
The SMV system�for SMV version 2.5.4K. L. MMillanmmillan�s.mu.eduOriginal: February 2, 1992Last updated: November 6, 2000The SMV system is a tool for heking �nite state systems against spei�ations in thetemporal logi CTL. The input language of SMV is designed to allow the desription of�nite state systems that range from ompletely synhronous to ompletely asynhronous,and from the detailed to the abstrat. One an readily speify a system as a synhronousMealy mahine, or as an asynhronous network of abstrat, nondeterministi proesses. Thelanguage provides for modular hierarhial desriptions, and for the de�nition of reusableomponents. Sine it is intended to desribe �nite state mahines, the only data types in thelanguage are �nite ones { Booleans, salars and �xed arrays. Stati, strutured data typesan also be onstruted. The logi CTL allows a rih lass of temporal properties, inludingsafety, liveness, fairness and deadlok freedom, to be spei�ed in a onise syntax. SMVuses the OBDD-based symboli model heking algorithm to eÆiently determine whetherspei�ations expressed in CTL are satis�ed.The primary purpose of the SMV input language is to desribe the transition relation ofa �nite Kripke struture. Any expression in the propositional alulus an be used to de-sribe this relation. This provides a great deal of exibility, and at the same time a ertaindanger of inonsisteny. For example, the presene of a logial ontradition an result in adeadlok { a state or states with no suessor. This an make some spei�ations vauouslytrue, and makes the desription unimplementable. While the model heking proess anbe used to hek for deadloks, it is best to avoid the problem when possible by using a re-strited desription style. The SMV system supports this by providing a parallel-assignmentsyntax. The semantis of assignment in SMV is similar to that of single assignment dataow languages. By heking programs for multiple parallel assignments to the same variable,irular assignments, and type errors, the interpreter insures that a program using only theassignment mehanism is implementable. Consequently, this fragment of the language anbe viewed as a hardware desription language, or a programming language. The SMV systemis by no means the last word on symboli model heking tehniques, nor is it intended to bea omplete hardware desription language. It is simply an experimental tool for exploring�LATEX soures restored by Tatsuhiro Tsuhiya, Dept. of Informatis and Mathematial Siene, OsakaUniversity, Japan, t-tutiya�is.es.osaka-u.a.jp. Edited and updated by Sergey Berezin, CarnegieMellon University, berez�s.mu.edu 1

the possible appliations of symboli model heking to hardware veri�ation.This doument desribes the syntax and semantis of the SMV input language, and thefuntion of the SMV model heker. It also desribes some optional features of the modelheker whih an be used to �ne tune the performane, and gives some examples of itsappliation. All of the examples in this doument are made available with the software. Fora desription of all the model heker options, see the UNIX programmer's manual entry forSMV, whih is also inluded with the software.1 The input languageBefore delving into the syntax and semantis of the language, let us �rst onsider a fewsimple examples that illustrate the basi onepts. Consider the following short program inthe language.MODULE mainVARrequest : boolean;state : {ready,busy};ASSIGNinit(state) := ready;next(state := asestate = ready & request : busy;1 : {ready,busy};esa;SPECAG(request -> AF state = busy)The input �le desribes both the model and the spei�ation. The model is a Kripkestruture, whose state is de�ned by a olletion of state variables, whih may be of Booleanor salar type. The variable request is delared to be a Boolean in the above program,while the variable state is a salar, whih an take on the symboli values ready or busy.The value of a salar variable is enoded by the interpreter using a olletion of Booleanvariables, so that the transition relation maybe represented by an OBDD. This enoding isinvisible to the user, however.The transition relation of the Kripke struture, and its initial state (or states), are deter-mined by a olletion of parallel assignments, whih are introdued by the keyword ASSIGN.In the above program, the initial value of the variable state is set to ready. The next valueof state is determined by the urrent state of the system by assigning it the value of theexpressionasestate = ready & request : busy;1 : {ready,busy};esa;The value of a ase expression is determined by the �rst expression on the right handside of a : suh that the ondition on the the left hand side is true. Thus, if state =2

