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The field of RNA structure prediction has experienced

significant advances in the past several years, thanks to the

availability of new experimental data and improved

computational methodologies. These methods determine RNA

secondary structures and pseudoknots from sequence

alignments, thermodynamics-based dynamic programming

algorithms, genetic algorithms and combined approaches.

Computational RNA three-dimensional modeling uses this

information in conjunction withmanual manipulation, constraint

satisfaction methods, molecular mechanics and molecular

dynamics. The ultimate goal of automatically producing RNA

three-dimensional models from given secondary and tertiary

structure data, however, is still not fully realized. Recent

developments in the computational prediction of RNA structure

have helped bridge the gap between RNA secondary structure

prediction, including pseudoknots, and three-dimensional

modeling of RNA.
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Introduction
Knowledge of the 3D structure and dynamics of RNA is

important for understanding its function in the cell. Exper-

imental techniques used to derive a 3D structure are time

consuming and expensive, and include X-ray crystallogra-

phy of single crystals of purified RNA molecules, NMR

spectroscopy and cryo-electron microscopy.Moreover, the

complexity and flexibility of RNA molecules makes the

determination of 3D structures even more difficult. Thus,

the disparity is increasing between known RNA 3D struc-

tures and knownRNA sequences. This encourages the use

of computational methods to obtain information on RNA

3D conformations. Much progress is being made in this

research area, and the prediction of small and simple RNA

structures is now a perfectly realistic goal. However, more

complex structures with many helical stems and pseudo-

knots are much more difficult to predict. A simple pseu-

doknot (H-type) can be thought of as a secondary structure

that forms from a hairpin loop that base pairs with a single-

stranded sequence that is outside the loop, forming another

helical stem. In most cases, these stems coaxially stack on

one another (Figure 1 contains an example of a pseudo-

knot). More complex pseudoknot structures are also

possible, as described later. The determination of RNA

3D structures is usually attempted by the use of a combi-

nation of theoretical data, algorithms and experimental

observations.

The prediction of an RNA 3D structure directly from its

sequence can be accomplished either by a detailed simu-

lation of the folding process or by searching the entire

conformational space for the correct fold. However, both

approaches are well beyond current computational capa-

bilities. Folding simulations of short sequences are

possible via atomistic molecular dynamics, but might

not be entirely accurate due to estimations in force-fields

and the feasible duration of run times. Atomic-level

simulations of large and complex structures are beyond

current computational resources because of the enormous

number of possible conformations. In addition, environ-

mental factors, such as ion concentrations, solvent, inter-

acting proteins and other RNAs, ultimately contribute to

RNA folding pathways.

The RNA folding process is believed to be partly hier-

archical, whereby helical domains fold first followed by

compaction of the structure via tertiary interactions and

associations between RNA domains and motifs. Thus, a

more practical approach is to predict an RNA 3D structure

using algorithms that are constrained by experimentally

derived data.This experimental datamight be obtained by

new methods such as SHAPE [1��] or microarrays for

chemical mapping [2�]. The difficulty of secondary struc-

ture prediction is exemplifiedby the fact that a sequence of

n nucleotides can form on the order of 1.8n possible

secondary structures [3]. Therefore, numerous approaches

to the problem have been used that combine the strengths

of computational and experimental methods.

Computational secondary structure prediction falls into

two general categories: one uses multiple sequence align-

ments to predict structures and the other predicts the

structure of single sequences using free energy minimiz-

ation. However, some programs combine these concepts.

The accuracy of predictions is usually best for methods

that consider secondary structures common to multiple
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sequences [4,5,6��,7]. Gardner and Giegerich [8��]
presented a comprehensive review and tests of RNA

secondary structure prediction programs in their 2004

article. A review of free energy minimization methods,

with an emphasis on dynamic programming algorithms

(DPAs), was recently presented by Mathews and Turner

[9��].

Secondary structure prediction methods are discussed in

this review, with a strong emphasis on pseudoknot predic-

tion. This is because pseudoknots add constraints that

reduce flexibility, thereby simplifying somewhat the

characterization of the complete 3D RNA conformation.

