
Chapter 4

Specification of the Unix
filing system

Carroll Morgan and Bernard Sufrin

Abstract A specification of the Unix filing system is given using a notation based
on elementary mathematical set theory. The notation used involves very few special
constructs of its own.

The specification is detailed enough to capture the filing system’s behaviour at
the system call level, yet abstracts from issues of data representation, whether within
programs or on the storage medium, and from the description of any algorithms which
might be used to implement the system.

The presentation of the specification is in several stages, each new stage building on
its predecessors; major concepts are introduced separately so that they may be easily
understood. The notation used allows these separate stages to be joined together
to give a complete description of each filing system operation – including its error
conditions.

4.1 Introduction

The Unix [52] operating system is widely known, and its filing system is well un-
derstood. Why, then, do we present a formal specification of it here? It is because
the idea of formalising the specification of computer-based systems has yet to re-
ceive widespread acceptance among computing practitioners, and in our view this is
because very few realistic examples have been published. Publishing a post hoc spec-
ification of aspects of the Unix filestore offered us the possibility of showing how to
use a mathematically based notation to capture important aspects of the behaviour
of a system that is clearly not just a toy.

The use of natural language – without supporting mathematics – has serious limi-
tations as a vehicle for the description of computer systems. As anyone who has ever

Copyright c© 1984 IEEE. Reprinted, with permission, from IEEE Transactions on Software Engi-
neering, Vol. SE-10, No. 2, pp. 128–142.

41



42

used an operating system will confirm, the manuals cannot tell the whole story about
the behaviour of a system. Indeed, almost every programmer who starts to use a new
operating system sets up a number of experiments, by which she attempts to discover
how it ‘really’ behaves. It is a commonplace observation that large computer systems,
operating systems in particular, accumulate around themselves a body of folklore –
necessary knowledge for anybody who wishes to use them effectively – and a number
of ‘gurus’ – people who understand the hidden secrets of the system because they
have read . . . the source code!

In our approach to the description of computer systems we use natural language
together with the formal language of mathematics. And our particular style is sim-
ply a means of presenting the formal part of the description in a way that can be
easily manipulated and understood. The formal descriptions themselves are given
in elementary mathematical set theory, which is convenient for this purpose because
programs are themselves mathematical objects [1, 20]. The difference between a
mathematical specification and a program is only of degree: they are objects drawn
from the same continuum. This uniformity allows, for example, the refinement of
formal specifications into programs to be mathematically verified [33].

By using a mixture of natural language and elementary set theory we have enabled
ourselves to give a description which is comprehensive enough to describe the essential
aspects of the system’s behaviour, but is sufficiently abstract that it will not burden
the reader with the kind of detail that appears in the source code. In particular,
it has allowed us to avoid describing the representation of data on external media
and within programs and to refrain from presenting details of the algorithms that are
used to implement the filestore operations. Thus the specification here might occur
midway along the path from a more abstract but informal specification – a description
such as is given in [52] – to a more concrete one – the source code itself [38]. This
intermediate level of abstraction is one which conveniently captures the behaviour of
the system at the system call level, without being concerned with representational
matters.

At each stage of presentation, the static (invariant) properties of the system are
characterised by naming the observations that can be made of it, attributing a (set
theoretical) type to each observation, and recording the invariant relationships be-
tween these observations as a collection of predicates.

The dynamic behaviour of the system is characterised by giving – for each of the
operations under which the system evolves – the names of the observations that can be
made before the operation, the names of those that can be made after the operation,
and a collection of predicates that relate these two sets of observations. The operations
in question in this case are just the Unix system calls, and the observations we are
interested in may include components of the system state, and the ‘arguments’ and
‘results’ of system calls.

When providing a specification (such as this one) which is a ‘tutorial’ exercise
rather than a reference manual, the concepts must be introduced gradually so as not
to overwhelm the reader with immediate detail. The specification begins with the
definition of a file alone, but ultimately includes channels (file descriptors), file iden-
tifiers (i-numbers), and even the abstract format of a directory file. Error conditions
are treated last of all, so that they do not complicate the description of what usually
happens with the problems of what might happen.

One novel aspect of the specification style is the use of a homogeneous framework
– schemas – to characterise both dynamic and static properties. Schemas supplement
the notation of set theory by providing notations for naming and combining groups



4.2. SCOPE OF THE SPECIFICATION 43

of observations and predicates, and methods of reasoning about the combinations;
this is exactly what is needed to present the specification gradually. Moreover, since
the tutorial style of the specification is based on mathematics, it is necessary when
providing a reference manual only to collect its definitions into one unit – a summary,
in effect – using the laws of combination of schemas.

The value of a specification such as this is that it defines the system in question,
so that its properties may be determined by reasoning rather than by performing
experiments on the system itself – these could be difficult (if the system is complex)
and costly (if it has not yet been built). Since several specifications can be constructed
for one system, each may take a point of view, or adopt a level of abstraction, which
is appropriate to the questions it is required to answer. And if these specifications are
presented within a formal framework, the question of their meaning and consistency
is only a mathematical one, and so can be answered by mathematical means rather
than by armwaving. But of course the real payoff is that when the system is built
and in use, all those painful – and perplexing – visits to the guru can be avoided.