ready & request is true, then the result of the expression is busy, otherwise, it is the setfready,busyg. When a set is assigned to a variable, the result is a non-deterministi hoieamong the values in the set. Thus, if the value of status is not ready, or request is false(in the urrent state), the value of state in the next state an be either ready or busy. Non-deterministi hoies are useful for desribing systems whih are not yet fully implemented(ie:, where some design hoies are left to the implementor), or abstrat models of omplexprotools, where the value of some state variables annot be ompletely determined.Notie that the variable request is not assigned in this program. This leaves the SMVsystem free to hoose any value for this variable, giving it the harateristis of an unon-strained input to the system.The spei�ation of the system appears as a formula in CTL under the keyword SPEC.The SMV model heker veri�es that all possible initial states satisfy the spei�ation. Inthis ase, the spei�ation is that invariantly if request is true, then inevitably the value ofstate is busy.The following program illustrates the de�nition of reusable modules and expressions. Itis a model of a 3 bit binary ounter iruit. Notie that the module name \main" has speialmeaning in SMV, in the same way that it does in the C programming language. The orderof module de�nitions in the input �le is inonsequential.MODULE mainVARbit0 : ounter_ell(1);bit1 : ounter_ell(bit0.arry_out);bit2 : ounter_ell(bit1.arry_out);SPECAG AF bit2.arry_outMODULE ounter_ell(arry_in)VARvalue : boolean;ASSIGNinit(value) := 0;next(value) := value + arry_in mod 2;DEFINEarry_out := value & arry_in;In this example, we see that a variable an also be an instane of a user de�ned module.The module in this ase is ounter ell, whih is instantiated three times, with the namesbit0, bit1 and bit2. The ounter ell module has one formal parameter arry in. Inthe instane bit0, this formal parameter is given the atual value 1. In the instane bit1,arry in is given the value of the expression bit0.arry out. This expression is evaluatedin the ontext of the main module. However, an expression of the form a:b denotes omponentb of module a, just as if the module a were a data struture in a standard programminglanguage. Hene, the arry in of module bit1 is the arry out of module bit0. Thekeyword DEFINE is used to assign the expression value & arry in to the symbol arry out.3

De�nitions of this type are useful for desribing Mealy mahines. They are analogous tomaro de�nitions, but notie that a symbol an be referened before it is de�ned.The e�et of the DEFINE statement ould have been obtained by delaring a variableand assigning its value, as follows:VARarry_out : boolean;ASSIGNarry_out := value & arry_in;Notie that in this ase, the urrent value of the variable is assigned, rather than the nextvalue. De�ned symbols are sometimes preferable to variables, how ever, sine they don'trequire introduing a new variable into the BDD representation of the system. The weak-ness of de�ned symbols is that they annot be given values non-deterministially. Anotherdi�erene between de�ned symbols and variables is that while variables are statially typed,de�nitions are not. This may be an advantage or a disadvantage, depending on our point ofview.In a parallel-assignment language, the question arises: \What happens if a given variableis assigned twie in parallel?" More seriously: \What happens in the ase of an absurdity,like a := a + 1; (as opposed to the sensible next(a) := a + 1;)." In the ase of SMV,the interpreter detets both multiple assignments and irular referenes in expressions, andtreats these as semanti errors, even in the ase where the orresponding system of equationshas a unique solution. Another way of putting this is that there must be a total order in whihthe assignments an be exeuted whih respets all of their data dependenies. The samelogi applies to de�ned symbols. As a result, all legal SMV programs an be implemented.By default, all of the assignment statements in an SMV program are exeuted in paralleland simultaneously. It is possible, however, to de�ne a olletion of parallel proesses, whoseations are interleaved in the exeution sequene of the program. This is useful for desrib-ing ommuniation protools, or asynhronous iruits, or other systems whose ations arenot synhronized (inluding synhronous iruits with more than one lok region). Thistehnique is illustrated by the following program, whih represents a ring of three invertinggates.MODULE mainVARgate1 : proess inverter(gate3.output) ;gate2 : proess inverter(gate1.output) ;gate3 : proess inverter(gate2.output) ;SPEC(AG AF gate1.out) & (AG AF !gate1.out)MODULE inverter(input)VARoutput : boolean;ASSIGNinit(output) := 0;next(output) := !input; 4

