BSC 4934: Q'BIC Capstone Workshop

Giri Narasimhan
ECS 254A: Phone: x3748

giri@cs.fiu.edu
http://www.cs.fiu.edu/~giri/teach/BSC4934_Sull html
July 2011

07/18/11 Q'BIC Bioinformatics




Gene Expression

dProcess of transcription and/or translation of a
gene is called gene expression.

Every cell of an organism has the same genetic
material, but different genes are expressed at
different times.

dPatterns of gene expression in a cell is indicative of
Its state.
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Hybridization

AIf two complementary strands of DNA or mRNA
are brought together under the right experimental
conditions they will hybridize.

A hybridizes to B =
@ A is reverse complementary to B, or
@ A is reverse complementary to a subsequence of B.

Tt is possible to experimentally verify whether A
hybridizes to B, by labeling A or B with a
radioactive or fluorescent tag, followed by
excitation by laser.
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Measuring gene expression

1 Gene expression for a single gene can be measured
by extracting mRNA from the cell and doing a
simple hybridization experiment.

Given a sample of cells, gene expression for every
gene can be measured using a single microarray
experiment.
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Microarray/DNA chip technology

dHigh-throughput method to study gene expression
of thousands of genes simultaneously.

1 Many applications:
@ Genetic disorders & Mutation/polymorphism detection
@ Study of disease subtypes
@ Drug discovery & toxicology studies
@ Pathogen analysis

® Differing expressions over time, between tissues,
between drugs, across disease states
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Microarray Data

Gene Expression Level

Genel

Gene?2

Gene3

07/18/11 Q'BIC Bioinformatics



Gene Chips
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Microarray/DNA chips (Simplified)

dConstruct probes corresponding to reverse
complements of genes of interest.

[ Microscopic quantities of probes placed on solid
surfaces at defined spots on the chip.

dExtract mRNA from sample cells and label them.

d Apply labeled sample (MRNA extracted from cells)
to every spot, and allow hybridization.

dWash off unhybridized material.

dUse optical detector to measure amount of
fluorescence from each spoft.
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Affymetrix DNA chip schematic

www.affymetrix.com
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What's on the slide?

Shining a laser light at GeneChip® array causes tagged DNA fragments that hybridized to glow
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DNA Chips & Images
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Microarrays: competing technologies

JAffymetrix & Agilent
ADiffer in:

@method to place DNA: Spotting vs.
photolithography

@Length of probe
® Complete sequence vs. series of fragments
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Study effect of treatment over time

Sample —
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2-color DNA
microarray
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How to compare 2 cell samples with Two-Color
Microarrays?

0 mRNA from sample 1 is extracted and labeled with a red
fluorescent dye.

1 mRNA from sample 2 is extracted and labeled with a green
fluorescent dye.

[ Mix the samples and apply it to every spot on the
microarray. Hybridize sample mixture to probes.

1 Use optical detector to measure the amount of green and
red fluorescence at each spot.
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Sources of Variations & Experimental Errors

o000 OO0 O OO0

Variations in cells/individuals

Variations in mRNA extraction, isolation, introduction of dye, variation
in dye incorporation, dye interference

Variations in probe concentration, probe amounts, substrate surface
characteristics

Variations in hybridization conditions and kinetics

Variations in optical measurements, spot misalignments, discretization
effects, noise due to scanner lens and laser irregularities

Cross-hybridization of sequences with high sequence identity
Limit of factor 2 in precision of results

Variation changes with intensity: larger variation at low or high
expression levels

Need to Normalize data
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Analyzing Microarray Data

Genetics: Perou et al. Proc. Natl. Acad. Sci. USA 96 (1999) 9213
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FiG. 1. (A) Cluster diagram of HMEC in vitro experiments. Each column represents a single experiment, and each row represents a single gene.
Ratios of gene expression relative to HMEC control samples grown under standard conditions are shown. Green squares represent lower than
control levels of gene expression in the experimental samples (ratios less than 1); black squares represent genes equally expressed (ratios near 1);
red squares represent higher than control levels of gene expression (ratios greater than 1); gray squares indicate insufficient or missing data. The
color saturation reflects the magnitude of the log/ratio [see scale at top right and Fig. 5 (see Supplemental data at www.pnas.org) for the full cluster
diagram with all gene names]. (B) Expanded view of the subset of genes whose expression was decreased in association with reduced HMEC
proliferation. (C) Expanded view of the IFN-regulated gene cluster. In many instances, multiple independent clones/cDNA representing the same
gene were spotted on different locations on these microarrays, and in most cases, these copies usually clustered together, either very near each other
or immediately adjacent to each other.

