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BLAST Parameters and Output

[ Type of sequence, nucleotide/protein
0 Word size, w

O Gap penalties, p; and p,

1 Neighborhood Threshold Score, T

1 Score Threshold, S

d E-value Cutoff, E

O Number of hits to display, H

[ Database to search, D

4 Scoring Matrix, M

] Score s and E-value e

@ E-value e is the expected number of sequences that would have an
alignment score greater than the current score s.
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BLAST algorithm: Phase 1

Phase 1: get list of word pairs (w=3) above threshold T

Example: for a human RBP query
...FSGTWYA...
GTW is a word in this query sequence

A list of words (w=3) is:
FSG SGT GTW TWY WYA
YSG TGT ATW SWY WFA
FTG SVT GSW TWF WYS

Fig. 4.11
page 116
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Phase 1: Find list of similar words

Find list of words of length w (here w = 3)

and distance at least T (here T = 11)
ecTW 22

oGSW 18
OATW 16
ONTW 16
oGcTY 13
OGNW 10

@GAW 9
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Use BLOSUM to score word hits

-1

-3

2|11

2

0

T W|Y |V

3
2
)

|
1
4
3
2

4
2
2

1

3
1

-2
-1
-1
-1
-1

1

-1

0
-1
-3
-2
-2

2

-3
-2
-1
-2
-1

1

L K M|F P |S

-3

-3
-2
-1
-3
-1

-3
-3
-1
-2
-1
-2
-1
-2
-2

2
-3

4
4
2
3
3
2

0
-2
-2
-3
-3

2

-3
-3

1
-2
-3
-1

0
-1
-3
-2
-2

2

-3
-2
1
0
-3
-1

-1
-2
-1
-2

-3
-3
-1
-1
-1
-1
-2
-3

-1
-2
-2
-1

-3

|
|
3
4
|
3
3
|

1
4
3
3

-3

0
1
-3
-3

0
-2
-3
-2

0
-4
-2
-3

2
3

2

0
-3
-2

2
-2
-3
-2

-1
-3
-2
-3

-2
0

-2
-1
-1
-1
-1
-2
-1

3
2
0

A/R|N|D|C|Q|E |G H|I

D

C

I

L

M

F
P

W
Y
\Y%

Q'BIC Bioinformatics
Page 73

07/14/11



BLAST: Phases 2 & 3

Phase 2: Scan database for exact hits of
similar words list and find HotSpots

JPhase 3:

@Extend good hit in either direction.
@Keep track of the score (use a scoring matrix)
@ Stop when the score drops below some cutoff.

KENFDKAREFE'S
MKGLDIQKVA

— extend |

07/14/11

GTWYSLAMAASD. 44 lactoglobulin (hit)

GT@YAMAKKDPEG 50 RBP (query)

extend

Hit! | e
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BLAST: Threshold vs # Hits & Extensions
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Word Size

dBlastn:w=7, 11, or 15.

@®w=15 gives fewer matches and is faster than
w=11 or w=7.

dMegablast: w = 28 to 64.

@Megablast is VERY fast for finding closely
related DNA sequences!

07/14/11 Q'BIC Bioinformatics



Scores: Follow Extreme Value Distribution

E = Kmn e?S

0.40

0.35 | m,n = seq length
' S = Raw Score
0.30

| K = Search space

normal

i extreme | o _
distribution S"=(AS - InK) [In2

value | g - Bjt Score
istribution

probability

|p=1-e*F
p = p-value
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E-value versus P-value

10 0.9999546
5 0.99326205
2 0.86466472

1 0.63212056
0.1 0.09516258
0.05 0.04877058
0.001 0.00099950

0.0001 0.0001

E-values are easier to interpret;
If query is short aa sequence, then use very large E-value;
Sometimes even meaningful hits have large E-values.