A proess is an instane of a module whih is introdued by the keyword proess. Theprogram exeutes a step by non-deterministially hoosing a proess, then exeuting all ofthe assignment statements in that proess in parallel. It is impliit that if a given variableis not assigned by the proess, then its value remains unhanged. Beause the hoie ofthe next proess to exeute is non-deterministi, this program models the ring of invertersindependently of the speed of the gates. For eah gate, the spei�ation of this program statesthat the output of the gate osillates (ie:, that its value is in�nitely often zero, and in�nitelyoften 1). In fat, this spei�ation is false, sine the system is not fored to eventually hoosea given proess to exeute, hene the output of a given gate may remain onstant, regardlessof its input.In order to fore a given proess to exeute in�nitely often, we an use a fairnessonstraint. A fairness onstraint restrits the attention of the model heker to only thoseexeution paths along whih a given CTL formula is true in�nitely of ten. Eah proesshas a speial variable alled running whih is true if and only if that proess is urrentlyexeuting. By adding the delarationFAIRNESSrunningto the module inverter, we an e�etively fore every instane of inverter to exeutein�nitely often, thus making the spei�ation true.One advantage of using proesses to desribe a system is that it allows a partiularlyeÆient OBDD representation of the transition relation. We observe that the set of statesreahable by one step of the program is the union of the sets of states reahable by eahindividual proess. Hene, rather than onstruting the transition relation of the entiresystem, we an use the transition relations of the individual proesses separately and ombinethe results. This an yield a substantial savings in spae in representing the transitionrelation. Oasionally , however, the fat that two proesses annot make simultaneoustransitions leads to inreased omplexity in representing the set of states reahable by nsteps.The alternative to using proesses to model an asynhronous iruit would be to have allgates exeute simultaneously, but allow eah gate the non-deterministi hoie of evaluatingits output, or keeping the same output value. Suh a model of the inverter ring would looklike the following:MODULE mainVARgate1 : inverter(gate3.output);gate2 : inverter(gate2.output);gate3 : inverter(gate1.output);SPEC(AG AF gate1.out) & (AG AF !gate1.out)MODULE inverter(input)VARoutput : boolean; 5

ASSIGNinit(output) := 0;next(output) := !input union output;The set union operator oeres its arguments to singleton sets as neessary. Thus, the nextoutput of eah gate an be either its urrent output, or the negation of its urrent input {eah gate an hoose non-deterministially whether to delay or not. As a result, the numberof possible transitions from a given state an be as high as 2n, where n is the number ofgates. This sometimes (but not always) makes it more expensive to represent the transitionrelation.As a seond example of proesses, the following program uses a variable semaphore toimplement mutual exlusion between two asynhronous proesses. Eah proess has fourstates: idle, entering, ritial and exiting. The entering state indiates that theproess wants to enter its ritial region. If the variable semaphore is zero, it goes to theritial state, and sets semaphore to one. On exiting its ritial region, the proess setssemaphore to zero again.MODULE mainVARsemaphore : boolean;pro1 : proess user;pro2 : proess user;ASSIGNinit(semaphore) := 0;SPECAG !(pro1.state = ritial & pro2.state = ritial)MODULE userVARstate : {idle,entering ,ritial,exiting};ASSIGNinit(state) := idle;next(state) :=asestate = idle : {idle,entering};state = entering & !semaphore : ritial;state = ritial : {ritial,exiting};state = exiting : idle;1 : state;esa;next(semaphore) :=asestate = entering : 1;state = exiting : 0;1 : semaphore; 6

