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Abstract. High level Petri nets (HLPNs) have been widely applied to
model concurrent and distributed systems in computer science and many
other engineering disciplines. However, due to the expressive power of
HLPNs, they are more difficult to analyze. Exhaustive analysis methods
such as traditional model checking based on fixed point calculation of
state space may not work for HLPNs due to the state explosion problem.
Bounded model checking (BMC) using satisfiability solvers is a promis-
ing analysis method that can handle a much larger state space than
traditional model checking method. In this paper, we present an analysis
method for HLPNs by leveraging the BMC technique with a state-of-the-
art satisfiability modulo theories (SMT) solver Z3. A HLPN model and
some safety properties are translated into a first order logic formula that
is checked by Z3. This analysis method has been implemented in a tool
called PIPE+Verifier and is completely automatic. We show our results
of applying PIPE+Verifier to several models from the Model Checking
Contest @ Petri Nets and a few other sources.

Keywords: Formal Methods, Petri Nets, Model Checking, Bounded
Model Checking.

1 Introduction

Petri nets are a graphical formal language to model concurrent and distributed
systems. Low level Petri nets are suitable to model control flows but cannot
effectively model data and functionality in complex systems. High level Petri
nets (HLPNs) [2] are a more expressive formalism developed to handle data and
functionality in addition to control flows.

HLPNs are executable. Tools like CPN Tools [25] and PIPE+ [30] support
the modeling and execution of different forms of HLPNs. However, analysis by
simulation can only explore a finite number of executions and thus cannot assure
safety properties to be satisfied in all possible executions. Traditional model
checking [26] is an automatic and exhaustive analysis method to explore all
possible executions of a model, but suffers from the state explosion problem.
Bounded model checking (BMC) with satisfiability solving [9,13] was proposed as
an alternative approach to address the state explosion problem in the traditional
model checking approach. In BMC, a feasible symbolic execution of a transition
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system and the negation of some safety property are translated into a logic
formula, which is checked by a satisfiability solver. If the formula is satisfiable,
a counter example is found and thus the safety property does not hold. On the
other hand, if the formula is not satisfiable up to a pre-defined upper bound
k , the safety property holds up to k . Although this approach is not a complete
technique for safety property analysis, it has been shown to be very effective in
detecting the violation of safety properties in many real-world applications.

Encoding a low level Petri net model into a propositional logic formula is
straightforward, but encoding a HLPN model is not since HLPNs use structured
data and algebraic expressions to define functionality. In recent years, great
progress has been made on satisfiability modulo theories (SMT) [16,32] solvers
that can check the satisfiability of a subset of first-order logic formulas with a
variety of underlying theories including linear arithmetic, difference arithmetic
and arrays. These SMT solvers are expressive enough to represent the data
and algebraic expressions in HLPNs naturally. Furthermore, SMT solvers are
becoming more efficient according to the annual competitions results from SMT
[7], and have been successfully integrated into verification tools such as CBMC
[3], SLAM2 [5], and VS3 [33].

In this paper, we present a method for using SMT solvers to perform bounded
model checking on HLPNs. We leverage the theory of sets [29] that has been
integrated to some SMT solvers to represent HLPNs, where a place can have zero
or more tokens. Similar to BMC, our method specifies a k value before checking,
which defines the upper bound of transition firing actions (state changes). For
each safety property violated within k steps, a transition firing sequence leading
to an error state is generated. However, this method is incomplete because the
upper bound k is often not given in real applications. Reference [15] discussed
the complexity of finding a complete threshold.

We have implemented a prototype tool called PIPE+Verifier, which integrates
the state of the art SMT solver Z3 [17]. We have applied PIPE+Verifier to
analyze several models from Model Checking Contest @ Petri Net [27], a Mondex
model [43] (an electronic purse system proposed as the first pilot project in the
worldwide formal verification grand challenge) and a model given in [38,37]. We
have provided a comparison of our tool with related Petri nets tools and symbolic
model checking tools.