4.2 Scope of the specification

The system described is Unix Level 6. The operations covered include the system
calls

read write create
seek open close
fstat link unlink

and the commands

ls move

Some of the features not treated are

• special files;

• pipes; and

• file access permissions.

Some of the more practical considerations, such as storage device size, are ex-
amined in Appendix 4.5. The treatment of errors covers only a few examples, but
illustrates the technique which would apply to them all.

4.3 The specification

4.3.1 Bytes and files

The ultimate constituent of the filing system is the byte; the set of all bytes is called
BYTE:

BYTE == 0 . . 255

A file is a finite sequence of bytes of any length1 (including the null sequence 〈 〉 of
length 0):

FILE == seqBYTE
1See Appendix 4.5.1.



44

In general, a sequence of X is a partial function from the natural numbers (N) into
X ; for any sequence s and natural number n, s(n) is the nth element of s (if defined).
Thus for any f of type FILE f (1) is the first byte of the file. The function # gives
the length of any sequence; hence #f is the size of the file, and f (#f ) is its last byte.

4.3.2 Reading and writing

When a file is read the file itself is not changed; if file ′ is the file’s value after the
operation, and file is its value before, then

file ′ = file

The result of reading a file is a sequence data! of bytes:

data! : seqBYTE

The value of data! is determined by an offset into the file and a length to be read;
both are natural numbers (i.e. non-negative integers):

offset?, length? : N

and in fact

data! = (1 . . length?) C (file after offset?)

The infix operator ‘after’ takes a sequence, in this case file, as its first argument and
an offset as its second argument, and returns the subsequence of file beginning after
the offset. The first length? bytes (if there are that many) are then selected from the
resultant sequence to give the data returned by the read. The operator ‘after’ has
the following definition:

[X ]
after : seqX × N → seqX

∀ s : seqX ; offset : N • dom(s after offset) = (1 . . #s − offset) ∧
(∀n : N •

(n + offset) ∈ dom s ⇒
(s after offset)(n) = s(n + offset))

Therefore

(file after offset?)

is a formalisation of

file after the first offset? bytes

This means that the first byte of the file has offset 0.
The domain restriction operator (C) here excludes any element whose index is not

in the set 1 . . length?; data! is therefore

file, after offset?, for no more than length?



4.3. THE SPECIFICATION 45

For example, if

file = 〈X ,A,N ,F ,R,E ,D〉
offset? = 2
length? = 3

then

(file after 2)(n) = file(n + 2)

That is,

file after offset? = 〈N ,F ,R,E ,D〉

and therefore

data! = (1 . . 3) C 〈N ,F ,R,E ,D〉 = 〈N ,F ,R〉

All of these properties may be collected in a schema which defines the reading
operation:

file,file ′ : FILE
offset?, length? : N
data! : seqBYTE

file ′ = file
data! = (1 . . length?) C (file after offset?)

When a schema is used (as it is here) to characterise an operation, its signature

file,file ′ : FILE
offset?, length? : N
data! : seqBYTE

gives names and types to the observations that can be made before and after the
operation. The predicate

file ′ = file
data! = (1 . . length?) C (file after offset?)

relates these observations to one another.
Naming a schema allows it to be referred to within subsequent definitions; the

name is written as part of the enclosing ‘box’.

readFILE
file,file ′ : FILE
offset?, length? : N
data! : seqBYTE

file ′ = file
data! = (1 . . length?) C (file after offset?)

The definition above can be read:



46

The readFILE operation does not change the file. It expects an offset and
length as parameters, and returns as its result the data read. The value
returned is the longest sequence of bytes, of length not greater than that
requested, which begins at the given offset in the file.

To define the writeFILE operation, a similar schema is used; this time, however,
the file is changed.

The byte ZERO is used in the definition of writeFILE ; it is a distinguished element
of BYTE :

ZERO == 0

And zero(k) is a sequence of length k containing only ZERO bytes:

zero : N → seqBYTE

∀n : N • zero(n) = (λ k : 1 . . n • ZERO)

Writing with an offset greater than the file length leaves ZERO bytes between the
previous end of the file and the newly written data.

writeFILE
file,file ′ : FILE
offset? : N
data? : seqBYTE

file ′ = zero(offset?)⊕ file ⊕ (data? shift offset?)

The infix operator ‘shift’ takes a sequence, in this case data? and an offset and shifts
data? by the offset. It has the following definition:

[X ]
shift : seqX × N → (N 7→ X )

∀ s : seqX ; offset : N •
dom(s shift offset) = {i : dom s • i + offset} ∧
(∀n : dom(s shift offset) •

(s shift offset)(n) = s(n − offset))

‘⊕’ is the function overriding operator: f ⊕ g behaves like g except where g is unde-
fined, in which case it behaves like f . Thus the value of any byte in the file

zero(offset?)⊕ file ⊕ (data? shift offset?)

is determined first by the written data?, then by the previous contents of the file, and
finally is ZERO otherwise. The length of the new file is

max (#file, offset? + #data?)