07/14/11 Q'BIC Bioinformatics 10



Assessing whether proteins are homologous

>gi| 4505583 |ref|NP 002562.1| progestagen-associated endometrial protein (placental protein 14,
pregnancy-associated endometrial alpha-Z-globulin, alpha
uterine protein); Progestagen-associated endometrial
protein (placental protein 14) [Homo sapiens]
gi| 190215 | gb| AA260147.1| (J04129) placental protein 14 [Homo sapiens)
Length = 162

Score = 32.0 bits (71), Expect = 0.49
Identities = 26/107 (24%), Positives = 48/107 (44%), Gaps = 11/107 (10%)

Query: 26 RVKENFDKARFSGTWYAMAKKDPEGLFLOQDNIVAEFSVDETGQMSATAKGRVRLLNNWD- &4

+ K++ + + +GTU++MA +L +4 YV T + +L+ W+
Shijct: 5 QTKODLELPKLAGTWHSHAMAT-NNISLMATLKAPLRVHITSLLPTPEDNLEIVLHRUEN 63

Query: 85 -VCADMVGTFTDTEDPAKFKMKYWUGVASFLQKGNDDHWIVDTDYDTY 130
cC + T +P KFK+ Y VA ++ ++DTDYD +
shjct: 64 NSCVEKKVLGEKTGNPKKFKINY-TVA--=—=—=—-— NEATLLDTDYDNF 102

RBP4 and PAEP:
Low bit score, E value 0.49, 24% identity (“twilight zone”").

But they are indeed homologous. Try a BLAST search
with PAEP as a query, and find many other lipocalins.

07/14/11 Q'BIC Bioinformatics 11



Difficulties with BLAST

JUse human beta globin as a query against
human RefSeq proteins, and blastp does not
“find” human myoglobin. This is because the
two proteins are too distantly related. PSI-
BLAST at NCBI as well as hidden Markov
models easily solve this problem.

JHow can we search using 10,000 base pairs as
a query, or even millions of base pairs? Many
BLAST-like tools for genomic DNA are
avallable such as PatternHunter, Megablast,
BLAT, and BLASTZ.

07/14/11 Q'BIC Bioinformatics 12



Related Tools

dMegablast
@For long, closely-related sequences
@Uses large w and is very fast
dBLAT
@UCSC tool
@DB broken into words; query is searched
dPatternHunter
@Generalized seeds used instead of words

UBLASTZ, Lagan, SSAHA

07/14/11 Q'BIC Bioinformatics 13




Hidden Markov Model (HMM)

e States

e Transitions
 Transition Probabilities
 Emissions

 Emission Probabilities

O

O O
O O
O
 What 1s hidden about HMMs? O
O O

Answer: The path through the model is
hidden since there are many valid paths.

07/14/11 Q'BIC Bioinformatics 14



Profile Method

PROFILE METHOD, [M. Gribskov et al., '90]
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FREQUENCY TABLE

ACDEFGHIKLMNPQRSTVWY

11020006 000000000O0CO0COO0DO0
2|11000000020000000400

3/]00000100000100060000
4(100100021100030100000

5]1120020100001000030000
6/10000000000000205000
7/]00000004020000000200
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Profile Method

FREQUENCY TABLE

ACDEFGHIKLMNPQRSTVWY

11020006 00000000000CO0CO0O
2/11000000020000000400
3/00000100000100086000O00O0
411 001000110003 0100000
5110020100001 000030000O0
6/1 000000000000O0205000
7/00000004020000000200

WEIGHT MATRIX

102

72

39

0

86

32

38

101

23

32
62

108
78

21

21

21

).100

Freq[i,AA
PAAIN

Weight[i, AA] = log (
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Profile Method

WEIGHT MATRIX

07/14/11

Q'BIC Bioinformatics

A (& E G i1 X K L M N P R S
1o |108|0 |101|0|O0|O0|O|O|O| O] O
2|21 78 0 0 0 0 44 0 0 0 0 0
3/o| o |0o|23|0| 0| 0| o0|46]| 0| 0 |102
421 o (32| o (38|32 0|0 |0 |86[39] 0
5|21 o |62 23 |o |0 |0 |74[/0]| 0| 0|72
6/20| o |o| o |o|o|o|Oo|oO|O|69]| 0
7/0] o | o] o |98|0|4s|0fo0o|]o0o|o0o] 0