esa;FAIRNESSrunningIf any of the spei�ation is false, the SMV model heker attempts to produe a oun-terexample, proving that the spei�ation is false. This is not always possible, sine formulaspreeded by existential path quanti�ers annot be proved false by showing a single exeutionpath. Similarly, subformulas preeded by universal path quanti�er annot be proved trueby showing a single exeution path. In addition, some formulas require in�nite exeutionpaths as ounterexamples. In this ase, the model heker outputs a looping path up to andinluding the �rst repetition of a state.In the ase of the semaphore program, suppose that the spei�ation were hanged toAG (pro1.state = entering -> AF pro1.state = ritial)In other words, we speify that if pro1 wants to enter its ritial region, it eventually does.The output of the model heker in this ase is shown in Figure 1. The ounterexampleshows a path with pro1 going to the entering state, followed by a loop in whih pro2repeatedly enters its ritial region and returns to its idle state, with pro1 only exeutingonly while pro2 is in its ritial region. This path shows that the spei�ation is false, sinepro1 never enters its ritial region. Note that in the printout of an exeution sequene,only the values of variables that hange are printed, to make it easier to follow the ation insystems with a large number of variables.Although the parallel assignment mehanism should be suitable to most purposes, it ispossible in SMV to speify the transition relation diretly as a propositional formula in termsof the urrent and next values of the state variables. Any urrent/next state pair is in thetransition relation if and only if the value of the formula is one. Similarly, it is possible togive the set of possible initial states as a formula in terms of only the urrent state variables.These two funtions are aomplished by the TRANS and INIT statements respetively. Asan example, here is a desription the three inverter ring using only TRANS and INIT:MODULE mainVARgate1 : inverter(gate3.output);gate2 : inverter(gate1.output);gate3 : inverter(gate2.output);SPEC(AG AF gate1.out)& (AG AF !gate1.out)MODULE inverter(input)VARoutput : boolean;INIToutput = 0TRANSnext(output) = !input | next(output) = output7

speifiation is falseAG (pro1.state = entering -> AF pro1.s... is false:.semaphore = 0.pro1.state = idle.pro2.state = idlenext state:[exeuting proess.pro1℄next state:.pro1.state = enteringAF pro1.state = ritial is false:[exeuting proess .pro2℄next state:[exeuting proess .pro2℄.pro2.state = enteringnext state:[exeuting proess .pro1℄.semaphore = 1.pro2.state = ritialnext state:[exeuting proess .pro2℄next state:[exeuting proess .pro2℄.pro2.state = exitingnext state:.semaphore = 0.pro2.state = idleFigure 1: Model heker output for semaphore example.8

Aording to the TRANS delaration, for eah inverter, the next value of the output is equaleither to the negation of the input, or to the urrent value of the output. Thus, in e�et,eah gate an hoose non-deterministially whether or not to delay.Similarly, one an use the INVAR delaration to speify invariants that every state in thetransition system must satisfy, whih results in restriting the transition relation to onlythose states. The INVAR lause orresponds to the normal assignments. For example,ASSIGNx := y + 1;an be written asINVARx = y + 1The use of TRANS, INVAR and INIT is not reommended, sine logial absurdities in thesedelarations an lead to unimplementable desriptions. For example, one ould delarethe logial onstant 0 to represent the transition relation, resulting in a system with notransitions at all. However, the exibility of these mehanisms may be useful for thosewriting translators from other languages to SMV.To summarize, the SMV language is designed to be exible in terms of the styles ofmodels it an desribe. It is possible to fairly onisely desribe synhronous or asynhronoussystems, to desribe detailed deterministi models or abstrat nondeterministi models, andto exploit the modular struture of a system to make the desription more onise. It is alsopossible to write logial absurdities if one desires to, and also sometimes if one does not desireto, using the TRANS and INIT delarations. By using only the parallel assignment mehanism,however, this problem an be avoided. The language is designed to exploit the apabilitiesof the symboli model heking tehnique. As a result the available data types are all statiand �nite. No attempt has been made to support a partiular model of ommuniationbetween onurrent proesses. In addition, there is no expliit support for some features ofommuniating proess models suh as sequential omposition. Sine the full generality ofthe symboli model heking tehnique is available through the SMV language, it is possiblethat translators from various languages, proess models, and intermediate formats ouldbe reated. In partiular, existing silion ompilers ould be used to translate high levellanguages with rih feature sets into a low level form (suh as a Mealy mahine) that ouldbe readily translated into the SMV language.2 Syntax and SemantisThis setion desribes the syntax and semantis of the SMV input language in detail.2.1 Lexial onventionsAn atom in the syntax desribed below may be any sequene of haraters in the setfA-Z,a-z,0-9, ,-g, beginning with an alphabeti harater. All haraters in a name aresigni�ant, and ase is signi�ant. Whitespae haraters are spae, tab and newline. Any9