Thus

file = 〈X ,A,N ,F ,R,E ,D〉 ∧
offset? = 8 ∧



4.3. THE SPECIFICATION 47

data? = 〈N ,U ,N , I ,B ,A,D〉
⇒

file ′ = 〈t,t,t,t,t,t,t,t〉 ⊕ 〈X ,A,N ,F ,R,E ,D〉 ⊕
(〈N ,U ,N , I ,B ,A,D〉 shift 8)

⇒
file ′ = 〈X ,A,N ,F ,R,E ,D ,t〉 ⊕ (〈N ,U ,N , I ,B ,A,D〉 shift 8)

⇒
file ′ = 〈X ,A,N ,F ,R,E ,D ,t,N ,U ,N , I ,B ,A,D〉

(The byte ZERO is here represented by a ‘t’.)
A consequence of this definition is that writeFILE is possible for all values of file,

offset?, and data? (subject to any limitation on the maximum size of files in general);
formally, this is shown by proving that there is always a value for file ′, consistent
with its type FILE (seqBYTE ), such that the following predicate holds:

file ′ = zero(offset?)⊕ file ⊕ (data? shift offset?)

4.3.3 File storage

The file storage system allows files to be stored and retrieved using file identifiers;
the set of all file identifiers is called FID:

[FID ]

The storage system is characterised by a single observation: a partial function2 from
FID to FILE .

SS
fstore : FID 7→ FILE

An empty file may be created in the storage system by supplying its identifier as a
parameter to an operation which changes an old storage system, SS , into a new one
which contains the created file, SS ′. SS is equivalent to

fstore : FID 7→ FILE

so SS ′ is equivalent to

fstore ′ : FID 7→ FILE

Thus, the effect of decorating a schema name is to decorate the names of its observa-
tion(s).

The operation that creates an empty file is defined by the schema

createSS
SS
SS ′

fid : FID

fstore ′ = fstore ⊕ {fid 7→ 〈 〉}

2See Appendices 4.5.2 and 4.5.3.



48

The new store fstore ′ is identical to the old except that fid now refers to the empty
file 〈 〉– whether or not it referred to a file previously. Thus creating an existing file
empties it. We do not write ‘fid?’ because later it will be seen that these file identifiers
are in fact not visible to the user.

Destroying a file is defined

destroySS
SS
SS ′

fid : FID

fid ∈ dom fstore
fstore ′ = {fid} −C fstore

Naturally, a file must exist (∈ dom fstore) to be destroyed. The new fstore ′ is identical
to the old except that there is no file referred to by fid :

fid 6∈ dom fstore ′

4.3.4 Reading and writing stored files – framing

Reading a stored file is defined by the following schema:

SS
SS ′

fid : FID
offset?, length? : N
data! : seqBYTE
file,file ′ : FILE

fid ∈ dom fstore
file = fstore(fid)
data! = (1 . . length?) C (file after offset?)
file ′ = file
fstore ′ = fstore ⊕ {fid 7→ file ′}

The file read is that referred to by fid , the data output is from offset? for length?
(as before), and the file is not changed.

This long-winded definition of reading a stored file shows that it is in fact a
combination of the definitions given above for

• reading a file (readFILE ); and

• the storage system (SS ).

This kind of combination is called framing, because it involves specifying

• which file is read or written; and

• that the other files are unaffected.



4.3. THE SPECIFICATION 49

That is, a frame is supplied within which the operation occurs. The following schema
states this framing combination generally:

ΦSS
SS
SS ′

file,file ′ : FILE
fid : FID

fid ∈ dom fstore
file = fstore(fid)
fstore ′ = fstore ⊕ {fid 7→ file ′}

fid denotes the file affected in fstore – namely (file, file ′) – and no other file is changed.
Φ is conventionally used as the first letter of framing schemas (Φ for frame).

Although the definition given above of reading a stored file could have stated ex-
plicitly that the filestore is not changed – fstore ′ = fstore – this is really a consequence
of the fact that the file itself is not changed. And the framing schema ΦSS makes
it much easier to write such definitions generally – for example, the operation above
could be defined as follows:

readSS
ΦSS
readFILE

The signatures and predicates of the two schemas are combined separately and then
joined to form the new schema. Where the two schemas share a named observation
in their signatures, it appears only once in the new schema. Thus, although file and
file ′ occur in both readFILE and ΦSS , they appear only once in readSS .

Writing a stored file is defined similarly.

writeSS
ΦSS
writeFILE

Its definition may be expanded:

SS
SS ′

fid : FID
offset? : N
data? : seqBYTE
file,file ′ : FILE

fid ∈ dom fstore
file = fstore(fid)
file ′ = zero(offset?)⊕ file ⊕ (data? shift offset?)
fstore ′ = fstore ⊕ {fid 7→ file ′}

As in readSS , file and file ′ appear only once in this combination.



50

4.3.5 Hiding and simplification

In the schema readSS the observations file and file ′ are entirely determined in value
by the other observations of the schema. Unless it is necessary to observe the whole
file involved in a read or write operation, these observations have become inessential
to the specification. Observations such as these are called auxiliary.

