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CpG Islands

Regions in DNA sequences with increased occurrences of substring “CG” 

Rare: typically C gets methylated and then mutated into a T. 

Often around promoter or “start” regions of genes 

Few hundred to a few thousand bases long 
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Problem 1: 

• Input: Small sequence S 

• Output: Is S from a CpG island? 

• Build Markov models: M+ and M — 

• Then compare 
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+ A C G T 

A 0.180 0.274 0.426 0.120 

C 0.171 0.368 0.274 0.188 

G 0.161 0.339 0.375 0.125 

T 0.079 0.355 0.384 0.182 

— A C G T 

A 0.300 0.205 0.285 0.210 

C 0.322 0.298 0.078 0.302 

G 0.248 0.246 0.298 0.208 

T 0.177 0.239 0.292 0.292 

Markov Models
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How to distinguish?

Compute  
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r=p/m A C G T 

A -0.740 0.419 0.580 -0.803 

C -0.913 0.302 1.812 -0.685 

G -0.624 0.461 0.331 -0.730 

T -1.169 0.573 0.393 -0.679 

Score(GCAC)   

      = .461-.913+.419 

      < 0. 

GCAC not from CpG island. 

Score(GCTC)   

      = .461-.685+.573 

      > 0. 

GCTC from CpG island. 



06/30/09 Q'BIC Bioinformatics 6 

Problem 2: 

• Input: Long sequence S 

• Output: Identify the CpG islands in S. 

• Markov models are inadequate. 

• Need Hidden Markov Models. 

Problem 1: 

• Input: Small sequence S 

• Output: Is S from a CpG island? 

• Build Markov Models: M+ & M- 

• Then compare 
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Markov Models

C+ 

A+ 

G+ 

T+ 

P(G+|C+) 

P(A+|A+) 

+ A C G T 

A 0.180 0.274 0.426 0.120 

C 0.171 0.368 0.274 0.188 

G 0.161 0.339 0.375 0.125 

T 0.079 0.355 0.384 0.182 
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CpG Island + in an ocean of – 
First order            Markov Model

C+ 

A+ 

G+ 

T+ 

P(G+|C+) 

P(A+|A+) 

MM=16,  HMM= 64 transition probabilities (adjacent bp)  

C- 

A- 

G- 

T- 

Hidden 
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Hidden Markov Model (HMM)

• States  

• Transitions  

• Transition Probabilities 

• Emissions 

• Emission Probabilities 

• What is hidden about HMMs? 

Answer: The path through the model is 

hidden since there are many valid paths. 
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How to Solve Problem 2?

Solve the following problem: 

Input: Hidden Markov Model M,  

  parameters , emitted sequence S 

Output: Most Probable Path  

How: Viterbi’s Algorithm (Dynamic Programming) 
Define [i,j] = MPP for first j characters of S ending in state i 

Define P[i,j] = Probability of [i,j]  

Compute state i with largest P[i,j]. 
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Profile Method
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Profile Method
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Profile Method
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Profile HMMs

STATE 1 END START STATE 2 STATE 3 STATE 4 STATE 5 STATE 6 
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Profile HMMs with InDels

STATE 1 END START STATE 2 STATE 3 STATE 4 STATE 5 STATE 6 

• Insertions 

• Deletions 

INSERT 4 

DELETE 2 DELETE 3 DELETE 1 

INSERT 3 INSERT 4 

• Insertions & Deletions 



06/30/09 Q'BIC Bioinformatics 16 

Profile HMMs with InDels

STATE 1 END START STATE 2 STATE 3 STATE 4 STATE 5 STATE 6 

INSERT 4 

DELETE 2 DELETE 3 DELETE 1 

INSERT 3 

DELETE 4 DELETE 5 DELETE 6 

INSERT 4 INSERT 4 INSERT 4 INSERT 4 

Missing transitions from DELETE j to INSERT j and  

                                from INSERT j to DELETE j+1. 
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How to model Pairwise Sequence Alignment

  LEAPVE 

  LAPVIE 

MATCH END START 

DELETE 

INSERT 

Pair HMMs 

• Emit pairs of synbols 

• Emission probs? 