string starting with two dashes ("--") and ending with a new line is a omment. A numberis any sequene of digits. Any other tokens reognized by the parser are enlosed in quotesin the syntax expressions below.2.2 ExpressionsExpressions are onstruted from variables, onstants, and a olletion of operators, inludingBoolean onnetives, integer arithmeti operators, and ase expressions. The syntax ofexpressions is as follows.expr :: atom ;; a symboli onstant| number ;; a numeri onstant| id ;; a variable identifier| "!" expr ;; logial not| expr1 "&" expr2 ;; logial and| expr1 "|" expr2 ;; logial or| expr1 "->" expr2 ;; logial impliation| expr1 "<->" expr2 ;; logial equivalene| expr1 "=" expr2 ;; equality| expr1 "!=" expr2 ;; disequality| expr1 "<" expr2 ;; less than| expr1 ">" expr2 ;; greater than| expr1 "<=" expr2 ;; less that or equal| expr1 ">=" expr2 ;; greater than or equal| expr1 "+" expr2 ;; integer addition| expr1 "-" expr2 ;; integer subtration| expr1 "*" expr2 ;; integer multipliation| expr1 "/" expr2 ;; integer division| expr1 "mod" expr2 ;; integer remainder| "next" "(" id ")" ;; next value| set_expr ;; a set expression| ase_expr ;; a ase expressionAn id, or identi�er, is a symbol or expression whih identi�es an objet, suh as a variableor de�ned symbol. Sine an id an be an atom, there is a possible ambiguity if a variableor de�ned symbol has the same name as a symboli onstant. Suh an ambiguity is aggedby the interpreter as an error. The expression next(x) refers to the value of identi�er x innext state (see setion 2.5). The order of parsing preedene from high to low is*,/+,-mod=,!=,<,>,<=,>=!& 10

|->,<->Operators of equal preedene assoiate to the left, exept for the impliation ->, whihassoiates to the right. Parentheses may be used to group expressions.A ase expression has the syntaxase_expr ::"ase"expr_a1 ":" expr_b1 ";"expr_a2 ":" expr_b2 ";"...expr_an ":" expr_bn ";""esa"A ase expression returns the value of the �rst expression on the right hand side, suh thatthe orresponding ondition on the left hand side is true. Thus, if expr a1 is true, then theresult is expr b1. Otherwise, if expr a2 is true, then the result is expr b2, et. If none ofthe expressions on the left hand side is true, the result of the ase expression is the numerivalue 1. It is an error for any expression on the left hand side to return a value other thanthe truth values 0 or 1.A set expression has the syntaxset_expr ::"{" val1 "," ... "," valn "}"| expr1 "in" expr2 ;; set inlusion prediate| expr1 "union" expr2 ;; set unionA set an be de�ned by enumerating its elements inside urly braes. The elements of the setan be numbers or symboli onstants. The inlusion operator tests a value for membershipin a set. The union operator takes the union of two sets. If either argument is a number orsymboli value instead of a set, it is oered to a singleton set.2.3 State variablesA state of the model is an assignment of values to a set of state variables. These variables(and also instanes of modules) are delared by the notationdel :: "VAR"atom1 ":" type1 ";"atom2 ":" type2 ";"...The type assoiated with a variable delaration an be either a Boolean, a salar, a userde�ned module, or an array of any of these (inluding arrays of arrays). A type spei�er hasthe syntax 11