Given the following protein sequence:
MTEDLFGDLQDDTILAHLDN
PAEDTSRFPALLAELNDLLR
GELSRLGVDPAHSLEIVVATI
CKHLGGGQVYIPRGQALDSTL
IRDLRIWNDFNGRNVSELTT
RYGVTFNTVYKAIRRMRRLEK

17



PROFILE METHOD, [M. Gribskov et al., '90]

START —» STATE1 —» STATE2

07/14/11

Profile HMMs

Location Sequence | Protein

inSeq. |1 2 3 4 5 6 Name
14|GVSASA Ka RbtR
32|GVSEMT Ec DeoR
33|GVSPGT Ec RpoD
716 | GAGIAT Ec TrpR
17| GCSRET Ec CAP
206|cLsSPSR Ec AraC
210|Cc L S P SR St AraC
I3|GVNKET Br MerR

—» STATE 3

—» STATE4 —» STATES —» STATE6 —» END

Q'BIC Bioinformatics
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Profile HMMs with InDels

e [nsertions
e Deletions
e Insertions & Deletions

DELETE1 —» DELETE2 — DELETE3

AN SN

START —» STATE1 —» STATE2 —» STATE3 STATE 4

07/14/11 Q'BIC Bioinformatics

STATES —» STATE6 —» END

19



Profile HMMs with InDels

DELETE 1 —> DELETE2 —> DELETE3 —» DELETE4 — DELETES —» DELETE 6

N AN AN

START —>» STATE 1 —V STATE 2 —V STATE3 —» STATE4 —» STATES —» STATE6 —» END

IV e

Missing transitions from DELETE j to INSERT j and
from INSERT j to DELETE j+1.

07/14/11 Q'BIC Bioinformatics 20



How to model Pairwise Sequence Alignment

LEAPVE
LAPVIE
Pair HMMs
* Emit pairs of synbols
I * Emission probs?
/ DE&BTI‘E  Related to Sub. Matrices
START > KIATCH > END
\ ;NS!RT‘ /HOW to deal with InDels?
U  Global Alignment? Local?

» Related to Sub. Matrices

07/14/11 Q'BIC Bioinformatics 21



How to model Pairwise Local Alignments?

START — Skip Module — Align Module — Skip Module — END

How to model Pairwise Local Alignments with
gaps?

START > Skip Module — Align Module — Skip Module — > END

N

07/14/11 Q'BIC Bioinformatics 22



Standard HMM architectures

[Linear Architecture

=4 HMMpro =[] x]
File Training Model Alignment Mining View Help
LR = E=l - @

File: | Delete1 Delete2 Delete3

Architecture: | Linear

Alphabet: |DNA ‘

Length: |3

Start Main1 Main2 Main3
Insert1 Insert2 Insert3 Insert4

O @) O O

07/14/11 Q'BIC Bioinformatics
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Standard HMM architectures

Loop Architecture

Q'BIC Bioinformatics

24
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Standard HMM architectures

Wheel Architecture

Q'BIC Bioinformatics

25



HBA HUMAN
HBB HUMAN
MYG_PHYCA
GLB3 CHITP
GLB5 PETMA
LGB2_ LUPLU
GLB1 GLYDI

Construct Profile HMM from above multiple alignment.

07/14/11

VGA--HAGEY
V----NVDEV
VEA--DVAGH

VYS--TYETS
FNA--NIPKH
IAGADNGAGV

Profile HMMs from Multiple Alignments

Q'BIC Bioinformatics
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HMM for Sequence Alignment

A. Sequence alignment
N « F L S
N « F L S
N K Y L T
Q « W - T

RED POSITION REPRESENTS ALIGNMENT IN COLUMN
GREEN POSITION REPRESENTS INSERT IN COLUMN
PURPLE POSITION REPRESENTS DELETE IN COLUMN

B. Hidden Markov model for sequence alignment

D1

») .})/ .})