Hiding auxiliary observations can allow simplification of the schema in which they
occur. Components are hidden by removing them from the signature of the schema
and by existentially quantifying them in the predicate part. readSS , with file and
file ′ hidden, is written readSS \ (file,file ′) and is in full

SS
SS ′

fid : FID
offset?, length? : N
data! : seqBYTE

(∃file,file ′ : FILE •
fid ∈ dom fstore
file = fstore(fid)
data! = (1 . . length?) C (file after offset?)
file ′ = file
fstore ′ = fstore ⊕ {fid 7→ file ′})

This schema can be simplified using basic predicate calculus:

SS
SS ′

fid : FID
offset?, length? : N
data! : seqBYTE

fid ∈ dom fstore
fstore ′ = fstore
data! = (1 . . length?) C (fstore(fid) after offset?)

Writing may be treated similarly.

4.3.6 Sequential access to files

The read and write operations described so far support random access; in order to
allow easy sequential use of these operations, a channel is defined which remembers
the current position in the file.

CHAN
fid : FID
posn : N



4.3. THE SPECIFICATION 51

A channel has a file identifier fid – which may refer to a file in fstore – and a position
posn within the file. As usual, operations involving the channel take the form of a
predicate relating the observations of

CHAN

to those of

CHAN ′

They have the additional property that the fid of a channel is never changed. The
schema ∆CHAN expresses the general properties of any operation on a channel (∆
for change).

∆CHAN
CHAN
CHAN ′

fid ′ = fid

Sequential reading and writing using channels is easily characterised by combining
the previous definitions.

readCHAN
readSS
∆CHAN

offset? = posn
posn ′ = posn + #data!

writeCHAN
writeSS
∆CHAN

offset? = posn
posn ′ = posn + #data?

In addition, there is an operation seekCHAN which changes only the position.3

seekCHAN
SS
SS ′

∆CHAN
newposn? : N

fstore ′ = fstore
posn ′ = newposn?

The new position is not constrained to be within the file.4

3See Appendix 4.5.4.
4See Appendix 4.5.5.



52

4.3.7 Channel system

A channel storage system may be defined which is analogous to the file storage system;
it allows channels to be stored and retrieved using channel identifiers taken from the
set CID. A channel identifier is a Unix ‘file descriptor’:

[CID ]

CS
cstore : CID 7→ CHAN

Operations on the channel system have the general form

∆CS
CS
CS ′

These operations are defined below:

openCS
∆CS
CHAN
cid ! : CID

cid ! 6∈ dom cstore
posn = 0
cstore ′ = cstore ⊕ {cid ! 7→ θCHAN }

openCS creates a new channel and returns a new identifier which refers to it; the new
channel’s position is zero. θCHAN stands for the ‘pair’ with components posn and
fid. In this case the component posn is zero and the component fid is unconstrained
(its value will be determined at a later stage).

closeCS
∆CS
cid? : CID

cid? ∈ dom cstore
cstore ′ = {cid?} −C cstore

closeCS removes a channel from the channel system.

4.3.8 The access system

The storage and channel systems together form the access system.

AS
SS
CS

{chan : ran cstore • chan.fid} ⊆ dom fstore



4.3. THE SPECIFICATION 53

The predicate in the above schema requires that every channel must refer to an
existing file. This property is an invariant of the access system and is preserved by
all operations on it. The schema ∆AS automatically includes the invariant of both
the initial (AS ) and final (AS ′) state.

∆AS
AS
AS ′

Reading, writing and seeking in the access subsystem are defined with the assis-
tance of a framing schema.

ΦAS
∆AS
∆CHAN
cid? : CID

cid? ∈ dom cstore
θCHAN = cstore(cid?)
cstore ′ = cstore ⊕ {cid? 7→ θCHAN ′}

θCHAN in the predicate part is the channel with components fid and posn as they
appear in ∆CHAN ; θCHAN ′ is similar but with components fid ′ and posn ′.

Reading, writing and seeking in the access system are now defined by combination
of previous definitions and the framing schema ΦAS ; as usual, some auxiliary variables
will be hidden.

The operator ∧ when applied to two schemas is shorthand for writing the two
together; that is,

ΦAS ∧ readCHAN

is just

ΦAS
readCHAN

The definitions are

readAS =̂ (ΦAS ∧ readCHAN ) \ (offset?,fid ′, posn ′,file ′)
writeAS =̂ (ΦAS ∧ writeCHAN ) \ (offset?,fid ′, posn ′)
seekAS =̂ (ΦAS ∧ seekCHAN ) \ (fid ,fid ′, posn, posn ′)

which when expanded and simplified give



54

readAS
∆AS
cid? : CID
length? : N
data! : seqBYTE
CHAN
file : FILE

cid? ∈ dom cstore
θCHAN = cstore(cid?)
file = fstore(fid)
fstore ′ = fstore
(∃CHAN ′ • posn ′ = posn + #data! ∧

fid ′ = fid ∧
cstore ′ = cstore ⊕ {cid? 7→ θCHAN ′}) ∧

data! = (1 . . length?) C (file after posn)

and

writeAS
∆AS
cid? : CID
data? : seqBYTE
CHAN
file,file ′ : FILE

cid? ∈ dom cstore
θCHAN = cstore(cid?)
file = fstore(fid)
file ′ = zero(posn)⊕ file ⊕ (data? shift posn)
fstore ′ = fstore ⊕ {fid 7→ file ′}
(∃CHAN ′ • posn ′ = posn + #data? ∧

fid ′ = fid ∧
cstore ′ = cstore ⊕ {cid? 7→ θCHAN ′})

and

seekAS
∆AS
cid? : CID
newposn? : N

cid? ∈ dom cstore
fstore ′ = fstore
(∃CHAN ′ • posn ′ = newposn? ∧

fid ′ = (cstore cid?).fid ∧
cstore ′ = cstore ⊕ {cid? 7→ θCHAN ′})