type :: boolean| "{" val1 "," val2 "," ... valn "}"| "array" expr1 ".." expr2 "of" type| atom ["(" expr1 "," expr2 "," ... exprn ")" ℄| "proess" atom ["(" expr1 "," expr2 "," ... exprn ")" ℄val :: atom | numberA variable of type boolean an take on the numerial values 0 and 1 (representing falseand true, respetively). In the ase of a list of values enlosed in quotes (where atoms aretaken to be symboli onstants), the variable is a salar whih take any these values. Inthe ase of an array delaration, the expression expr1 is the lower bound on the subsript,and the expression expr2 is the upper bound. Both of these expressions must evaluate tointeger onstants. Finally, an atom optionally followed by a list of expressions in parenthesesindiates an instane of module atom (see setion 2.10). The keyword proess auses themodule to be instantiated as an asynhronous proess (see 2.13).2.4 The ASSIGN delarationAn assignment delaration has the formdel :: "ASSIGN"dest1 ":=" expr1 ";"dest2 ":=" expr2 ";"...dest :: atom| "init" "(" atom ")"| "next" "(" atom ")"On the left hand side of the assignment, atom denotes the urrent value of a variable,init(atom) denotes its initial value, and next(atom) denotes its value in the next state.If the expression on the right hand side evaluates to an integer or symboli onstant, theassignment simply means that the left hand side is equal to the right hand side. On the otherhand, if the expression evaluates to a set, then the assignment means that the left hand sideis ontained in that set. It is an error if the value of the expression is not ontained in therange of the variable on the left hand side.In order for a program to be implementable, there must be some order in whih theassignments an be exeuted suh that no variable is assigned after its value is referened.This is not the ase if there is a irular dependeny among the assignments in any givenproess. Hene, suh a ondition is an error. In addition, it is an error for a variable to beassigned a value more than one at any given time. To be preise, it is an error if:1. the next or urrent value of a variable is assigned more than one in a given proess,or2. the initial value of a variable is assigned more than one in the program, or12

3. the urrent value and the initial value of a variable are both assigned in the program,or4. the urrent value and the next value of a variable are both assigned in the program2.5 The TRANS delarationThe transition relation R of the model is a set of urrent state/next state pairs. Whether ornot a given pair is in this set is determined by a Boolean valued expression T , introduedby the TRANS keyword. The syntax of a TRANS delaration isdel :: "TRANS" exprIt is an error for the expression to yield any value other than 0 or 1. If there is more thanone TRANS delaration, the transition relation is the onjuntion of all of TRANS delarations.2.6 The INIT delarationThe set of initial states of the model is determined by a Boolean expression under the INITkeyword. The syntax of an INIT delaration isdel :: "INIT" exprIt is an error for the expression to ontain the next() operator, or to yield any value otherthan 0 or 1. If there is more than one INIT delaration, the initial set is the onjuntion ofall of the INIT delarations.2.7 The INVAR delarationThe set of all states of the model is restrited to those that satisfy a Boolean expressionunder the INVAR keyword. Thus, INVAR de�nes an invariant on the transition system. Thesyntax of an INVAR delaration isdel :: "INVAR" exprAs in the ase of INIT, it is an error for the expression to ontain the next() operator, or toyield any value other than 0 or 1. If there is more than one INVAR delaration, the invariantis the onjuntion of all of the INVAR delarations.2.8 The SPEC delarationThe system spei�ation is given as a formula in the temporal logi CTL, introdued by thekeyword SPEC. The syntax of this delaration isdel :: "SPEC" tlformA CTL formula has the syntax 13