D4

e MAW o

[l match state ’insert stata . doletastata — transition probability

FIGURE 5.16. Relationship between the sequence alignment and the hidden Markov model of the alignment (Krogh et al. 1994).
This particular form for the HMM was chosen to represent the sequence, structural, and functional variation expected in proteins.
The model accommodates the identities, mismatches, insertions, and deletions expected in a group of related proteins. (A) A sec-
tion of an msa. The illustration shows the columns generated in an msa. Each column may include matches and mismatches (red
positions), insertions (green positions), and deletions (purple positions). (B) The HMM. Each column in the model represents the
possibility of a match, insert, or delete in each column of the alignment in 4. The HMM is a probabilistic representation of a sec-
tion of the msa. Sequences can be generated from the HMM by starting at the beginning state labeled BEG and then by following
any one of many pathways from one type of sequence variation to another (states) along the state transition arrows and terminat-
ing in the ending state labeled END. Any sequence can be generated by the model and each pathway has a probability associated

S PR 5.0 T R S S S S B PR S S S S S S Rl . S L S [ S S



Problem 3: LIKELIHOOD QUESTION

===« [nput: Sequence S, model M, state 1 —

e Output: Compute the probability of reaching
state 1 with sequence S using model M

* Backward Algorithm (DP)

Problem 4: LIKELIHOOD QUESTION
 Input: Sequence S, model M

e Output: Compute the probability that S was
emitted by model M

* Forward Algorithm (DP)

07/14/11 Q'BIC Bioinformatics 28



Problem 5: LEARNING QUESTION

===« [nput: model structure M, Training Sequence S

e Output: Compute the parameters ©
* Criteria: ML criterion
 maximize P(S | M, ®) HOW???

Problem 6: DESIGN QUESTION

 Input: Training Sequence S

e Output: Choose model structure M, and compute
the parameters ©

 No reasonable solution

 Standard models to pick from
07/14/11 Q'BIC Bioinformatics
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lterative Solution to the LEARNING QUESTION
(Problem 5)

Pick initial values for parameters o,
JRepeat

Run training set S on model M

Count # of times transition i = | is made

Count # of times letter x is emitted from state i
Update parameters ©

dUntil (some stopping condition)

07/14/11 Q'BIC Bioinformatics 30



Entropy

dEntropy measures the variability observed in given
data.

E = —E Pc log Pc
dEntropy is useful in multiple alignments & profiles.

dEntropy is max when uncertainty is max.

07/14/11 Q'BIC Bioinformatics 31



HMM for Sequence Alignment

A. Sequence alignment
N « F L S
N « F L S
N K Y LT
Q « W - T

RED POSITION REPRESENTS ALIGNMENT IN COLUMN
GREEN POSITION REPRESENTS INSERT IN COLUMN
PURPLE POSITION REPRESENTS DELETE IN COLUMN

B. Hidden Markov model for sequence alignment

D4

D1

») .})/ .})

aec im o e B o,

- match stata ’insert state . daleta state — transition probability

FIGURE 5.16. Relationship between the sequence alignment and the hidden Markov model of the alignment (Krogh et al. 1994).
This particular form for the HMM was chosen to represent the sequence, structural, and functional variation expected in proteins.
The model accommodates the identities, mismatches, insertions, and deletions expected in a group of related proteins. (A) A sec-
tion of an msa. The illustration shows the columns generated in an msa. Each column may include matches and mismatches (red
positions), insertions (green positions), and deletions (purple positions). (B) The HMM. Each column in the model represents the
possibility of a match, insert, or delete in each column of the alignment in A. The HMM is a probabilistic representation of a sec-
tion of the msa. Sequences can be generated from the HMM by starting at the beginning state labeled BEG and then by following
any one of many pathways from one type of sequence variation to another (states) along the state transition arrows and terminat-
ing in the ending state labeled END. Any sequence can be generated by the model and each pathway has a probability associated
with it. Each square match state stores an amino acid distribution such that the probability of finding an amino acid depends on



G-Protein Couple Receptors

d Transmembrane proteins with 7 a-helices and 6 loops; many subfamilies
O Highly variable: 200-1200 aa in length, some have only 20% identity.
[ [Baldi & Chauvin, '94] HMM for GPCRs