This review is divided into three sections. The first

describesmethods for secondary structure and pseudoknot

prediction given single-sequence input. We shall give a

brief overview of DPA-based methods, and then add a

discussion on genetic algorithms (GAs) and some other

methodologies. The second section describes secondary

structure and pseudoknot prediction using multiple
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Figure 1

Diagram showing semi-automatic RNA 3D structure prediction. The workflow starts with a set of aligned sequences and ends with a refined

3D model of the wild-type human telomerase RNA pseudoknot region (pseudoknot bases are depicted in red). (a) The fraction of the 35

sequences used in the alignment (derived from the complete Rfam entry for vertebrate telomerase, RF00024) that corresponds to the telomerase

pseudoknot region. Columns corresponding to gaps in the first sequence of the alignment (wild-type human telomerase) are not shown. Bases

corresponding to positions 65, 67 and 68 are predicted to pair with positions outside the chosen pseudoknot region; these base pairs are

not used to generate the 3D model. (b) KNetFold [6��] secondary structure prediction with the pseudoknot. (c) The secondary structure representation

derived from KNetFold. The circled bases might be implicated in the genetic mutation causing dyskeratosis congenita (DKC). This structure

is very similar to that shown in [72]. (d) The automatically generated 3D structure of the predicted wild-type region. The boxed region is believed

to be critical for telomerase function and was further refined with manual manipulation and molecular dynamics simulations. (e) An overlay

of the predicted optimized structure after molecular dynamics simulations of the wild-type telomerase RNA (red) and the DKC-mutated telomerase

RNA (grey with the mutated bases in blue) [61��,70].
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sequence alignments, and the third section describes

programs that can use this data to determine 3D models

of RNA.

RNA secondary structure and pseudoknot
prediction using single sequences
Dynamic programming algorithms

The most familiar secondary structure prediction pro-

grams, such as Mfold [10], RNAfold [11] and RNAstruc-

ture [10,12�], are based on DPAs. They are deterministic

in nature and guarantee returning the lowest free energy

structure, within the accuracy limitations of the free

energy rules employed. They can also enumerate a

sample of energetically suboptimal structures requested

by the user. The latest version of RNAstructure enables

the user to include experimentally derived structure

probing data as constraints in the folding algorithm [12�].

However, the biologically functional conformation of a

given RNA molecule might not correspond to the mini-

mum free energy structure. The problem then becomes

one of searching for a relevant suboptimal structure or

finding a subset of representative structures with the best

positive predicted value, that is, the highest percentage of

predicted base pairs that are correct [9��]. Predicting the

probabilities of all base pairs in a structure is one way of

determining such structures [13]. The programs Sfold

[14,15] and RNAshapes [16��,17,18��] narrow the search

for relevant solutions in the usually large solution spaces

of DPA programs to a relatively few representative struc-

tures. In the case of Sfold, the predicted suboptimal

structures are sampled based on the Boltzmann prob-

ability distribution. This statistical sampling can be used

to produce a so-called centroid structure representing the

whole solution space ensemble. Multiple clusters and

their centroids are produced from the ensemble. None

of the centroids has to represent a minimum free energy

structure. The RNAshapes program extends the abstract

shape analysis to the complete suboptimal solution space

(not just a sample of it) within a requested energy range

[11,19] and calculates cumulative probabilities of struc-

tures belonging to the identified shapes [18��].

Genetic algorithms and other methodologies

Some secondary structure prediction algorithms use stat-

istical sampling of known RNA secondary structures to

create a model that can then be used to predict the

secondary structure of a given sequence. The new algo-

rithm CONTRAfold uses such a methodology [20��]. Its
strength lies in training on a large set of experimentally

verified structures from the Rfam database [21] and

encoding thermodynamic knowledge in a feature-rich

scoring scheme provided by a conditional log-linear

model (CLLM).

However, an RNA structure is not necessarily static. A

molecule might pass through several active and inactive

conformations during its lifetime. These states might be

related to the kinetics of full sequence folding or folding

during transcription (sequence synthesis, i.e. elongation).

They might also result from interactions with its environ-

ment. Capturing radically different but biologically func-

tional states of some sequences might still require going

beyond what the statistical sampling of the suboptimal

solution spaces of DPA algorithms can show.

The program KINEfold [22,23��] implements stochastic

simulations of folding kinetics using a Monte Carlo

methodology. It permits the formation of pseudoknots

using polymer theory, with constraints based on topolo-

gical and geometric considerations, for sequences up to

300–400 nucleotides in length.