In addition to the three operations above, the fstat operation, which returns the
size of the file accessed with a given CID , can be defined by



4.3. THE SPECIFICATION 55

fstat
∆AS
cid? : CID
size! : N

cid? ∈ dom cstore
fstore ′ = fstore
cstore ′ = cstore
size! = #(fstore((cstore cid?).fid))

4.3.9 A file naming system

The naming system associates file names from the set NAME with file identifiers FID;
these file names will normally be chosen by the users of the file system.

NS0
nstore : NAME 7→ FID

To create an association in the naming system, a name and fid are supplied; the
new association overrides any existing association for that name.

createNS
∆NS0
name? : NAME
fid : FID

nstore ′ = nstore ⊕ {name? 7→ fid}

Given a name, its fid may be discovered.

lookupNS
ΞNS0
name? : NAME
fid ′ : FID

name? ∈ domnstore
fid ′ = nstore(name?)

The schema ΞNS0 expresses the observation that the naming system is unaffected;
its definition is

ΞNS0
NS0
NS0′

nstore ′ = nstore

ΞCS and ΞSS are defined similarly.
Finally, given a name?, any association it has may be destroyed (this is the unlink

operation).



56

destroyNS
∆NS0
name? : NAME

name? ∈ domnstore
nstore ′ = {name?} −C nstore

4.3.10 Pathnames and directories

By further revealing file names to be sequences of syllables

[SYL]
NAME == seqSYL

it is possible to provide more structure in the name space as a whole (the name space
is domnstore). The naming system is augmented by a set of directory names dnames:

NS
NS0
dnames : P NAME

front(| dnames ∪ domnstore |) ⊆ dnames

P is the powerset constructor. The fat brackets (||) denote application of the function
(front in this case) to a set of arguments to yield a set of results. That is,

front(| S |) = {s : S | s ∈ dom front • front(s)}
The front of a sequence is obtained by removing its last element; only the empty

sequence (‘root’) has no front . The predicate states that the front of every (file or
directory) name must itself be a directory name (i.e. every file or directory – except
root – must appear in some directory). For example, if domnstore included

/Carroll/Unix/paper
/dev/sanders
/Bernard/IEEE/Unixpaper
/Bernard/Mumble

(where syllables are preceded by /) then dnames would necessarily include

/
/Carroll
/dev
/Bernard
/Carroll/Unix
/Bernard/IEEE

Given a directory name dir?, the operation lsNS reveals its ‘contents’.

lsNS
ΞNS
dir? : NAME
contents! : P SYL

dir? ∈ dnames
contents! = last(| {n : domnstore | n 6= 〈〉 ∧ front n = dir?} |)



4.3. THE SPECIFICATION 57

The last of a sequence is its final element.

4.3.11 Directories are files

An additional constraint on the Unix system is that directories are in fact stored as
files; they can be read by users. That is,

dnames ⊆ domnstore

dirformat is a function that maps a FILE to the directory structure it represents:

dirformat : FILE 7→ (SYL 7→ FID)
RootFid : FID

The mathematical definition of dirformat would be the definition of the format of a
directory file – but such a definition need not be given here. RootFid is the FID of
the root directory 〈 〉. The content of each directory file is determined by the system
in accordance with the following requirement:

dirstored
SS
NS

rannstore ⊆ dom fstore
nstore = (λn : NAME | n 6= 〈〉 ∧ n ∈ domnstore •

(dirformat(fstore(nstore(front n))))(last n))
∪ {〈 〉 7→ RootFid}.

The constraint above may be paraphrased as follows:

The association of names and file identifiers (nstore) is found by tak-
ing for any name (λn : NAME . . .) all of its syllables except the last
(front n); finding the file identifier so referred to (nstore . . .); finding the
contents of that file (fstore . . .); interpreting those contents as a directory
(dirformat . . .); and finally using the last syllable of the original name
(last n) to obtain a file identifier from that directory – unless the original
name is empty, in which case its file identifier is RootFid .

4.3.12 The complete filing system

The complete filing system is described by combining the descriptions of the three
separate systems above: the storage systems SS , the channel system CS , and the
name system NS .

FS
SS
CS
NS
usedfids : P FID

usedfids = rannstore ∪ {chan : ran cstore • chan.fid}
usedfids ⊆ dom fstore



58

The auxiliary observation usedfids is introduced; it is the set of file identifiers in use
at any time, either in the channel store or the name store. The predicate states that
all file identifiers in use must refer to an existing file in the file store; members of
(dom fstore \usedfids) are the fids of files which may be destroyed (since they are not
referred to).