O HMM constructed with 430 match states (avg length of sequences) ;
Training: with 142 sequences, 12 iterations

07/14/11 Q'BIC Bioinformatics 33



GPCR - Analysis

dCompute main state entropy values
Hi = —E €ia log Cia

a

For every sequence from test set (142) & random
set (1600) & all SWISS-PROT proteins

@ Compute the negative log of probability of the most
probable path &

Score(S) = —log(P(n | S,M))

07/14/11 Q'BIC Bioinformatics 34



Entropy

dEntropy measures the variability observed in given
data.

E = —E Pc log Pc
dEntropy is useful in multiple alignments & profiles.

dEntropy is max when uncertainty is max.

07/14/11 Q'BIC Bioinformatics 35
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GPCR Analysis
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GPCR Analysis (Cont’d

Score
2000 3000 4000
|

"*,. x Random sequences
+ GPCR (training)
SWISS-PROT (validation)

0

Sequence length

Q'BIC Bioinformatics

' . ' . |

0 500 . 1000 1500 2000
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Applications of HMM for GPCR

 Bacteriorhodopsin
@® Transmembrane protein with 7 domains
@® But it is not a GPCR

@ Compute score and discover that it is close to the regression line. Hence not
a GPCR.

d Thyrotropin receptor precursors
@ All have long initial loop on INSERT STATE 20.
@ Also clustering possible based on distance to regression line.

07/14/11 Q'BIC Bioinformatics 39
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HMMs — Advantages

Sound statistical foundations
Efficient learning algorithms

Consistent treatment for insert/delete penalties for alignments in the form of
locally learnable probabilities

Capable of handling inputs of variable length
Can be built in a modular & hierarchical fashion; can be combined into libraries.

Wide variety of applications: Multiple Alignment, Data mining & classification,
Structural Analysis, Pattern discovery, Gene prediction.

07/14/11 Q'BIC Bioinformatics 40



HMMs — Disadvantages

O Large # of parameters.
0 Cannot express dependencies & correlations between hidden states.

07/14/11 Q'BIC Bioinformatics
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Patterns in DNA Sequences

1 Signals in DNA sequence control events
@ Start and end of genes
@ Start and end of introns
@ Transcription factor binding sites (regulatory elements)
@ Ribosome binding sites

Detection of these patterns are useful for
@ Understanding gene structure
@ Understanding gene regulation

07/14/11 Q'BIC Bioinformatics 42



Motifs in DNA Sequences

[ Given a collection of DNA sequences of promoter regions, locate the
transcription factor binding sites (also called regulatory elements)

@® Example:
5 40 yeast TATA sites
21—
L0
~1N10AA
0- ONr-Or-aNMmT
07/14/11 Q'BIC Bioinformatics 43
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Motifs in DNA
Sequences

07/14/11

1 GTATCA AGTGCGTAT
2 ATACCACT TGATA T—
3 TCAACA AGAGATAA
4 TTATCTCT TCTTGA
5 TTATCA AGATGCGTTA
6 TAACCATCT TCATAR
7 CTATCA AA ATAR
8 TTAT T TCATA
9 CTAACA T TCTTGA

10 TCAACA A TCTTA

11 TTACCTCT TCATARA

A A

+++++++++
9876543210123456789

L I I N L I e D D D R N R D B

QQN@U’#‘MNFOFNMQU)@NQQ

12 Lambda cI and cro binding sites

Fig. 1. Some aligned sequences and their sequence logo. Atthe top of the figure are listed the

12 DNA sequences from the P|_and Pp control regions in bacteriophage lambda. These are bound by

both the ¢l and cro proteins [16]. Each even numbered sequence is the complement of the preceding

odd numbered sequence. The sequence logo, described in detail in the text, is at the bottom of the

figure. The cosine wave is positioned to indicate that a minor groove faces the center of each

symmetrical protein. Data which supponthls assgnmem are given in reference [17]. 45