2 High Level Petri Nets

A HLPN graph [2] comprises: a net graph, place types, place markings, arc
annotations, transition conditions, and declarations. The net graph is a structure
consisting of a finite set of places (drawn as circles), a finite set of transitions
(drawn as bars), and a finite set of directed arcs between places and transitions
(drawn as arrows). A place type is a power set of tokens. A token type can be
a tuple of primitive data types such as integer and string. A place marking is a
collection of tokens (data items) associated with the place. Arc annotations are
inscribed with expressions that may comprise constants, variables, and function
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images. Transition conditions are Boolean expressions. Declarations comprise
definitions of place types, variable types, and functions.

A HLPN is executable. A transition is enabled if its input places have the right
tokens in the current marking that satisfy the transition condition. An enabled
transition can fire and result in a new marking by subtracting the tokens from
the input places and adding new tokens to the output places according to the
corresponding arc annotations. Multiple enabled non-conflict transitions may
fire simultaneously. An execution of a HLPN is a sequence of transition firings
from the given initial marking. The behavior of a HLPN is the set of all possible
executions.

Figure 1 illustrates a dining philosopher problem modeled in HLPN. The net
consists of three places PPhil Thinking , PChopsticks , PPhil Eating and two transi-
tions TPickup and TRelease . All the places’ token type is 〈int〉. PPhil Thinking and
PChopsticks are both initiated with markings that have five tokens {〈0〉,〈1〉,〈2〉,
〈3〉,〈4〉}. TPickup ’s transition condition is p = c1 ∧ (p + 1)%5 = c2 ∧ e = p.
TRelease ’s transition condition is p = r ∧ c1 = r ∧ c2 = (r + 1)%5.

Fig. 1. 5-Dining Philosophers Problem in High Level Petri Net

3 Satisfiability Modulo Theories Solvers

Satisfiability modulo theories (SMT) [16] support a combination of theories such
as bit-vectors, rational and integer linear arithmetic, arrays, and uninterpreted
functions. SMT solvers are the extensions of satisfiability (SAT) solvers and
directly applicable to the decision problems expressed in first order logic formulas
with respect to the multiple background theories.

For example, an SMT solver can decide whether a formula in the theory of
linear arithmetic is satisfiable:

(x + y ≤ 0) ∧ (�b ∨ a ∧ (y = 0)) ∧ (x ≤ 0)

where x , y are integer variables and a, b are Boolean variables. If the formula is
satisfiable, the SMT solver returns a variable assignment satisfying the formula.



Bounded Model Checking High Level Petri Nets in PIPE+Verifier 351

3.1 Important Theories

Some important high level theories supported by SMT solvers are listed below
as the foundation of our method.

Arrays. The theory of arrays [35,4] in SMT solvers is different from the ones in
standard programming languages. In SMT, an array’s size can be infinite. There
are two built in functions: select : ARRAY × INDEX → ELEM and store :
ARRAY × INDEX × ELEM → ARRAY where ARRAY , INDEX , ELEM are
the sorts of the array, the index of the array and the elements in the array.

Tuples. The theory of tuples [29] supports a data structure with a list of com-
ponents and access to individual components by projection.

Sets. A set is a collection of objects. Reference [29] has defined a set theory,
which has been implemented in several SMT solvers [8]. The theory of sets in
SMT solvers supports a list of set operations including set member ∈, set subset
⊆, set union ∪, set intersect ∩ and set difference \.

3.2 Z3

In recent years, the efficiency of SMT solvers has been greatly improved. An
annual SMT competition is held every year [8] and the participants include
CVC4 [6], Z3 [17], MathSAT [12], Opensmt [10], and Yices [19]. Among them,
Z3 [17], developed by Microsoft Research Institution, is reported to have the
largest number of users and supports almost all the popular SMT background
theories such as rational and integer arithmetic, bit-vectors, array theory, and set
theory. In addition, Z3 has been adopted as the backend verification engine for
a variety of tools, such as VS3 [33], SLAM2 [5] and CBMC [3]. Z3’s developing
team provides api and documentation for different programming languages (C,
C++, .NET, Python). Therefore, we have selected and integrated Z3 into our
tool as the backend satisfiability solving engine.