Q'BIC Bioinformatics

19



Microarray Data Analysis: Subtyping

Fig. 1. Selection of tumor-specific genes for
cancer class prediction. A, schematic diagram de-
picting the idealized expression profile of tumor-
specific genes that the method selects as classifiers.
The shape of each profile represents genes that are
highly expressed in each cancer type relative to all
other tumors in the tramning set. B, 100 genes per
tumor class (total, 1100) with the most significant
scores 1n a Wilcoxon rank-sum test for equality
were selected as likely candidates for tumor clas-
sifiers. Pr, prostate; Bl, bladder/ureter; Br, breast;
Co, colorectal; Ga, gastroesophagus; Ki, kidney;
Li, liver; Ov, ovary; Pa, pancreas; LA, lung adeno-
carcinomas; LS, lung squamous cell carcinoma. C,
the final refined set of gene classifiers was gener-
ated after the genes imn B were ranked by SVM/
LOOCV accuracy. Annotations of the genes from
which 110 “predictor” genes were bootstrapped are
provided on our website.* For clarity, only 8 of 76
predictor genes for lung adenocarcinomas are de-
picted here. Levels of gene expression (depicted in
each row) across all samples (columns) were me-
dian-centered and normalized by “Cluster” and out-
put 1n “Treeview” (12). Red, increased gene ex-
pression; blue, decreased expression; black, median
level of gene expression. The color intensity is
proportional to the hybridization intensity of a gene
from its median level across all samples.

07/18/11

«€—— 1,100 genes, 100 per class ——3p 0

MOLECULAR CLASSIFICATION OF HUMAN CARCINOMAS

Cc

i A

148 'classifier' genes

100 tUMON'S =
Q'BIC Bioinformatics

A

Pr

Bl Br

Co Ga Ki Li Ov Pa LA LS

Pr
(100%

(95%)

(91%)

Co
(93%)

Ga
(92%)

(99%)

Li
(99%)

(95%)

Pa
(99%)

(91%)

LS
(95%)

100 tumOors ———————p>
20



Differential Analysis

dDetermine differentially expressed genes
@ Need for Replication and Normalization
@ Differential Analysis: test statistics
»Fold-change (Sample vs Control)
>t-test
»F-statistic
»Other Non-parametric rank-based statistics
@ Significance of observed statistic (Permutation test)
@ False Discovery Rate
»Multiple test corrections
@ Pattern Discovery
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Pattern Discovery

[ Dimensionality reduction
@ Principal Component Analysis
@ Multidimensional scaling
@ Singular-value decomposition

dVisualization methods

07/18/11 Q'BIC Bioinformatics
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Pattern Discovery
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Fig. 2 Two pattern-discovery tech-
niques. Data for both figures measure
expression for 11 genes characteriz-
ing sensitivity to compound cytocha-
lasin D in 60 cancer cell lines?’. a, The
first three principal components, plot-
ted using Matlab software (Math-
works). Apparent features include a
tight cluster of leukemia samples (red
dots, nearly superimposed) and the
more scattered outlying cluster of
CNS tumors (black dots). A single lung
cancer sample (NSCLC-NCIH226) also
appears as an outlier — the solitary
orange dot at the top. b, Hierarchical
clustering of the same data, using
Cluster/TreeView (http:/rana.lbl.gov/
EisenSoftware.htm). Names of sam-
ples extremely sensitive or resistant to
cytochalasin D (see Supplementary
information) are prefixed ‘S’ and 'R’
respectively. The samples fall into two
main clusters, roughly, but not per-
fectly, separating the sensitive and
resistant samples. As in a, fine struc-
ture shows a tight leukemia cluster
(underlined in green) and a tight CNS
cluster (underlined in red), but does
not suggest that the CNS cluster or
NSCLC-NCIH226 (underlined in blue)
are outliers. Apparentin botha and b
is the relative heterogeneity of the
breast cancer cell lines.

merging the two closest clus-
ters is repeated until a single
cluster remains. This arranges
the data into a tree structure
that can be broken into the
desired number of clusters by
cutting across the tree at a
particular height. Tree struc-
tures are easily viewed and
understood (Fig. 2b), and the
hierarchical structure provides
potentially useful informa-
tion about the relationships
between clusters. Trees are
known to reveal close relation-
ships very well. However, as



Clustering

dClustering is a general method to study patterns in
gene expressions.

