problem is to construct T, given G_T.
Simple Properties

• Vertices of T and G_T are the same.
• Let neighbors of vertex v in T be the set $N(v)$
• The set $\{v\} \cup N(v)$ forms a **clique** in G_T.
 - A subset of vertices in a graph forms a **clique** if all of them are connected by edges (i.e., no pair of vertices in this subset are missing an edge)
• A **maximal clique** is a set of vertices that forms a clique for which no superset is a clique.
More Properties

• For a tree T with n vertices, the augmented tree G_T has at most n maximal cliques.
• Each maximal clique of G_T looks like this:
 - $\{v\} \cup N(v)$
• There are no other maximal cliques in G_T.
• If tree T is just a star (one vertex connected to all others), then G_T is a simple clique.
• If G_T is not a clique, then it has more than one maximal clique, and then T is not a star.
One more important property

• If \((x,y)\) is an edge of \(T\)
 - Then the vertices \(x\) and \(y\) appear together in exactly two maximal cliques, except if one of them is a leaf
• If one of them is a leaf, then they appear together in exactly one maximal clique
Properties of Cliques of G_T

- Vertex v is present in $\leq \text{deg}(v)+1$ maximal cliques
 - $\text{Deg}(v)$ is degree of vertex v
- If v has $k>0$ leaves as neighbors in T, then v is present in exactly $\text{deg}(v) - k + 1$ maximal cliques
- If v has m non-leaves as neighbors in T, then v is in
 - exactly $m + 1$ maximal cliques, if v is not a leaf
- If v has no leaves as neighbors in T, then v is in
 - exactly $\text{deg}(v) + 1$ maximal cliques, if v is not a leaf
- If v is a leaf, it is in exactly 1 maximal clique
Algorithmic Ideas

1. Identify all maximal cliques of G_T
2. For each vertex v, compute
 - $C[v] = \#\text{ of maximal cliques of } G_T \text{ containing } v$
3. Identify leaves of T: all vertices with $C[v] = 1$
4. Figure out how many non-leaf neighbors each vertex has.
5. Figure out pairs of non-leaf vertices connected by an edge (present in exactly 2 max cliques)
More Properties of leaves of T

- If two leaves x and y are connected to the same non-leaf node, then they appear together in exactly one maximal clique and in no other clique.
- If two leaves x and y are not connected to the same non-leaf node, then they never appear together in a maximal clique.
Algorithmic Ideas

1. Figure out all leaves of T
2. Identify all edges of T connecting non-leaves (skeleton T’)
3. Figure out groups of leaves connected to same non-leaf
4. Figure out which leaf is connected to which non-leaf:
 a) Construct skeleton T’
 b) Construct maximal cliques of T’ corresponding to non-leaf
 c) Each maximal clique A' of T’ corresponds to only one maximal clique A of G_T and to one non-leaf node v.
 d) Connect all leaf nodes in A to non-leaf node v