• Related to Sub. Matrices 

• How to deal with InDels? 

• Global Alignment? Local? 

• Related to Sub. Matrices 
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How to model Pairwise Local Alignments?

How to model Pairwise Local Alignments with 
gaps?

Skip Module Align Module Skip Module START END 

Skip Module Align Module Skip Module START END 
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Standard HMM architectures
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Standard HMM architectures
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Standard HMM architectures
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Profile HMMs from Multiple Alignments

HBA_HUMAN   VGA--HAGEY 

HBB_HUMAN   V----NVDEV 

MYG_PHYCA   VEA--DVAGH 

GLB3_CHITP  VKG------D 

GLB5_PETMA  VYS--TYETS 

LGB2_LUPLU  FNA--NIPKH 

GLB1_GLYDI  IAGADNGAGV 

Construct Profile HMM from above multiple alignment. 
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HMM for Sequence Alignment
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Problem 4: LIKELIHOOD QUESTION 

• Input: Sequence S, model M 

• Output: Compute the probability that S was 

emitted by model M 

• Forward Algorithm (DP) 

Problem 3: LIKELIHOOD QUESTION 

• Input: Sequence S, model M, state i 

• Output: Compute the probability of reaching 

 state i with sequence S using model M 

• Backward Algorithm (DP)  
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Problem 6: DESIGN QUESTION 

• Input: Training Sequence S 

• Output: Choose model structure M, and compute 

the parameters   

• No reasonable solution 

• Standard models to pick from 

Problem 5: LEARNING QUESTION 

• Input: model structure M, Training Sequence S 

• Output: Compute the parameters   

• Criteria: ML criterion 

•  maximize P(S | M, )    HOW??? 
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Iterative Solution to the LEARNING QUESTION (Problem 5)

Pick initial values for parameters 0  

Repeat 
Run training set S on model M 

Count # of times transition i  j is made 

Count # of times letter x is emitted from state i 

Update parameters  

Until (some stopping condition) 
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Entropy
Entropy measures the variability observed in given 
data. 

Entropy is useful in multiple alignments & profiles. 

Entropy is max when uncertainty is max. 

=
c

cc ppE log
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G-Protein Couple Receptors

Transmembrane proteins with 7 -helices and 6 loops; many subfamilies 

Highly variable: 200-1200 aa in length, some have only 20% identity. 

[Baldi & Chauvin, ’94] HMM for GPCRs 

HMM constructed with 430 match states (avg length of sequences) ; 
Training: with 142 sequences, 12 iterations 



06/30/09 Q'BIC Bioinformatics 29 

GPCR - Analysis

Compute main state entropy values 

For every sequence from test set (142) & random 
set (1600) & all SWISS-PROT proteins 

Compute the negative log of probability of the most 
probable path  

=
a

iaiai eeH log

( )),|(log)( MSPSScore =
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GPCR Analysis
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Entropy
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GPCR Analysis (Cont d)
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Applications of HMM for GPCR

Bacteriorhodopsin 
Transmembrane protein with 7 domains 

But it is not a GPCR 

Compute score and discover that it is close to the regression line. Hence not 
a GPCR. 

Thyrotropin receptor precursors 
All have long initial loop on INSERT STATE 20. 

Also clustering possible based on distance to regression line. 
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HMMs – Advantages

Sound statistical foundations 

Efficient learning algorithms 

Consistent treatment for insert/delete penalties for alignments in the form of 
locally learnable probabilities 

Capable of handling inputs of variable length 

Can be built in a modular & hierarchical fashion; can be combined into libraries. 

Wide variety of applications: Multiple Alignment, Data mining & classification, 
Structural Analysis, Pattern discovery, Gene prediction. 
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HMMs – Disadvantages

Large # of parameters. 

Cannot express dependencies & correlations between hidden states. 