1 Several known methods:

@ Hierarchical Clustering (Bottom-Up Approach)
@ K-means Clustering (Top-Down Approach)
@ Self-Organizing Maps (SOM)
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Hierarchical Clustering: Example
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A Dendrogram




Hierarchical Clustering [Johnson, SC, 1967]

dGiven n points in RY, compute the distance between
every pair of points

dWhile (not done)

® Pick closest pair of points s; and s; and make them part of
the same cluster.

@ Replace the pair by an average of the two s;,

Try the applet at: http://home.dei polimi. l’r/ma’rTeucc/Clus’rer'mg/
tutorial_html/AppletH.html
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K-Means Clustering: Example

Example from Andrew Moore’s tutorial on Clustering.

07/18/11 Q'BIC Bioinformatics
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Start

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)
2. Randomly guess k
cluster Center
locations

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 7

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to.

4. Each Center finds
the centroid of the
points it owns

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Slide §

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k

cluster Center
locations

3. Each datapoint finds

out which Center it's
closest to. (Thus
each Center "owns”
a set of datapoints)

Copyright © 2001, Andrew W, Moore

fButon’s Graphice 8 |

=i

K-means and Hierarchical Clusterng: Side 8
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K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to.

4. Each Center finds
the centroid of the

points it owns...
5. ..and jumps there
6. ...Repeat until

terminated!

Copyright © 2001, Andrew W, Moore

8 |

K-means and Hierarchical Clustering: Side 10
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K-means
Start

Advance apologies: in
Black and White this
example will deteriorate

Example generated by
Dan Pelleg’s super-duper
fast K-means system:

Dan Pelleg and Andrew
Moore. Accelerating Exact
k-means Algorithms with
Geometric Reasoning.
Proc. Conference on
Knowledge Discovery in
Databases 1999,
(KDD99) (available on
www autorlab.org/pap html)

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 11

K-means
continues

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Siide 12
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K-means
continues

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Shide 13

K-means
continues

Copyright © 2001, Andrew W, Moore

K-means and Hierarchical Clustering: Shde 14
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K-means
continues

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 15

K-means
continues

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 16
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K-means
continues

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Shide 17

K-means
continues

Copyright © 2001, Andrew W, Mocre

K-means and Hierarchical Clustering: Siide 18
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Start

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)
2. Randomly guess k
cluster Center
locations

Copyright © 2001, Andrew W. Moore

&l

K-means and Hierarchical Clustering: Slide 7

K-means
continues

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 19

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k

cluster Center
locations

3. Each datapoint finds

out which Center it's
closest to. (Thus
each Center “owns”
a set of datapoints)

Copyright © 2001, Andrew W. Moore

5 |

=

K-means and Hierarchical Clustering: Siide 8
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K-means
terminates

Copyright © 2001, Andrew W, Moore

K-means and Hierarchical Clustering: Slide 20
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K-Means Clustering [McQueen ’67]

Repeat

® Start with randomly chosen cluster centers

@ Assign points to give greatest increase in score
® Recompute cluster centers

@ Reassign points

until (no changes)

Try the applet at: http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/
AppletH.html
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Comparisons

dHierarchical clustering
@ Number of clusters not preset.
@ Complete hierarchy of clusters
@ Not very robust, not very efficient.

J K-Means

@ Need definition of a mean. Categorical data?
® More efficient and often finds optimum clustering.

07/18/11 Q'BIC Bioinformatics
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Class Prediction

Start with n genes
measured in m
samples whose
classes ¢ are known

Randomly divide
samples into training
and test sets

Choose prediction
method

Is explicit gene selection
appropriate?