The filing system operations can be specified by combining the definitions of their
effects on each separate subsystem. The createFS operation, for example, makes an
empty file in the storage system, a new channel referring to it in the channel system,
and associates a name with it in the naming system.

createFS0
∆FS
createSS
openCS
createNS

name? ∈ domnstore ⇒ fid = nstore(name?)
name? 6∈ domnstore ⇒ fid 6∈ usedfids

If an existing name is created, the file it refers to is emptied – i.e. it is simply replaced
with an empty file, and its previous contents are lost. If the name does not exist in
the naming system, a new fid is chosen which is not currently in use.

The channel identifier of a channel referring to the new (or newly truncated) file
is returned (cid ! is an observation of openCS ).

The definition of createFS above is not sufficient. Remember that the name store
is encoded in the file store as directory files. In the case where a new name is added
to the name store, it also needs to be added to the (encoded) directory in the file
store. We define the following schema, which updates the directory files in the file
store without changing the non-directory files or the name store. It makes use of the
schema dirstored on the final state to ensure the name store is correctly encoded into
the file store.

direncode
∆FS
ΞCS
ΞNS
dirstored ′

∃ dfids : P FID • dfids = nstore(| dnames |) ∧
dfids −C fstore ′ = dfids −C fstore

The only difference between the file store before encoding and the file store after is
the contents of directory files. Before encoding they may not accurately represent the
name store but afterwards they must.

The definition of createFS can now be completed. It is the schema composition (o9)
of createFS0 and direncode. The definition of schema composition is given in Section
4.3.14.

createFS =̂ createFS0 o
9 direncode

open returns the channel identifier of an existing file.



4.3. THE SPECIFICATION 59

openFS
∆FS
ΞSS
openCS
lookupNS

fid = fid ′

The fid ′ returned by lookupNS is equal to the fid supplied to openCS (and both fid ′

and fid are good candidates for hiding).
read and write do not change the name store.

readFS
∆FS
readAS
ΞNS

writeFS
∆FS
writeAS
ΞNS

close removes the association between a channel name and the channel it refers to.

closeFS
∆FS
ΞSS
closeCS
ΞNS

unlink removes a name from the naming system, but it does not destroy the associated
file.

unlinkFS0
∆FS
ΞSS
ΞCS
destroyNS

As with createFS, this operation updates the name store. Hence the encoded version
of the name store in the file store also needs to be updated.

unlinkFS =̂ unlinkFS0 o
9 direncode

Destroy removes a file from the filing system.

destroyFS
∆FS
destroySS
ΞCS
ΞNS



60

But can a file be destroyed while it is in use? The FS ′ invariant requires that

usedfids ′ ⊆ dom fstore ′ (4.1)

and from ΞCS and ΞNS it follows that

usedfids = usedfids ′ (4.2)

and so, from (4.1) and (4.2),

usedfids ⊆ dom fstore ′ (4.3)

But

destroySS ⇒ fid 6∈ dom fstore ′ (4.4)

and (4.3) and (4.4) give

destroySS ⇒ fid 6∈ usedfids (4.5)

That is, a file cannot be destroyed while it is in use.

4.3.13 Honesty of definitions

The constraint on the destroy operation

fid 6∈ usedfids

is not immediately obvious from its definition above. Because the constraint is im-
plicit, the above definition could be said to be dishonest.

An honest definition is one for which the conditions of applicability are explicit.
In general, a schema which describes an operation can be expanded to have the form

operation
STATE
STATE ′

IN ?
OUT !

inv(STATE )
pre(STATE , IN ?)
trans(STATE , IN ?,OUT !,STATE ′)
post(STATE ′,OUT !)
inv(STATE ′)

where P(S ) denotes a predicate in which the observations of S may occur free.
STATE , STATE ′, IN ?, and OUT ! are schemas with no predicates – they are just

signatures.
inv is the state invariant, pre and post are the pre- and post-conditions respec-

tively, and trans is the predicate expressing the relationship between the initial state,
inputs, outputs, and final state. The conjunction of the five predicates forms the
definition of the operation, but the definition is said to be honest only if

inv ∧ pre ⇒ (∃OUT !; STATE ′ • trans ∧ post ∧ inv)



4.3. THE SPECIFICATION 61

If the invariant holds, and the input satisfies its precondition, then the operation
should have at least one defined result. Thus, in an honest definition, applicability
can be determined by considering the precondition alone (if all operations preserve
the invariant). This is an honest definition of destroy:

destroyFS
∆FS
destroySS
ΞCS
ΞNS

fid 6∈ usedfids

It is, however, mathematically equivalent to its original definition above.
For any schema describing an operation, a suitably honest precondition can be dis-

covered by hiding the OUT ! and STATE ′ observations, and simplifying the resulting
predicate.

4.3.14 Observation renaming and schema composition

It may be necessary at times to rename the observations of a schema to avoid name
clashes with other schemas. Writing

schema[name2/name1]

denotes the result of systematically substituting name2 for name1 throughout schema
(with suitable renaming of bound variables if necessary). For example:

createNS [newname?/name?] =

∆NS
newname? : NAME
fid : FID

nstore ′ = nstore ⊕ {newname? 7→ fid}

and

lookupNS [oldname?/name?] =

∆NS
oldname? : NAME
fid ′ : FID

oldname? ∈ domnstore
fid ′ = nstore(oldname?)
nstore ′ = nstore



62

The composition of two schemas, written

schema1 o
9 schema2

is intended to capture the effect of ‘schema1 then schema2’. It is formed by

1. Determining all of the dashed observations of schema1 that correspond with
undashed observations of schema2 (name ′ corresponds with name).

