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CpG Islands

 Regions in DNA sequences with increased occurrences of substring "CG"
[ Rare: typically C gets methylated and then mutated into a T.

[ Often around promoter or "start” regions of genes

1 Few hundred to a few thousand bases long
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Problem 1.

 |nput: Small sequence S

e Qutput: Is S from a CpG island?
* Build Markov models: M+ and M —
e Then compare
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Markov Models
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d Compute

S(x) = Iog(

How to distinguish?

0.580

-0.803

-0.913 0.302 1.812 -0.685
-0.624 0.461 0.331 -0.730
-1.169 0.573 0.393 -0.679
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P(X | M +) L Pxd - nxi L
= lo = xi - pxi
P(X| M—)) Z g( mX(i—l)Xi) Z o

Score(GCAC)
=.461-.913+.419
<0.

GCAC not from CpG island.

Score(GCTC)
=.461-.685+.573
> Q.

GCTC from CpG island.



Problem 1.

 |nput: Small sequence S

e Output: Is S from a CpG island?
e Build Markov Models: M+ & M-
e Then compare

Problem 2:

* Input: Long sequence S

o Qutput: Identify the CpG islands in S.
e Markov models are inadequate.
* Need Hidden Markov Models.
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Mar

kov Models

P(A+|A+)
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CpG Island + in an ocean of —
First order Hidden Markov Model

MM=16, HMM-= 64 transition probabilities (adjacent bp)
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Hidden Markov Model (HMM)

e States

e Transitions

e Transition Probabilities
e Emissions

e Emission Probabilities

O

O O
O O
O
* What 1s hidden about HMMSs? 0
O O

Answer: The path through the model is
hidden since there are many valid paths.
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How to Solve Problem 2?

O Solve the following problem:

Input: Hidden Markov Model M,
parameters O, emitted sequence S

QOutput: Most Probable Path 11

How: Viterbi's Algorithm (Dynamic Programming)
Define II[i,j] = MPP for first j characters of S ending in state i
Define P[i,j] = Probability of II[i, ]

® Compute state i with largest P[i,j].
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Profile Method

PROFILE METHOD, [M. Gribskov et al., '90]
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FREQUENCY TABLE

ACDEFGHIKLMNPQRSTVWY

11020006 000000000O0O0OO0OO0CTO
2(11000000020000000400
3/]0000010000010006©0000
4(10010001100030100000
5110020100001 000030000
6/10000000000000205000
7100000004 020000000200
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Profile Method

FREQUENCY TABLE

ACDEFGHIKLMNPQRSTVWY

11020006 00000000000O0O00O
21!121000000020000000400
3/]00000100000100060000
411200100011 00030100000
5/]10020100001000030000
6|1 00000000000CO0O0C205000
710 00000040200000002200

WEIGHT MATRIX
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Weight[i, AA]
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Profile Method

WEIGHT MATRIX
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A C E G 1L K L M N P R S
1|0 108 | O | 101 | O 0 0 0 0 0 0 0
2|21 78 0 0 0 0 44 0 0 0 0 0
3| 0 0 0 23 0 0 0 0 [46 | O 0 | 102
4 | 21 0 32 0 38 | 32 0 0 0 86 | 39 0
5/21| o |62 23 (0| 0|0 |74[0| 0] 0] 72
6 | 21 0 0 0 0 0 0 0 0 0 69 0
7| 0 0 0 0 98 | 0 (44 | O 0 0 0 0

Given the following protein sequence:
MTEDLFGDLQDDTILAHLDN
PAEDTSRFPALLAELNDLTLR
GELSRLGVDPAHSLEIVVATI
CKHLGGGQVYIPRGQALDSTL
IRDLRIWNDFNGRNVSELTT
RYGVTFNTVYKAIRRMRRLEK
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Profile HMMs

PROFILE METHOD, [M. Gribskov et al., '90]