GAs are based on the concepts of biological evolution and

the survival of the fittest individuals [24]. GAs can go

beyond earlier pure Monte Carlo algorithm based

approaches [25,26] in that they include results of evolving

intermediate structural states, in which the folding

kinetics might involve unfolding and refolding of

domains within transitional structures. The essential

GA operations, repeated in every step (generation) of

the algorithm, are mutation, crossover and selection.

They introduce, respectively, random changes to the

solutions, exchange of parts of the evolving solutions

and selection of ‘fit’ solutions for survival into the next

generation. Because GAs are stochastic in nature, they

are usually run multiple times to produce consensus

structures.

One GA implementation, which relies on a relatively

small number of co-evolving structures, is part of the

STAR program and is aimed at personal computer plat-

forms [27,28]. Our group has developed a massively

parallel GA, MPGAfold, for the prediction of RNA sec-

ondary structure. Described in detail in [29–33], this GA

implementation evolves, essentially in parallel, a popu-

lation of thousands of structures, logically connected by a

2D toroidally wrapped mesh. Initially developed for

special SIMD and MIMD parallel architectures, its cur-

rent implementation makes it available on parallel Linux

clusters. The stochastic parallel nature of MPGAfold is

quite different from DPA paradigms for RNA structure

prediction. New structural motifs, including multiple

nucleating structures, can form at the same time within

a particular generation in a given structure in the popu-

lation. These motifs can persist for several generations

before possibly changing to a newmotif, thus suggesting a

sense of the importance of a particular motif or structure.

Both STAR and MPGAfold use the same free energy

rules as the DPA-based programs for their fitness

criterion, with the objective of converging to stable low

energy states, which might not be the minimum free

energy state. An important MPGAfold parameter is popu-

lation size. Structures predicted in runs with different

RNA structure prediction Shapiro et al. 159
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population sizes have been shown to capture significant

intermediate and final RNA secondary structure states,

thus elucidating the dynamic folding process inherent to

many RNA molecules [32,34�,35�,36��,37–39]. This pro-

gram can also incorporate some experimental data and

bias thematuration process toward known interactions via

the use of so-called sticky stems [32,33,34�]. MPGAfold

can be run in close conjunction with our StructureLab

program and our recently developed visualizer program

for interactive viewing and analysis of the fitness, trace

and pseudoknot maps of the evolving solution spaces

[36��,40].

MPGAfold, STAR and KINEfold are capable of simu-

lating co-transcriptional folding (folding with sequence

elongation), and can capture folding kinetics unique to

RNA transcription.

Prediction of RNA secondary structures with

pseudoknots

Pseudoknot-free secondary structures can be represented

as tree topologies, which are naturally suited to free

energy calculations based on the assumption that the

total free energy of a structure (a tree) is the sum of

the free energies of its independent elements (branches).

The problem of including pseudoknot interactions in

secondary structure prediction requires the evaluation

of the free energy of a graph topology, instead of a tree.

In addition, at the present time, no precise set of energy

rules exists for the varied pseudoknot topologies. Rivas

and Eddy [41] presented an empirical set of parameters to

compute the free energy of secondary structures with

pseudoknots. DPAs have been extended to incorporate

several differently limited classes of pseudoknots at the

cost of increasing their complexity. A reduced-complexity

class can be represented by the simple H-type pseudo-

knot described above, whereas a more complex class can

incorporate multiple nested interactions that might be

recursive (i.e. contain pseudoknots within pseudoknots).

Although DPAs scale in O(n3) time for secondary struc-

ture prediction of a sequence n nucleotides long, the

scaling becomes O(n6) for the most general program,

Pseudoknots [41], O(n5) for NUPACK [42] and O(n4)
for pknotsRG [43]. Heuristic algorithms that are capable

of computing structures with pseudoknots but do not

guarantee finding the minimum energy solutions are less

complex and, therefore, can be used to predict the struc-

tures of longer sequences. They are implemented in the

STAR package [28], ILM [44,45�] and HotKnots [46].

HotKnots, the most recent of these, considers multiple

partial solutions with multiple substructure additions for

each of them. MPGAfold is also capable of predicting

H-type pseudoknots [31] with minimal impact on speed.

Pseudobase [47,48], a web-retrievable database of

RNA pseudoknots, is a good source of experimentally

and computationally determined pseudoknot structures.

The reliability of the pseudoknot structures presented is

left to user discretion, with the help of the database field

‘‘supported by’’, which indicates how the pseudoknot was

determined.

