Giri Narasimhan Programming Team

Fall 2024

Preparing for ICPC Competition ... 1

- North America Qualifier (NAQ)
 - Oct 5, 2-7 PM on Kattis
- Registered: 3 Teams
 - Asymptotic AC; Binary Brains; Ternary Trios
- Link to contest: <u>https://naq24.kattis.com/</u>
- Info at: <u>https://na.icpc.global/naq</u>
- Registration: <u>https://icpc.global/regionals/finder/North-</u> <u>America-Qualifier</u>

ICPC Programming Competition

Nov 16, 2024

Let's put it on our calendars!

QUESTIONS?

Ellipses

- https://youtu.be/5TQMJ09MLWM (3:09 minutes)
- https://www.davdata.nl/math/ops-onellipses.html

Circle

Translation

Circle to Ellipse: Scaling the axes

General form: $b^2x^2 + a^2y^2 = a^2b^2$

Translated Ellipse

- Centered at origin along axes: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- Center translated to (h, k): $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$
- General form: $b^2x^2 + a^2y^2 + px + qy + s = 0$

Rotations clockwise by ϕ

- Rotated by φ deg cw at (0,0)
- Rotation of (x₁,0) causes
 - New $x = x_1 \cos \phi$
 - $\Delta y = x_1 \sin \phi$... infuence of x on y
- Rotation of (0,y₁) causes
 - New $y = y_1 \cos \phi$
 - $\Delta x = y_1 \sin \phi$... influence of y on x
- $x_2 = x_1 \cos \phi y_1 \sin \phi$
- $y_2 = y_1 \cos \phi + x_1 \sin \phi$
- y is replaced by ycosφ+xsinφ

Ellipse Equation

• Centered at origin along axes: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ • Center at (h, k): $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ • Rot.: $\frac{(x \cos \phi - y \sin \phi)^2}{a^2} + \frac{(y \cos \phi + x \sin \phi)^2}{b^2} = 1$ $\frac{(x\cos\phi - y\sin\phi - h)^2}{a^2} + \frac{(y\cos\phi + x\sin\phi - k)^2}{x^2} = 1$ Slope of major axes = $tan \phi$

Translation: x,y terms; Rotation: xy term

Rotated Ellipse

General form: $b^2x^2 + a^2y^2 + px + qy + rxy + s = 0$

To find extreme points

- Start with ellipse equation: f(x, y) = 0
- For vertical extreme points:
 - Differentiate f with respect to x and set y' to 0.
 - Solve for x and y
- For horizontal extreme points:
 - Differentiate f with respect to y and set x' to 0.
 - Solve for x and y

• E.g., $f: b^2 x^2 + a^2 y^2 + px + qy + rxy + s = 0$

Remaining challenge

- How to arrive at the ellipse equation, given:
 - Coordinates of the two foci
 - Length of the major axis
- Case 1: If foci are along x- or y-axis & centered at origin
- Case 2: If foci are along x- or y-axis but not centered at origin
- Case 3: If foci are not on either axis, but centered at origin
- Case 4: General case

General Case

- Given:
 - Coordinates of the two foci
 - Length of the major axis
- Find center, lengths of major and minor axes
- Find slope of major axis, and rotation angle
- Write down equation and simplify it
- Find extreme points as described