Location Sequence | Protein

inSeq. |1 2 3 4 5 6 Name
14|GVvVvsSASA Ka RbtR
32|GVSEMT Ec DeoR
33| GVSPGT Ec RpoD
716 |GAGIAT Ec TrpR
178|GCSRET Ec CAP
205|Cc LS PSR Ec AraC
210|C L. S P S R St AraC
1I3|GVNKET Br MerR

START —» STATE1 —» STATE2 —» STATE3 —» STATE4 —>» STATES —» STATE6 —» END
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Profile HMMs with InDels

e [nsertions
e Deletions
e Insertions & Deletions

DELETE1 —» DELETE2 —» DELETES3

AN SN

START —» STATE1 —» STATE2 —» STATES3 STATE 4
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STATE5 —» STATE6 — END
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Profile HMMs with InDels

DELETE 1 —> DELETE2 ——> DELETE3 —» DELETE4 —» DELETES —» DELETEG®

NN NN

START — STATEl —» STATE?2 —V STATE3 —» STATE4 —» STATES —» STATE6 —» END

IV v

Missing transitions from DELETE | to INSERT j and
from INSERT j to DELETE j+1.
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How to model Pairwise Sequence Alignment

LEAPVE
LAPVIE
Pair HMMs
 Emit pairs of synbols
I « Emission probs?
/ DE&ETI‘E » Related to Sub. Matrices
START > K/IATCH » END
\ ;'NSIERT‘ /Howto deal with InDels?
Q  Global Alignment? Local?
» Related to Sub. Matrices
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How to model Pairwise Local Alignments?

START — Skip Module —— Align Module — Skip Module — END

How to model Pairwise Local Alignments with
gaps?

START — Skip Module — Align Module — Skip Module — END

N
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Standard HMM architectures

[Linear Architecture

File Training Model Algnment Mining View Help

ClEE =~ EEL - @
File: | Delete1 Delete2 Delete3

Architecture: | Linear
Alphabet: | DNA
Length: I 3

Start Main1 Main2 Main3

Insert1 Insert2 Insert3 Insert4

O @, L) O
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Standard HMM architectures

Loop Architecture
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Standard HMM architectures

Wheel Architecture

Fie Treining Model Aignment Wining View Help
Ol=la] = E=k = [«
[
File: | |
Architecture ; |Wheal m Main1 m
Alphabet: e Main10 Main2
gth [10
Maing Main3
A
End
Main8 Maing
Main7? Main5
U Main6 U

Q'BIC Bioinformatics
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Profile HMMs from Multiple Alignments

HBA HUMAN VGA--HAGEY
HBB_HUMAN V----NVDEV
MYG_PHYCA VEA--DVAGH
GLB3 _CHITP VKG------ D
GLB5 PETMA VYS--TYETS
LGB2 LUPLU FNA--NIPKH
GLB1_GLYDI TAGADNGAGV
Construct Profile HMM from above multiple alignment.
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HMM for Sequence Alignment

A. Sequence alignment
N o F L S
N o F L S
N K Y L T
Q « W - T

RED POSITION REPRESENTS ALIGNMENT IN COLUMN
GREEN POSITION REPRESENTS INSERT IN COLUMN
PURPLE POSITION REPRESENTS DELETE IN COLUMN

D4

B. Hidden Markov model for sequence alignment
14

o/ g}/ ¢
AWAVAVANAY

. match state .insert state . daleta atate —= transition probability

FIGURE 5.16. Relationship between the sequence alignment and the hidden Markov model of the alignment (Krogh et al. 1994).
This particular form for the HMM was chosen to represent the sequence, structural, and functional variation expected in proteins.
The model accommodates the identities, mismatches, insertions, and deletions expected in a group of related proteins. (4) A sec-
tion of an msa. The illustration shows the columns generated in an msa. Each column may include matches and mismatches ( red
positions), insertions (green positions), and deletions ( purple positions). (B) The HMM. Each column in the model represents the
possibility of a match, insert, or delete in each column of the alignment in 4. The HMM is a probabilistic representation of a sec-
tion of the msa. Sequences can be generated from the HMM by starting at the beginning state labeled BEG and then by following
any one of many pathways from one type of sequence variation to another (states) along the state transition arrows and terminat-
ing in the ending state labeled END. Any sequence can be generated by the model and each pathway has a probability associated