Learn model 51

Choose final model
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accuracy on test set
Analyze model
and results for
biological insight

Fig. 3 An overview of the process for building a prediction model to classify
samples. The partition into training and test data is ideally chosen at random
across the entire set of samples, Many prediction methods require tuning some
parameter (such as the number of genes, the number of nearest-neighbors to
consider, or the number of decision trees built). This choice is often evaluated
by cross-validation — the process of repeatedly removing smaller test sets from
the training set, building new models (starting with the gene selection
process) with the remaining data, and evaluating performance across all the
different models built, For example, “leave-one-out cross validation” (also
called "n-way") builds n models, each using n-1training examples and evalu-
ated on the remaining one; the accuracy for predicting all n samples is
reported. Observing that predictors may succeed by chance even in cross-
validation, Radmacher et al. suggest using permutation testing to determine
the significance of the observed results™, Ultimately the final model, perhaps
chosen during the cross-validation process, is then tested on entirely new data
not used in the model generation process. The model itself, as well as the pre-
diction results and the influential genes, may yield new biological insights,

informatics 35



Class Prediction Methods

A Decision Trees

1 Support Vector Machines (SVM)
dk-NN or k-nearest neighbor method
dFisher's linear discriminant method
A Neural Networks

1 Self-Organizing Maps

JEnsemble methods

@ Boosting
@ Bagging

07/18/11 Q'BIC Bioinformatics
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Functional Biases, Pathways & Networks

dOver/Under-representation of functional groups of
genes

[ Over/Under-representation of genes involved in
functional pathways

dInferring of regulatory relationships
dInferring of protein-protein interactions
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Reading

dThe following slides come from a series of talks by
Rafael Irizzary from Johns Hopkins

dMuch of the material can be found in detail in the

fO”OWing papers from [hTTp://www.biosTaT.jhsph.edu/~r'irizar'r'/paper's/]

® Irizarry, RA, Hobbs, B, Collin, F, Beazer-Barclay, YD, Antonellis, KJ, Scherf,
U, Speed, TP (2003) Exploration, Normalization, and Summaries of High

Density Oligonucleotide Array Probe Level Data. Biostatistics. Vol. 4,
Number 2: 249-264.

@ Bolstad, B.M., Irizarry RA, Astrand, M, and Speed, TP (2003), A Comparison
of Normalization Methods for High Density Oligonucleotide Array Data
Based on Bias and Variance. Bioinformatics. 19(2):185-193.
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Inference Process

Biological question
Differentially expressed genes
Sample class prediction etc.

Experimental design

Microarray experiment

Image analysis

Preprocessing (Normalization)

Biological verification
and interpretation From Talk by Irizzary
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Affymetrix Genechip Design

AN

. TGTGATGGTGCATGATGGGTCAGAAGGCCTCCGATGCGCCGATTGAGAAT..

GTACTACCCAGTCTTCCGGAGGCTA Perfectmatch
GTACTACCCAGTCTTCCGGAGGCTA  Mismatch

07/18/11 Q'BIC Bioinformatics From Talk by |rizzary 40
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Workflow: Analyzing Affy data

Raw data (.DAT files)

“ (_ Image analysis >

\4

Probe intensities (.CEL files)

| < a Pre-prooessing »
\ __normalization

a

Expression measures (tables)

.  Statistical test

v

Rank (list)

hoose filter \

v

< / C
50

ignificance Ievel/

Candidate genes (short list)
From Talk by Irizzary
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Affy Files

DAT file: image file, about 10 million pixels, 30-50
MB

ACEL file: cell intensity file with probe level PM and
MM values

CDF file: chip description file describing which
probes go in which probe sets and the location of
probe-pair sets (genes, gene fragments, ESTs)

From Talk by Irizzary
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Image analysis & Background Correction

L Each probe cell: 10 X 10 pixels
d6Gridding estimates location of probe cell centers

[ Signal is computed by
@ Ignoring outer 36 pixels leaving a 8 X 8 pixel area
@ Taking the 75 percentile of the signal from the 8 X 8
pixel area
[ Background signal is computed as the average of
the lowest 2% probe cell values, which is then
subtracted from the individual signals

From Talk by Irizzary
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Standard Normalization Procedure

dLog-transform the data

L Ensure that the average intensity and the standard
deviation are the same across all arrays.