RNA secondary structure and pseudoknot
prediction using multiple sequence
alignments
Several programs predict RNA secondary structures,

including pseudoknots, using a set of aligned sequences.

All reviewed methods use the following paradigm: in the

first stage, a matrix with scores corresponding to each base

pair is computed. These scores typically incorporate

both thermodynamic and covariation information. In

the second stage, this matrix is mapped to one unique

secondary structure. Both the computation of the scoring

matrix and the mapping of the matrix to the secondary

structure differs among the various programs. One map-

ping approach is called maximum weighted matching

(MWM) [49]. The idea is to find a set of non-overlapping

edges in a graph (each edge, in this case, corresponds to a

potential base pair), such that the sumof theweights of the

edges (in this case, the sum of the base pair scores) is

maximal. This is an attractive approach; however, in prac-

tice it has the problem of sometimes predicting spurious

base pairs [50�]. The programs ILM and HXMATCH

address this problem differently (see below).

A commonly used measure for covariation is mutual

information [6��,51�]. However, other measures that take

RNA base pairing preferences into account are also used.

The covariance measure of Hofacker et al. [7] has the

advantage of being able to detect consistent but non-

compensatory mutations (e.g. the mutation of base pair

GC to GU) [7,52].

Programs using multiple sequence alignments

The program ILM (iterative loopmatching) uses as a base

pair score a linear combination of a thermodynamic term

and a covariation term [45�]. Mapping to a secondary

structure starts with a pseudoknot-free structure using

maximum circular matching, sometimes referred to as the

Nussinov algorithm [53]. Iteratively, the helix with the

highest score is chosen to be part of the predicted struc-

ture until there are no remaining base pairs to be found.

The program KNetFold computes, for each pair of align-

ment columns, a thermodynamic score, the fraction of

complementary base pairs and a covariance measure (the

mutual information) [6��,51�]. The resulting base pair

scoring matrix is not a linear combination of these three

scores, but is instead based on a k-nearest neighbor

machine learning approach that classifies small 5 � 5

neighborhoods of a base pair. Mapping to a unique

secondary structure with possible pseudoknots is per-

formed by iteratively choosing the highest-ranking base

pairs until all non-overlapping base pairs above a cutoff

160 Theory and simulation
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score are found. An example of the application of KNet-

Fold is illustrated in Figure 1, in which the prediction of

the human telomerase RNA pseudoknot is depicted.

The program HXMATCH uses a linear combination of

a thermodynamic score and a covariation score [7,50�]. The

thermodynamic score is computed by using the longest

helix that a base pair is assigned to. This is averaged over

the different sequences of the alignment. HXMATCH

then uses theMWMalgorithmwith a post-processing step

restricting the allowed solutions to bi-secondary structures,

that is to say, the superimposition of two predicted

pseudoknot-free secondary structures, thus producing a

secondary structure with possible pseudoknots.

The program MIfold is a MATLAB1 package that uses

the mutual information measure or a covariance measure

as a scoring matrix [54�]. It then uses this matrix in

conjunction with the maximum circular matching algo-

rithm to compute the highest-scoring pseudoknot-free

structure [53]. The scoring matrix elements correspond-

ing to the bases that are paired in this structure are, in the

next stage, set to zero and a second pseudoknot-free

structure is computed. The final structure is determined

from bi-secondary structures.

RNA three-dimensional structure prediction
To assist in RNA 3D structure prediction, several pro-

grams have been developed and successfully applied.

Most use data derived from experiments and programs

for secondary structure and pseudoknot prediction. RNA

3D structure prediction programs include YAMMP [55],

NAB [56], ERNA-3D [57], MANIP [58], S2S [59], MC-

Sym [60] and RNA2D3D [61��] (see Table 1). The

increasing number of known RNA 3D structures that

have been organized into databases (such as PDB [62],

SCOR [63], RNABase [64] and NCIR [65]) makes it

possible to integrate and refine the prediction of 3D

structures. However, no automated process can success-

fully generate the entire structure without problem-

specific input and user knowledge of RNA structure.