~——-— —-~~~-
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12 Lambda cI and cro binding sites 8 Lambda O protein binding sites

More Motifs Iin
E. Coli DNA
Sequences

T” TA

2L pxa g  2TG8
aaaaaaaaaaaaaaaaaaaaaa

07/14/11 Q'BIC Bioinformatics 46
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E. coli Ribosome binding sites
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Other Motifs in
DNA
Sequences:
Human Splice
Junctions

07/14/11

This figure shows two “sequence logos” which represent sequence conservationat
the 5° doncre and 3’ (accepbr)ends of human iAr'A&orsA The regonbetween
black vertical bars is removed during m RMA splicing. The logos graphically

demonstak tatmaost of the pattem for locating the inton ends resides on the

infron. Thisallows more codon choices in the proteincoding exons. The logosalso
show a common pattern “CAG|GT 7, which suggests hatthe mecharisms hatrecognize
the two ends of the infron had a common ancestor. See B M. Stephersand T.D.
Schreicer, 'Features of spliceosome evolution and finctioninferred from an analysis
ofthe infoemaion at buman splice sites”, J. Mdl. Bidl, 228, 1124-1138, {1992)

o3

dono

Intron

M 55552020
acceptor

3 .~ exon
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Transcription Regulation

Basal TF
Binding Sites
CAT Box TATA Box

Gene-Specific TF
Binding Sites

coding region

upstream region

A
A 4

Q'BIC Bioinformatics

»
»
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Prokaryotic Gene Characteristics

DNE PARTTERNS IN THE E. coli JfexA GENE

GENE SEQUENCE PATTERN
1 GARATTCGATARRTC TCTEGTTTAT TETGC AGTTTATGETT CTGNNNNNNNNNNC ARG
sl TTGACA
41 CCARARTCGCCTTTTGCIGTATATACTCACAGCATRACTG CTGHNNNNNNNNNC AG
CCan -35 -10 TIATACT > TATAAT, > mRNA start
81 TATATACACCCAGGGGGCGGAATGAMAGCGTTALCGGCCA CTGNNNNNNNNNNC AG
+10 GGGGG Ribosomal binding site GGLGG
121 GGCAACARGAGETGTTTGATCTCATCCETGATCACATCAG
161 CCAGACAGGTATGCCGCCGACGCGTGCGGABATCGCGCAG ATG

201 CEITTGGGGTTCCGTICCCCARACGCGGC TGRAGRARCATC
241 TGARGGCGCTGGCACGCARAGGCGTTATTGARATTGTTTC
281 CGGCGCATCACGCGGGATTCATCTGTTGCAGGAAGAGGRA
321 GARGGGETTGCCGCTEGTAGETCGTETGEGC TGCCEGEIGRAC
361 CACTTCTGGCGCAACAGCATATTGRAGGTCATTATCAGGET OFEN READING FRAME
401 CGATCCTTCCTITATTCAAGCCGRATGCTGATTTCCTGCTG
441 CGCGTCAGCGGGATGTCGATGARAGRTATCGGCATTATGG
481 ATGGTGACTTGECTGGCAGTGCATAARACTCAGGATETACE
521 TAACGGTCAGGTCGTIGTCGCACGTATIGATGAC GRAGTT
UL AR TTHGRAASANRER AL A RCAGARGO AL TABAGTOGREC
601 TGTTGCCAGARRATAGCGAGTITAARCCRATTGTCGTTGA
641 CCTTCGTCAGCAGAGCTTC ACCATTGARGGGCTGGCGETT
681 GGGGTTATTCGCBACGGCGACTGGCTGTARCATATCTCTG TAR
721 AGACCGCGATGCCGCCTGGCETCGCGETITETTITTTCATC
761 TCTCTICATCAGGC TTGTC TGCATGGCATTCCTC ACTTCA
801 TCTGATRBAGCACTCTGGCATCTC GCCTTACCCATGRTTT
841 TCTCCARTATCACCGTTCCGTTGC TEGGACTGGTCGATAC
881 GGCGGTRATTGGETCATCTTGATAGCCCGGTTTATTIGGGC
921 GGCGTGEGCGGTIGGCGCARCGGCGGRCCRGCT

Shown are matches to approximate comsensus binding sites for Lexi
repressor (CTGHNNNNNNNNNCAG), the -10 amd -35 promoter regions
relative to the start of the wRNA (TTGACAE and TATALT), the ribosomal
binding site on the mRNA (GGAGG), and the open reading frame
(ATG...TaR). Only the second two of the predicted LexA binding sites
actually bind the repressor.

