Two Stones
kattis: twostones

Giri Narasimhan
Programming Team
Spring 2019
Game of “Two Stones”

- Given N stones arranged sequentially, Alice and Bob play a game as follows
 - In each turn they pick exactly 2 adjacent stones
 - If no more pairs of adjacent stones exist, game ends
 - **Alice wins** if
 - number of stones remaining is odd
 - Else **Bob wins**
- Output the winner “Alice” or “Bob” without quotes on a line
Who wins with ...

- $N = 1$
- $N = 2$
- $N = 3$
- $N = 4$
- $N = \text{odd}$
- $N = \text{even}$
Challenges

• N has a large range: N <= 10 million
• There are 2 possible starts depending on who goes first
• For large N, there are many, many moves for each player at each step
• Cannot simulate every possible game to figure out who the winner would be
Method of Reduction

• For each possible scenario, what happens when one of them moves?
 ▪ How does the situation change?
 ▪ How does it affect who will win?
 ▪ What is a good move? Bad move?
Invariant

- Alice wins if the number of lone stones are odd in number
- Alice wins if there are an odd number of odd sequences
- Regardless of who plays, the parity of the number of odd sequences remains the same
 - If it started with even, it stays even. **HOW?**
 - If it started with odd, it stays odd
Final Solution

• We only need to count the number of odd sequences in the initial set
• Since there is only one sequence of length N at start, the answer is simple
 - If $N = \text{odd}$, Alice wins
 - Else, Bob wins
What if …

• What if Alice’s reward is equal to the number of stones left over?
Momentos

• Slides and Audio online
• Need to register
 ▪ Go to https://fiu.momentos.life
 ▪ If you don’t already have an account
 • Click on “Sign up”
 • Follow instructions & use referral code: 6RVK5F
 ▪ If you have an account, “Add Course” with code 6RVK5F
 ▪ Verify account using link sent to email