Programs for three-dimensional structure prediction

ERNA-3D can produce a 3D representation of an RNA

from a known secondary structure [57,66��]. It automati-

cally generates representations of A-form helices directly

from the specified base-paired regions of the secondary

structure. In the first version of the program, single

strands were derived from iterated rotations along the

backbone. In the most recent version, single-stranded

regions and motifs are extracted from known high-reso-

lution structures of other RNAs using the SCOR database

and incorporated into the models. If high-resolution data

are available for a particular motif, then these nucleotides

can be positionedmanually [66��]. Comparative sequence

analysis and the ERNA-3D program have been used to

determine the 3D backbone arrangement of a small

domain of signal recognition particle RNA that includes

a pseudoknot [57]. Recently, they were used to build a

high-resolution 3D structure of the transfer-messenger

RNAs (tmRNAs) of Escherichia coli, Bacillus anthracis and
Caulobacter crescentus [66��]. The resulting models show

functionally significant features, such as single-stranded

regions and the close proximity between the tRNA-like

domain (TLD) and the resume codon (the codon in

the mRNA portion of the tmRNA where translation is

continued), thus significantly advancing our understand-

ing of trans-translation.
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Table 1

Comparison table of programs for building all-atom high-resolution RNA 3D structures.

Software/method Input Output User’s input Comment

MANIP Database of known fragments

and secondary structure

Complex 3D

architecture

Rotation, translation of

fragments; interactive

manipulation.

S2S 3D structure Multiple alignments Interactive manipulation Need 3D structure

NAB Secondary structure and

distance constraints

3D structure Interactive manipulation Possible use of known tertiary RNA

structure fragments. Built-in energy

minimization and molecular dynamics

optimization.

ERNA-3D Secondary structure 3D structures Interactive manipulation Possible use of known tertiary RNA

structure fragments

MC-Sym Secondary structure; distance,

torsion and other structural

constraints; database of known

fragments.

Series of 3D structures Counterions can be implicitly represented;

no interactive manipulation

RNA2D3D Secondary structure; can also

use known fragments.

3D structure Interactive manipulation

if needed

Possible automatic stacking of helices;

compactification, kissing loops and

pseudoknots. Built-in molecular mechanics

and dynamics.

YAMMP (YUP) Reduced model representations

and secondary structure

3D structure Interactive and batch

mode
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MANIP is a program that can assemble known RNA

fragments into a complex 3D architecture [58]. It requires

a database containing RNA 3D fragments with a specified

sequence. It automatically recognizes and displays

allowed hydrogen bonds between residues. The program

is interfaced with the online refinement tool NUCLIN-

NUCLSQ; the refinement is based on various constraints,

such as canonical and non-canonical base pairing,

covalent geometry, stereochemistry and van der Waals

contacts. MANIP has been used to predict 3D models of

377-nucleotide RNase P RNAs of different structural

subtypes at atomic resolution [67,68��].

The program Nucleic Acid Builder (NAB) describes

nucleic acid structures in a hierarchical fashion and can

be used to construct helical and non-helical nucleic acids

up to a few hundred nucleotides in size ([56]; http://

www.scripps.edu/mb/case/). Some of the features of this

software include specified base transformations relative to

other bases or base layouts along arbitrary curves in space.

Sets of distance constraints can be applied to structures

(especially non-helical regions, hairpins, loops and pseu-

doknots) based on specific hydrogen bonds and cross-

linking or footprinting results, or on derived data

from known 3D structures. Constructed models can be

optimized or modified using energy minimization or

molecular dynamics simulations.

MC-Sym uses symbolic and numerical computations to

build 3D RNA structures using structural data that are

represented as a series of application domain symbols and

RNA structure expert terms. Numerical computation is

used to refine the symbolic representations [60]. It builds

RNA 3D structures using coordinates and relationships

between residues extracted from known 3D structures.

Structural constraints can be interactively applied to the

building procedure. These constraints are taken from

cross-linking assays, and topographic and crystallographic

data.Model RNA structures are further refinedwith mole-

cular mechanics calculations. MC-Sym has been used to

generate several models. Most recently, the structure of

the hairpin ribozyme catalytic core was determined [69�].
Themethodology provided an alternative conformation of

the active ribozyme,which is supportedby crystallographic

data and by cross-linking experiments.

Recently, we developed RNA2D3D — a program that

can generate, view and compare 3D RNA structures.