FIGURE 9.6. The promoter and open reading frame of the E. coli lexA gene.
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Motifs in DNA Sequences

receptor receptor C/EBP
AFl AF2 GR1 GR2 AF3
RARE1 RARE2 /7 NF1l CRE TATA INR
- G L4

-445 -4107-380 -360 -325\ -114 -90 =20 +1

L 4 S = =m o -»
mRNA
3 = 100 bp

) F E DC B A Bp

Ul

' o f“obs;)cscm

P CG

FIGURE 9.13. Regulatory elements of two promoters. (A) The rat pepCK gene. The relative positions of the TF-
binding sites are illustrated (Yamada et al. 1999). The glucocorticoid response unit (GRU) includes three accesso-
ry factor-binding sites (AF1, AF2, and AF3), two glucocorticoid response elements (GR1 and GR2), and a cAMP
response element (CRE). A dimer of glucocorticoid receptors bound to each GR element is depicted. The retinoic
response unit (RAU) includes two retinoic acid response elements (RAREL and RARE2) that coincide with the AF1
and AF3, respectively (Sugivama ct al. 1998). The sequences of the two GR sites and the binding of the receptor to
these sites are shown. These sites deviate from the consensus sites and depend on their activity on accessory pro-
teins bound to other sites in the GRU. This dependence on accessory proteins is reduced if a more consensus-like
(canonical) GR element comprising the sequence TGTTCT is present. The CRE that binds factor C/EBP is also
shown. (B) The 2300-bp promoter of the developmentally regulated gene endol6 of the sea urchin (Bolouri and
Davidson 2002). Different colors indicate different binding sites for distinct proteins and proteins shown above the
line bind at unique locations, below the line at several locations. The regions A-G are functional modules that
determine the expression of the gene in a particular tissue at a particular time of development and may either serve
to induce transcription of the gene as a necessary developmental step (A, B, and G) or repress transcription (C-F)
in tissues when it is not appropriate. {Reprinted, with permission, from Bolouri and Davidson 2002 [©2002

Elsevier].)
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Single Gene Activation

@ Transcription Factor
= TF binding site
I:> Gene
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Multiple Gene Activation
M?‘

Co-regulated genes I

@ Transcription Factor
= TF binding site

‘ Gene

07/14/11 Q'BIC Bioinformatics 533



Transcription Regulation

[ Goffart et al. Exp. Physiology (2003) ]
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Motif-prediction: Whole genome

Problem: Given the upstream regions of all genes in the
genome, find all over-represented sequence signatures.

Basic Principle: If a TF co-requlates many genes, then all these
genes should have at least 1 binding site for it in their
upstream region.

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5
. m . o - - - -

Binding sites for TF
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Motif Detection (TFBMs)

[ See evaluation by Tompa et al.
@ [bio.cs.washington.edu/assessment]

L Gibbs Sampling Methods: AlignACE, GLAM,
SeSiMCMC, Motif Sampler

dWeight Matrix Methods: ANN-Spec, Consensus,
JEM: Improbizer, MEME

dCombinatorial & Misc.: MITRA, oligo/dyad,
QuickScore, Weeder, YMF
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EM Algorithm

Goal: Find B, Z that maximize Pr (X, Z | )

Initialize: random profile

- =

for each m-window at position /in input
sequence .

E-step: Using profile, compute a likelihood value z;;

M-step: Build a new profile by using every m-
window, but weighting each one with value z;.

. =
Stop if converged

07/14/11

MEME [Bailey, Elkan 1994]
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Gibbs Sampling for Motif Detection
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