4 Bounded Model Checking High Level Petri Nets

Given a finite transition system M , a LTL formula f and an integer k , existential
bounded model checking (BMC) [9] tries to determine whether there exists a
computation path in M of at most length k (denoted as Mk ) that satisfies f . To
realize BMC, a logic formula φk from M , f and k is constructed and checked
using a constraint solver. φk is satisfiable if and only if there is a path p of
length at most k in Mk that satisfies f . The satisfying assignment for φk is
called a witness for path p. However, BMC is in general not able to determine
the satisfiability of a formula f since k ’s upper bound is unknown in many real-
world applications. [15] shows that finding the upper bound for k is as complex
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as traditional model checking. To check the validity of a safety property up to k
steps using existential BMC, we use f to represent the negated safety property.
Thus the safety property holds as long as f is not satisfiable. [9] shows BMC can
check all formulas in ACTL* [20].

In the following sections, we present a translation schema of applying bounded
model checking to HLPNs.

4.1 General Idea of BMC using SMT Solver

In BMC, a logic formula φk is constructed from a given Mk , including the initial
state I and unrolled transition relations T , and some negated safety properties
f . Since T in φk is unrolled k times, the length of φk is dependent on k . The
logic formula φk is represented in Equation 1:

φk
.
= I (s0) ∧

k−1∧

i=0

T (si , si+1) ∧
k∨

i=0

f (si) (1)

where I (s0) is the characteristic function of the initial state, T (si , si+1) is
the characteristic function of the transition relation, and f (si) represents the
negated safety property in unrolled state si (0 ≤ i ≤ k). If φk is satisfiable, there
is a firing sequence or a state transition path from the initial state I (s0) to a
state si (0 ≤ i ≤ k) that satisfies f , thus violates the safety property. Otherwise,
the safety property holds in M within k transition firings.

The general SMT logic context for BMC is shown in Figure 2:

DEF

s : STATETUPLE

ASSERT

Initial marking(s0)

∧
k−1∧

i=0

Transition(si , si+1)

∧
k∨

i=0

Negated property(si )

CHECK

Fig. 2. SMT context for bounded model checking

4.2 Represent HLPNs in SMT Context

Our goal is to translate a given HLPN model to a logic formula shown in Figure
2, and then use an SMT solver to check its satisfiability.
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Define States in SMT Context. In HLPNs, a state si is defined by a marking
that is a distribution of tokens in places. Each place can contain 0 or more tokens
(the number may be bounded or unbounded) and tokens can be structured
data. To define a state in SMT context, a hierarchical layered data structure is
constructed.

Fig. 3. An inner view of dining philosophers problem in HLPN model

A state si is defined by a tuple whose elements are places: si
.
= 〈p0, p1, . . . , pn〉.

Each place pj (0 ≤ j ≤ n) is defined by a set containing m ≥ 0 tokens: pj
.
=

{tok0, tok1, . . . , tokm}. Each token tokk (0 ≤ k ≤ m) is defined by a tuple of prim-
itive data elements: tokk

.
= 〈e0, e1, . . . , el 〉. Figure 3 shows an inner view of

a HLPN model. In Figure 3, the tuple of places is 〈PPhil Thinking , PChopsticks ,
PPhil Eating 〉, in which place PPhil Thinking has 5 tokens {〈0〉,〈1〉,〈2〉,〈3〉,〈4〉} and
each token tokk has only one field 〈ID〉 whose type is Integer.

In the SMT context, a state is defined by type STATETUPLE. The hierar-
chical data structure that constitutes STATETUPLE is shown in Table 1.