Helical stems are generated from the reference triad of

any of its nucleotides using helical coordinates. Unpaired

nucleotides, bulges, hairpin loops, branching loops and

other non-helical motifs are generated using the coordi-

nates of their reference triad relative to the 50 neighboring
nucleotide and are placed in 3D space using a special 3D

embedding procedure. This procedure equally spaces

atomic models of nucleotides along the fixed backbone,

which initially resides in a planar representation of the

secondary structure of the RNA before 3D helical wind-

ing takes place. Ultimately, a first-order approximation of

the actual 3D molecule is established. Structure refine-

ment involves interactive editing via rotation and trans-

lation of a nucleotide or a group of nucleotides to remove

structural clashes, thus enforcing tertiary interactions, and

modification of mutual stacking. Specified pseudoknot

stems can be moved relative to each other to modify their

mutual stacking or the nucleotides in the loop can be

rotated to remove tertiary interactions. Stems can be

‘compactified’ (extended into single-stranded regions to

form non-canonical base pairs) or interactively stacked.

Database motifs can also be included. The 3D model can

be further refined with built-in molecular mechanics and

molecular dynamics simulations. We have recently pub-

lished a study in which we used the RNA2D3D software

andmolecular dynamics to predict the 3D structure of the

pseudoknot domain of wild-type human telomerase RNA

[61��,70]. In addition, the implications of genetic

mutations for its structure were explained. An application

of RNA2D3D is illustrated in Figure 1. RNA2D3D was

given the pseudoknot prediction from KNetFold for the

full wild-type human telomerase pseudoknot. A compac-

tified rendition of the pseudoknot was automatically

generated and later refined.

The software S2S (sequence to structure) has been

designed to construct multiple alignments of RNAmolec-

ules for which 3D structures are known. It enables the

display, manipulation and interconnection of RNA data,

such as multiple sequence alignments and secondary and

tertiary interactions [59].

Another methodology is based on the assumption that

similar secondary structures possess similar tertiary inter-

actions. An algorithm was developed that maps RNA 3D

structures found in the PDB onto RNA 2D structures. In

addition, algorithmswere developed that measure second-

ary structure similarity and pick 3D structuralmotifs from a

specially constructed database. The resultant product is a

set of fragments from which an entire RNA can be built

[71].

In general, all predicted 3D structures modeled using the

methods discussed above need to be manually refined

and adjusted to achievemeaningful structures. The initial

model can be built using the programs discussed above,

assisted by the use of standard RNA fragments. Molecular

mechanics and molecular dynamics can be used to refine

the resulting structures.

Conclusions
The ability to computationally determine RNA structure

and function from sequence data is still quite limited.

The issue becomes even more complex when one con-

siders that the final structure of an RNA does not neces-

sarily represent the full functionality of the RNA in

162 Theory and simulation
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question. An RNAmight fold into intermediate or alterna-

tive states that permit themolecule to partake inmore than

one function. A basic assumption that applies to all meth-

odologies is that the 3D structure of anRNAcan ultimately

be determined from its given sequence and the environ-

ment in which the sequence finds itself. Solvent, ions,

proteins and other RNAs are significant environmental

factors determining the structure and function of an

RNA. A few programs have the ability to incorporate

information about known constraints and attempt to use

this information in secondary structure prediction and

molecular dynamics. The validity and accuracy of the

predicted structures also depends on the nature of col-

lected experimental observations, as well as on the starting

secondary and tertiary structures. Even though the correct-

ness of atomistic details depends on the limitations of the

force-field used in molecular mechanics and molecular

dynamics, the above-discussed methods can delineate

the overall shape and spatial relationships inherent to an

RNAmolecule. The use of experimental techniques, such

as X-ray crystallography, NMR or cryo-electron micros-

copy, is still necessary to determine precise atomic details

of the structure.

To improve the accuracy of 3D structure prediction from

secondary structures, the non-atomistic free energy rules

that are commonly used in secondary structure prediction

algorithms need to be further refined. The inclusion of

more context sensitivity for loop structures would be help-

ful. Current rule sets calculate the energy of loops mostly

based on their size rather than on their base composition.

Also, the existing rules for pseudoknots relymostly on non-

thermodynamic empirical parameters. More experiments

are required todetermine the thermodynamicproperties of

simple pseudoknots and complex pseudoknots that may

contain, for example, recursive structures. Finally, free

energy rules for tertiary interactions are basically non-

existent. This, however, is a difficult problem because

thermodynamic experiments would have to be done on

a variety of such interactions in a variety of contexts.
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