tlform ::expr ;; a Boolean expression| "!" tlform ;; logial not| tlform1 "&" tlform2 ;; logial and| tlform1 "|" tlform2 ;; logial or| tlform1 "->" tlform2 ;; logial implies| tlform1 "<->" tlform2 ;; logial equivalene| "E" pathform ;; existential path quantifier| "A" pathform ;; universal path quantifierThe syntax of a path formula ispathform ::"X" tlform ;; next time"F" tlform ;; eventually"G" tlform ;; globallytlform1 "U" tlform2 ;; untilThe order of preedene of operators is (from high to low)E,A,X,F,G,U!&|->,<->Operators of equal preedene assoiate to the left, exept for the impliation ->, whihassoiates to the right. Parentheses may be used to group expressions. It is an error for anexpression in a CTL formula to ontain a next() operator or to return a value other than 0or 1. If there is more than one SPEC delaration, the spei�ation is the onjuntion of all ofthe SPEC delarations. However, eah of the SPEC formulas is evaluated and the results arereported separately, one by one, in the order of the SPEC delations in the program text.2.9 The FAIRNESS delarationA fairness onstraint is a CTL formula whih is assumed to be true in�nitely often in allfair exeution paths. When evaluating spei�ations, the model heker onsiders pathquanti�ers to apply only to fair paths. Fairness onstraints are delared using the followingsyntax:del:: "FAIRNESS" tlformA path is onsidered fair if and only if all fairness onstraints delared in this manner aretrue in�nitely often.
14

2.10 The PRINT delarationSometimes it is desired to �nd out whih states satisfy a partiular spei�ation, ratherthan heking whether all of the reahable states satisfy it. The PRINT delaration evaluatesa spei�ation and prints a formula desribing the set of reahable states that satisfy thisformula. In partiular,PRINT 1prints a formula desribing the set of all reahable states.del:: "PRINT" tlform| "PRINT" header ":" tlformwhere the header tells SMV whih variables should appear in the formula:header:: "hide" id1 "," id2 "," ... idn| "expose" id1 "," id2 "," ... idnFor example,PRINT expose x, y: x = y | y = zwill print a formula desribing all possible values of x and y variables in all the reahablestates satisfying the formula x = y | y = z. If the expose keyword is hanged to hide,then the formula will ontain all of the state variables exept x and y.2.11 The DEFINE delarationIn order to make desriptions more onise, a symbol an be assoiated with a ommonlyused expression. The syntax for this delaration isdel :: "DEFINE"atom1 ":=" expr1 ";"atom2 ":=" expr2 ";"...atomn ":=" expr3 ";"When every identi�er referring to the symbol on the left hand side ours in an expression,it is replaed by the expression on the right hand side. The expression on the right hand sideis always evaluated in its original ontext, however (see the next setion for an explanationof ontexts). Forward referenes to de�ned symbols are allowed, but irular de�nitions arenot allowed, and result in an error.
15

2.12 ModulesA module is an enapsulated olletion of delarations. One de�ned, a module an be reusedas many times as neessary. Modules an also be parameterized, so that eah instane of amodule an refer to di�erent data values. A module an ontain instanes of other modules,allowing a strutural hierarhy to be built. The syntax of a module is as follows.module ::"MODULE" atom ["(" atom1 "," atom2 "," ... atomn ")" ℄del1del2...del3The atom immediately following the keyword "MODULE" is the name assoiated with themodule. Module names are drawn from a separate name spae from other names in theprogram, and hene may lash with names of variables and de�nitions. The optional list ofatoms in parentheses are the formal parameters of the module. Whenever these parametersour in expressions within the module, they are replaed by the atual parameters whihare supplied when the module is instantiated (see below).An instane of a module is reated using the VAR delaration (see setion 2.3) Thisdelaration supplies a name for the instane, and also a list of atual parameters, whih areassigned to the formal parameters in the module de�nition. An atual parameter an be anylegal expression. It is an error is the number of atual parameters is di�erent from the numberof formal parameters. The semantis of module instantiation is similar to all-by-referene.For example, in the following program fragment:...VARa : boolean;b : foo(a);...MODULE foo(x)ASSIGNx := 1;the variable b is assigned the value 1. This distinguishes the all-by-referene mehanismfrom a all-by-value sheme. Now onsider the following program:...DEFINEa := 0;VARb : bar(a);...MODULE bar(x)DEFINE 16