Table 1. High level Petri net elements mapped to SMT theory

HLPN Elements SMT Theory In PIPE+Verifier

HLPN Model Tuple (Places) STATETUPLE

Place Type Set (Tokens) SETiSORT

Token Type Tuple (Integer or String Values) DTiSORT

Primitive Data Integer or String INTSORT

Define the Initial State. The Inital marking (s0) in Figure 2 is defined from
the initial marking M0 of a HLPN model. The state s0 contains tokens of all the
places marked in M0.

Define Transitions in SMT Context. Transition(si , si+1) in Figure 2 is a
binary relation between the current state si and the next state si+1. In BMC,
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the upper bound of the transition firing sequence is k , thus the state transition
of φk is unrolled k times, denoted as

∧k−1
i=0 Transition(si , si+1). A HLPN model

consists of n ≥ 0 transitions t0, t1, . . ., tn , and any one of them may fire if enabled,
thus Transition(si , si+1) is represented by a disjunction of the transitions in the
HLPNmodel

∨n
j=0 tj (si , si+1). Transitions in φk are defined as the formula shown

in Equation 2:

k−1∧

i=0

(Transition(si , si+1)) =

k−1∧

i=0

(

n∨

j=0

tj (si , si+1)) (2)

Each transition in the HLPN model tj (si , si+1) with a precondition (captured
by c0) and a post-condition (captured by c1) are defined in an if-then-else struc-
ture if c0 then c1 else c2 , representing (c0 =⇒ c1) ∧ (¬c0 =⇒ c2). The
translation schema is described below:

– If condition c0:

• Use set membership operation to check if each input place in si has at
least one token;

• In state si , each transition condition clause corresponds to a constraint;

– Case True c1:

• Tokens are removed from tj ’s input places of state si using set difference
operation;

• New tokens are added to tj ’s output places of state si+1;

• Tokens in unrelated places in state si remain the same in those places in
si+1;

– Case False c2: tokens in all places in the next state si+1 are the same as in
the current state si .

Define Properties in SMT Context. To check a safety property, we define
Negated property(si ) as the negation of the safety property. If there exists a state
si satisfies Negated property(si ), the safety property is violated at si . Thus, a
disjunction of Negated property(si ) 0 ≤ i ≤ k is asserted in φk .

A Translation Example – Dining Philosophers Problem. From the dining
philosophers HLPN given in Figure 1, we obtain the following translation:

1. State Definition: As shown in Figure 4, a state, consists of three places, are
defined as three sets in STATETUPLE. All of the sets have the same set
type DTSORT , and their element types are INSORT .

2. Initial state: place PPhil Thinking set contains five philosophers whose IDs are
{〈0〉, 〈1〉, 〈2〉, 〈3〉, 〈4〉} and place PChopsticks has five chopsticks whose IDs are
{〈0〉, 〈1〉, 〈2〉, 〈3〉, 〈4〉}. Therefore, as shown in Figure 5, both places at state
s0 contain five tokens.
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DEF.

STATETUPLE ≡ 〈PPhil Thinking : SETSORT ,

PChopsticks : SETSORT ,

PPhil Eating : SETSORT 〉
SETSORT ≡ {set : DTSORT}
DTSORT ≡ {int : INTSORT}

State ≡ {s0 : STATETUPLE

s1 : STATETUPLE

...

sk : STATETUPLE }

Fig. 4. State definitions of 5-dining philosophers in SMT logic

Initial marking(s0) ≡ PPhil Thinking(s0) = {〈0〉, 〈1〉, 〈2〉, 〈3〉, 〈4〉}
∧PChopsticks(s0) = {〈0〉, 〈1〉, 〈2〉, 〈3〉, 〈4〉}
∧PPhil Eating(s0) = ∅

Fig. 5. Initial State of 5-Dining Philosopher in SMT Logic

k−1∧

i=0

Transition(si , si+1) ≡ (TPickup(s0, s1) ∨ TRelease(s0, s1))

∧(TPickup(s1, s2) ∨ TRelease(s1, s2))

...