2. Renaming each corresponding pair to a single new name

schema1[name ′′/name ′]
schema2[name ′′/name]

3. Combining the schemas, and hiding the new observations

schema1 o
9 schema2 =̂

(schema1[name ′′/name ′] ∧
schema2[name ′′/name]) \ (name ′′).

This operation allows schemas to be combined in a way suggestive of forward func-
tional composition: the final state of schema1 becomes the initial state of schema2.
For example:

linkNS =̂ lookupNS [oldname?/name?]o9
createNS [newname?/name?]

gives in full:

linkNS
∆NS
oldname?,newname? : NAME

oldname? ∈ domnstore
nstore ′ = nstore ⊕ {newname? 7→ nstore(oldname?)}

The hidden observations are nstore and fid . linkNS makes the filename newname?
refer to the same file as does oldname?.

A similar construction defines moveNS :

moveNS =̂ linkNS o
9 destroyNS [oldname?/name?]

That is,

moveNS
∆NS
oldname?,newname? : NAME

oldname? ∈ domnstore
nstore ′ = ({oldname?} −C nstore)⊕ {newname? 7→ nstore(oldname?)}

moveNS renames a file from oldname? to newname?. It is important that the two
occurrences of oldname? – in linkNS and destroyNS [oldname?/name?] – are merged,



4.3. THE SPECIFICATION 63

and so only one file is referred to. However, oldname? appears only once in the
signature of moveNS .

Combining the definitions of linkNS and moveNS above, with ΞSS and ΞCS ,
gives their definitions in the complete file system FS.

linkFS =̂ (∆FS ∧ ΞSS ∧ ΞCS ∧ linkNS ) o
9 direncode

moveFS =̂ (∆FS ∧ ΞSS ∧ ΞCS ∧ moveNS ) o
9 direncode

Because both these operations update the name store, we need to update the encoded
version of the name store in the file store.

4.3.15 Definition of error conditions

The definitions given so far describe only successful operations. For example, the
schema

lookupNS
ΞNS
name? : NAME
fid ′ : FID

name? ∈ domnstore
fid ′ = nstore(name?)

gives no indication of the result of looking up a name that is not in the name store.
In fact, the definition explicitly states that the name must be there

name? ∈ domnstore.

It is to that extent unrealistic.
To describe unsuccessful as well as successful operations, a schema is introduced

below which includes an error report observation. The following error reports are
used:

REPORT ::= Ok | NoSuchCid | NoSuchName | NoFreeCids

∆FS
FS
FS ′

report ! : REPORT

report ! 6= Ok ⇒ (θFS ′ = θFS )

The predicate states that in the event of an unsuccessful report

report ! 6= Ok

the system’s state is unaltered (θFS ′ = θFS ). Successful operations are described by
the schema below:

success
∆FS

report ! = Ok



64

The following schemas define typical failures:

CidErr
∆FS
cid? : CID

cid? 6∈ dom cstore
report ! = NoSuchCid

CidErr describes an attempt to use a non-existent channel identifier. Two other
common errors are

NameErr
∆FS
name? : NAME

name? 6∈ domnstore
report ! = NoSuchName

and

ChanErr
∆FS

dom cstore = CID
report ! = NoFreeCids

NameErr describes an attempt to use a non-existent file name; ChanErr describes
an unsuccessful attempt to obtain a new channel identifier.

These error descriptions should be associated with the operations that can give
rise to them; this is accomplished by schema disjunction:

schema1 ∨ schema2

This is the schema formed by merging the two schemas’ signatures (as for conjunction
∧) and forming the disjunction of their predicate parts (where, in contrast, ∧ forms
their conjunction).

Thus the schemas read and open, for example, can be redefined to include the
error cases:

read =̂ (readFS ∧ success) ∨ CidErr
open =̂ (openFS ∧ success) ∨ NameErr ∨ ChanErr

The other operations may be similarly treated once their error conditions have
been defined.

Figures 4.1 and 4.2 give the expansions of read and open, respectively.

4.4 Summary

The schema approach to the incremental presentation of large system specifications
has been illustrated by using it to describe the Unix filestore. This technique has



4.4. SUMMARY 65

read
FS
FS ′

cid? : CID
length? : N
data! : seqBYTE
report ! : REPORT
CHAN
file : FILE

(report ! = Ok ∧
cid? ∈ dom cstore ∧
θCHAN = cstore(cid?) ∧
file = fstore(fid) ∧
fstore ′ = fstore ∧
(∃CHAN ′ • posn ′ = posn + #data! ∧

fid ′ = fid ∧
cstore ′ = cstore ⊕ {cid? 7→ θCHAN ′}) ∧

nstore ′ = nstore ∧
data! = (1 . . length?) C (file after posn))

∨ (report ! = NoSuchCid ∧
cid? 6∈ dom cstore ∧
θFS ′ = θFS )