[ This requires the choice of a baseline array, which
may or may hot be obvious.
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Analyzing Affy data

dMAS 40
® Works with PM-MM
@ Negative values result very often
@ Very noisy for low expressed genes
@ Averages without log-transformation

0 dChip [Li & Wong, PNAS 98(1):31-36]
@ Accounts for probe effect
@ Uses non-linear normalization
@ Multi-chip analysis reveals outliers

dMASDHO
@® Improves on problems with MAS 4.0

From Talk by Irizzary
07/18/11 Q'BIC Bioinformatics 45



Why you use log-transforms?

Original scale Log scale

SD

LRLH ‘e ALHE

Average Intensity Average Intensity

From Talk by Irizzary
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Problem with using (transformed) PM-MM

12 14

log2 PM
10

10 12 14

Sometimes MM 1is larger than PM! From Talk by Irizzary
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Bimodality for large expression values

Frequency
50 100 150 200 250 300

0
|

I I [ I

log2{PM/MM)

From Talk by Irizzary
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MAS 5.0

dMAS 5.0 is Affymetrix software for microarray
data analysis.

1 Ad hoc background procedure used
d Summarization: Averaging over multiple probes

dFor summarization, MAS 5.0 uses:
® Signal = TukeyBiweight{log(PM,-MM *)}
® Tukey Biweight: B(x) = (1 - (x/c)?)?, if x<c
= 0 otherwise
J Ad hoc scale normalization used

From Talk by Irizzary &
PhD thesis by Astrand
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2 replicate arrays
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Expression fram array | Expraasion from fimt half =21

Expression from corresponding Expression not correlated when
probes are highly correlated probes randomly partitioned

Correlation is higher than 0.99 Correlation drops to 0.55
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We have to deal with variations!
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log,(expression 1) From Talk by Irizzary
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M=

log,(expression 2 / expression 1)
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A= { log,(expression 2) + log2(expression 1) } /2

Q'BIC Bioinformatics From Talk by Irizzary
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Spike-in Experiment

dReplicate RNA samples were hybridized to various
arrays

dSome probe sets were spiked in at different
concentrations across the different arrays

Goal was to see if these spiked probe sets "stood
out” as differentially expressed

From Talk by Irizzary
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Analyzing Spike-in data with MAS 5.0

* (Genes called PIM
4 Genes called A
L * spike—in genes called P/M
* spike-in genes called A
2.
F °
E O SR o
-2
-4
0 5 10 15
A
07/18/11 Q'BIC Bioinformatics

From Talk by Irizzary



Robust Multiarray normalization (RMA)

1 Background correction separately for each array
® Find E{Sig | Sig+Bgd = PM}
@ Bgd is normal and Sig is exponential

dUses quantile normalization to achieve “identical
empirical distributions of intensities” on all arrays

d Summarization: Performed separately for each
probe set by fitting probe level additive model

dUses median polish algorithm to robustly estimate
expression on a specific chip

dAlso see GCRMA [Wu, Irizzary et al., 2004]
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Analyzing Spike-in data with RMA

Irizarry et al. (2003) NAR 31:e15
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MvA and g-q plots

an; ./ MAS40

1 /,,,__,/f“” MAS 5.0

refesance guardles
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MvA and g-q Plots
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Before and after quantile normalization
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Fig. 3. 10 pacrwise M oversus A plots asing Lver (!l concentralion

Fig. 2. 10 perwase M oversus A plots asing Lver (sl concentralion 10) dilution series dats afler quantile normalization.

10) dilution series dats for unsdjusted data,

From Talk by Irizzary
07/18/11 Q'BIC Bioinformatics 59



Bioconductor

L Bioconductor is an open source and open
development software project for the analysis of
biomedical and genomic data.

JWorld-wide project started in 2001

R and the R package system are used to design
and distribute software

dCommercial version of Bioconductor software called
ArrayAnalyzer

From Talk by Irizzary
07/18/11 Q'BIC Bioinformatics 60



R: A Statistical Programming Language

EITr'y the tutorial at: [http://www.cyclismo.org/tutorial/R/ ]
dAlso at: [http://www.math.ilstu.edu/dhkim/Rstuff/Rtutor.html |
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