∧(TPickup(sk−1, sk ) ∨ TRelease(sk−1, sk ))

TPickup(s, s ′) ≡
IF p ∈ PPhil Thinking

∧ l ∈ PChopsticks

∧ r ∈ PChopsticks

∧ p = l ∧ (p + 1)%5 = r

THEN

P ′
Phil Thinking = PPhil Thinking − {p}
∧ P ′

Chopsticks = PChopsticks − {l} − {r}
∧ P ′

Phil Eating = PPhil Eating ∪ {p}
ELSE

P ′
Phil Thinking = PPhil Thinking

∧ P ′
Chopsticks = PChopsticks

∧ P ′
Ehil Eating = PPhil Eating

TRelease (s, s ′) ≡
IF p ∈ PPhil Eating

THEN

P ′
Phil Thinking = PPhil Thinking + {p}
∧ P ′

Chopsticks = PChopsticks ∪ {p}
∪ {(p + 1)%5}

ELSE

P ′
Phil Thinking = PPhil Thinking

∧ P ′
Chopsticks = PChopsticks

∧ P ′
Phil Eating = PPhil Eating

Fig. 6. State Transition of 5-Dining Philosophers in SMT Logic
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k∨

i=0

Negated property(si ) ≡ (f (s0) ∨ f (s1) ∨ ... ∨ f (sk))

f ≡ PPhil Eating = {〈0〉, 〈1〉}

Fig. 7. Property Definition of 5-Dining Philosophers in SMT Logic

3. State transition: Transition is defined as k−1 transition steps that constrain
pairs of consecutive states. Each transition step is an if-then-else structure
that captures the pre-condition and post-condition of every local transition
in HLPN. In Figure 6, s indicates the current state and s ′ indicates the next
state.

4. Property definition: negated property f (si) is state based, we need to define
k disjunctions of error states. If one of f (si) evaluates true, the whole formula
is satisfiable and an error state si is reached. Figure 7 defines a simple negated
safety property that the neighboring philosophers with ID {〈0〉 , 〈1〉} can eat
at the same time.

5 Evaluation

We have implemented an automated prototype tool called PIPE+Verifier to
support our method and applied it to check relevant safety (reachability) prop-
erties in several benchmark problems modeled in HLPN. All experiments were
conducted on a 32-bit Intel Core Duo CPU @3.0GHz box, with 4GB of RAM,
running 32-bit Ubuntu.

5.1 Selected Benchmark Problems from Model Checking Contest @
Petri Nets

Model Checking Contest @ Petri nets (MCC) [27,28] is held annually to assess
Petri nets based formal verification tools and techniques. Petri net verification
tools are compared with regard to the scaling abilities, efficiency, and property
checking capabilities on selected benchmark problems. The benchmark problems
are modeled in low level Petri nets and Colored Petri nets. However, none of the
participating tools produced any promising results on checking colored Petri net
models. We have translated several Colored Petri net models into PIPE+Verifier
and analyzed their safety (reachability) properties. We have examined the scal-
ability of our tool by changing parameters in the model and varying bound k .
The running results are presented below.

Dining Philosophers Model. In the previous section, we presented the 5-
dining philosophers model. We have selected the following two negated safety
properties to check in PIPE+Verifier.
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�¬ (marking (Phil Eating) = 4 ∧marking (Phil Eating) = 3) (3)

�¬(marking (Phil Eating) �= 4 ∧marking(Phil Eating) = 1

∧marking (Chopsticks) �= 4) (4)

The scaling parameter is the number (up to 20) of philosophers. The exper-
iment results are shown in Table 2. For property 3, the PIPE+Verifier did not
return a result when bound k reached 15 due to the exponential growth of the
search space of Z3.