Figure 4.1: Expansion of read



66

open
FS
FS ′

name? : NAME
cid ! : CID
report ! : REPORT
fid ,fid ′ : FID

(report ! = Ok ∧
name? ∈ domnstore ∧
fid = fid ′ = nstore(name?) ∧
fstore ′ = fstore ∧
(∃CHAN ′ • posn ′ = 0 ∧

fid ′ = fid ∧
cstore ′ = cstore ⊕ {cid ! 7→ θCHAN ′}) ∧

nstore ′ = nstore ∧
cid ! 6∈ dom cstore)

∨ (report ! = NoSuchName ∧
name? 6∈ domnstore ∧
θFS ′ = θFS )

∨ (report ! = NoFreeCids ∧
dom cstore = CID ∧
θFS ′ = θFS )

Figure 4.2: Expansion of open



4.5. APPENDIX: DIFFERENCES FROM UNIX 67

been used elsewhere to present, and reason about, specifications of other large-scale
systems [40, 41, 60, 62]. It has also proved useful in presenting the behaviour of
systems from a variety of points of view, drawing these together by showing how they
are related from an ‘Olympian’ point of view.

However, because of the generality of the underlying theory (set theory), and in
particular because of the unrestricted nature of the predicates which can be written to
characterise operations, there is no a priori guarantee that a system specified in this
style is implementable, nor is there any ‘automatic’ way of checking even its internal
consistency. The best that can be done is to demonstrate a constructive model at
a suitably high level of abstraction. Fortunately, the provision of such a model is
usually the first step to be taken in the development of an implementation.

This specification technique is not yet a development method; it is simply a step
on the way to one. In particular, the usual criteria for deciding on correctness of
representations and of algorithms have yet to be adapted to this style of presentation.

Once suitable mathematical types have been discovered for the observations to
be made of a system (i.e. once suitable mathematical theories have been found and
decided upon), the narrative part of the top-level views of a system is relatively easy
to formulate.

Acknowledgements The use of set theory to specify the behaviour of computer
systems was first explained to us by Jean-Raymond Abrial. This specification has
been developed from the original attempt by Richard Miller. We have benefited from
collaboration with many of our colleagues, especially Ib Sørensen, Steve Schumann,
Tony Hoare, Ian Hayes, Roger Gimson, and Tim Clement. The continuing financial
support of the UK Science and Engineering Research Council is gratefully appreciated.

4.5 Appendix: differences from Unix

4.5.1 File size

There is an upper bound on the size of files; if a file could contain no more than
FileSizeLimit bytes

FileSizeLimit : N1

then FILE would be defined

FILE == {f : seqBYTE | #f ≤ FileSizeLimit}

4.5.2 Directory size

There is an upper bound on the number of files in the storage system (i.e. the number
of ‘inodes’ is limited):

FileNumberLimit : N1

SS
fstore : FID 7→ FILE

#fstore ≤ FileNumberLimit



68

4.5.3 Storage medium capacity

The storage medium used to implement the filing system has finite capacity:

DeviceCapacity : N1

We assume minbytes

minbytes : FILE → N

maps a file into the minimum number of bytes required to represent it in the storage
system.

SS
fstore : FID 7→ FILE

#fstore ≤ FileNumberLimit
DeviceCapacity ≥

∑
[[fid : dom fstore • minbytes(fstore fid)]]

Because in the storage system it is possible to represent a file in more than one
way (small, large, huge – also, totally zero blocks may or may not be allocated), all
that can be said about the system’s capacity is that it must be at least as large as
the minimum required to represent the files within it. Similarly, all that can be said
of the device-full condition is that it cannot occur while the capacity is sufficient for
the maximum required. We assume maxbytes

maxbytes : FILE → N

maps a file into the maximum number of bytes required to represent it in the storage
system. The condition∑

[[fid : dom fstore ′′ • maxbytes(fstore ′′ fid)]] > DeviceCapacity

is necessary for a device full error (where fstore ′′ is the storage system which would
have resulted from the attempted operation).

4.5.4 Seek

seek as defined in Unix has several options, which automatically calculate the de-
sired new offset depending, for example, on the file’s current length. These may be
described separately.



4.5. APPENDIX: DIFFERENCES FROM UNIX 69

seekoffset
SS
CHAN
n? : N
p? : 0 . . 5
offset?,
size : N

size = #(fstore(fid))
p? = 0 ⇒ offset? = n?
p? = 1 ⇒ offset? = posn + n?
p? = 2 ⇒ offset? = size + n?
p? = 3 ⇒ offset? = 512 ∗ n?
p? = 4 ⇒ offset? = posn + 512 ∗ n?
p? = 5 ⇒ offset? = size + 512 ∗ n?

offset? and size are now auxiliary components.
The above schema could be combined with the schema for seek to give the full

definition of the seek system call.

4.5.5 Representation of numbers

The new position of the file is in fact limited by the ability of the computer to represent
numbers.

In this and other cases this limitation could be expressed, for example, as:

n24bit == 0 . . 224 − 1

Such sets would then be used, where appropriate, instead of N:

CHAN
fid : FID
posn : n24bit



70