a := 1;y := x;In this program, the value of y is 0. On the other hand, using a all-by-name mehanism,the value of y would be 1, sine a would be substituted as an expression for x.Forward referenes to module names are allowed, but irular referenes are not, andresult in an error.2.13 Identi�ersAn id, or identi�er, is an expression whih referenes an objet. Objets are instanes ofmodules, variables, and de�ned symbols. The syntax of an identi�er is as follows.id :: atom| id "." atom| id "[" expr "℄"An atom identi�es the objet of that name as de�ned in a VAR or DEFINE delaration. If aidenti�es an instane of a module, then the expression a:b identi�es the omponent objetnamed b of instane a. This is preisely analogous to aessing a omponent of a strutureddata type. Note that an atual parameter of module instane a an identify another moduleinstane b, allowing a to aess omponents of b, as in the following example:...VARa : foo(b);b : bar(a);...MODULE foo(x)DEFINE := x.p | x.q;MODULE bar(x)VARp : boolean;q : boolean;Here, the value of is the logial or of p and q.If a identi�es an array, the expression a[b℄ identi�es element b of array a. It is an errorfor the expression b to evaluate to a number outside the subsript bounds of array a, or toa symboli value.
17

2.14 The main moduleThe syntax of an SMV program isprogram ::module1module2...modulenThere must be one module with the name main and no formal parameters. The modulemain is the one evaluated by the interpreter.2.15 ProessesProesses are used to model interleaving onurreny. A proess is a module whih is in-stantiated using the keyword proess (see setion 2.3). The program exeutes a step bynon-deterministially hoosing a proess, then exeuting all of the assignment statements inthat proess in parallel. It is impliit that if a given variable is not assigned by the proess,then its value remains unhanged. Eah instane of a proess has a speial Boolean variableassoiated with it alled running. The value of this variable is 1 if and only if the proessinstane is urrently seleted for exeution.3 ExamplesIn this setion, we look at the performane of the SMV symboli model heker for twohardware examples { a synhronous fair bus arbiter, and an asynhronous distributed mutualexlusion ring iruit (the one studied by David Dill in his thesis [Dil89℄ and designed byAlain Martin [Mar85℄).3.1 Synhronous arbiterThe synhronous arbiter iruit is an example of a synhronous �nite state mahine. It isomposed of a \daisy hain" of arbiter ells depited in Figure 2. Under normal operation,the arbiter grants the bus on eah lok yle to the requester with the highest priority.Eah arbiter ell reeives a \bus grant" input from the next higher priority ell. If thissignal is true, and the ell's \request" input is true, then the ell ativates its \aknowledge"output, and negates \bus grant" to the next lower priority ell. On the other hand, if the\request" input is false, then the \bus grant" input is passed along to the next ell via the\bus grant" output. Despite this priority sheme, the bus arbiter is designed to insure thatevery requester eventually is granted the bus. During light bus traÆ, the priority shemeis used, but as the bus approahes saturation, the arbiter reverts to a round-robin sheme.This is aomplished by means of a \token", whih is passed in a yli manner from the�rst ell down to the last, and then bak to the �rst. The \token" moves one eah lokyle. When the \token" passes a ell whose \request" is ative, it sets a ag \waiting".The \waiting" ag remains set as long as the request persists. When the token returns to18