Problem 3: LIKELIHOOD QUESTION
===« |Nput: Sequence S, model M, state |

* Qutput: Compute the probability of reaching
state | with sequence S using model [V

e Backward Algorithm (DP)

Problem 4: LIKELIHOOD QUESTION
 Input: Sequence S, model V|

e Qutput: Compute the probability that S was
emitted by model V]

e Forward Algorithm (DP)
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Problem 5: LEARNING QUESTION
===« |nput: model structure M, Training Sequence S
e Qutput: Compute the parameters ©
 Criteria: ML criterion
e maximize P(S| M, ®) HOW???

Problem 6: DESIGN QUESTION
 Input: Training Sequence S

* Qutput: Choose model structure M, and compute
the parameters ©

* No reasonable solution
o Standard models to pick from
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lterative Solution to the LEARNING QUESTION (Problem 5)

O Pick initial values for parameters @,
J Repeat

Run training set S on model M

Count # of times transition i = | is made

Count # of times letter x is emitted from state i
Update parameters ©

[ Until (some stopping condition)

06/30/09 Q'BIC Bioinformatics
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Entropy

L Entropy measures the variability observed in given

data.
E = —E pclog pe

C

Entropy is useful in multiple alignments & profiles.

L Entropy is max when uncertainty is max.
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G-Protein Couple Receptors

d Transmembrane proteins with 7 a-helices and 6 loops; many subfamilies
d Highly variable: 200-1200 aa in length, some have only 20% identity.
A [Baldi & Chauvin, 941 HMM for GPCRs

O HMM constructed with 430 match states (avg length of sequences) ;
Training: with 142 sequences, 12 iterations
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GPCR - Analysis

JCompute main state entropy values

Hi = —E eial0g €ia

dFor every sequence from test set (142) & random
set (1600) & all SWISS-PROT proteins

@ Compute the negative log of probability of the most
probable path =

Score(S) = —log(P( |S,M))
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GPCR Analysis

GPCR
ENTROPY
(Ol F1=) Esls () s @
GPCR
HYDROPATHY
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Entropy

Wl
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GPCR Analysis (Cont’d)

Score

* x Random sequences
+ GPCR (training)
SWISS-PROT (validation)

0

' ' ' . —

0 500 . 1000 1500 2000
Sequence length

Figure 8.2: Scores (Negative Log-likelihoods of Optimal Viterbi Paths). Represented sequences
consist of 142 GPCR training sequences, all sequences from the SWISS-PROT database of length
less than or equal to 2000, and 220 randomly generated sequences with same average com-
position as the GPCRs of length 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800 (20 at
each length). The regression line was obtained from the 220 random sequences. The horizont?'
distances in the histogram correspond to( ‘malized scores (6).
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Applications of HMM for GPCR

1 Bacteriorhodopsin
@ Transmembrane protein with 7 domains
@ But it is not a GPCR

@® Compute score and discover that it is close to the regression line. Hence not
a GPCR.

[ Thyrotropin receptor precursors
@ All have long initial loop on INSERT STATE 20.
@ Also clustering possible based on distance to regression line.
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HMMs — Advantages

Sound statistical foundations
Efficient learning algorithms

Consistent treatment for insert/delete penalties for alignments in the form of
locally learnable probabilities

Capable of handling inputs of variable length
Can be built in a modular & hierarchical fashion; can be combined into libraries.

Wide variety of applications: Multiple Alignment, Data mining & classification,
Structural Analysis, Pattern discovery, Gene prediction.
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HMMs — Disadvantages

3 Large # of parameters.
0 Cannot express dependencies & correlations between hidden states.
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