An Algorithm for Building Reachability Trees

Step 1. Label the initial marking \(M_0 \) as the root & tag it "new";

Step 2. While "new" markings exist, do the following:

1. Select a new marking \(M \);

2. If \(M \) is identical to a marking on the path from the root to \(M \), then tag \(M \) "old", and go to another new marking;

3. If no transitions are enabled at \(M \), tag \(M \) "dead-end";

4. While there exist enabled transitions at \(M \), do the following for each enabled transition \(t \) at \(M \):

 4.1. Obtain the marking \(M' \) that results from firing \(t \) at \(M \);

 4.2. On the path from the root to \(M \) if there exists a marking \(M'' \) such that \(M'(p) \geq M''(p) \) for each place \(p \) and \(M' \neq M'' \), then replace \(M'(p) \) by \(\omega \) for each place such that \(M'(p) > M''(p) \);

 4.3. Introduce \(M' \) as a node, draw an arc with label \(t \) from \(M \) to \(M' \), and tag \(M' \) "new".