Table 2. Verifying Dining Philosophers Model

Philosophers Formula Step
Bound

Verdict Property
Hold

Time
(seconds)

Heap Size
(Mb)

5 (3) 5 unsat yes 0.41 1.72

5 (3) 10 unsat yes 79.93 9.97

5 (3) 15 N/A N/A N/A N/A

5 (4) 2 sat no 0.25 1.25

10 (4) 2 sat no 0.76 1.62

20 (4) 2 sat no 3.23 2.63

Shared Memory Model. In [11], a shared memory model involving P pro-
cessors was given. These processors can access their local memories as well as
compete for shared global memory using a shared bus. We have built a HLPN
model based on the above shared memory model and checked the following two
negated safety properties:

�¬(marking (Ext Mem Acc) = 〈1, 5〉 ∧marking (Ext Bus) = 1) (5)

�¬(marking (Ext Mem Acc) = 〈1, 5〉 ∧marking (Memory) �= 4) (6)

The scaling parameter is the number (up to 20) of processors P. The results
are shown in Table 3.

Token Ring. A token ring [18] model shows a system with a set of M machines
connected in a ring topology. Each machine can determine if it has the privilege
(the right) to perform an operation based on its state and its left neighbor.

We have modeled a token ring using HLPN and selected the following two
negated safety properties to check:

�¬(marking (State) = 〈3, 0〉 ∧marking (State) = 〈2, 4〉) (7)

�¬(marking (State) = 〈3, 0〉 ∨marking (State) = 〈2, 4〉) (8)

The scaling parameter is the number of machines M , which is up to 20. The
results are shown in Table 4.
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Table 3. Verifying Shared Memory Model

Processors Formula Step
Bound

Verdict Property
Hold

Time
(seconds)

Heap Size
(Mb)

5 (5) 5 unsat yes 0.07 0.86

5 (5) 10 unsat yes 0.3 1.54

5 (5) 15 unsat yes 1.49 2.53

5 (6) 3 sat no 0.75 1.80

10 (6) 3 sat no 1.3 2.09

20 (6) 3 sat no 13.05 4.35

Table 4. Verifying Token Ring Model

Machines Formula Step
Bound

Verdict Property
Hold

Time
(seconds)

Heap Size
(Mb)

5 (7) 5 unsat yes 0.32 1.34

5 (7) 10 unsat yes 24.12 5.56

5 (7) 15 N/A N/A N/A N/A

5 (8) 3 sat no 0.09 1.01

10 (8) 3 sat no 0.21 1.34

20 (8) 3 sat no 0.86 2.03

5.2 Mondex

Mondex [43] smart card system is an electronic purse payment system, which
involves a number of electronic purses with values and can exchange the val-
ues through a communication device. Mondex was the first pilot project of the
International Grand Challenge on Verified Software [40], and was awarded the
highest assurance level of secure systems, ITSEC Level E6 [41].

Mondex was first formally specified and proved using Z language [34]. Our pre-
vious work [43,42] formalized Mondex abstract and concrete models using HLPN.
The concrete model depicts a transaction through nine operations {startFrom,
startTo, readExceptionLog, req, ask, val, exceptionLogResult, exceptionLog-
Clear, forged} and four status {idle, epr , epv , epa}. In this work, we have mod-
eled the Mondex using PIPE+ [30] and verified a property “No Value Created”
[42,41].

The HLPN model is initialized with two purses and one transaction proposal
message. The safety property specifies that the sum of all the purses’ balances
does not increase: � purse1.balance + purse2.balance ≤ balance sum. Since nine
transitions may be involved in this transaction process, we set k = 9. Our model-
checking result shows this transaction process is preserved since the negation of
the safety property defined by f is not reachable in k = 9 transition firing steps.
The time and memory consumed for this checking process are 27.85s and 11.42
Mbytes respectively.
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5.3 Abstract State Machine Model

In [38], a method for checking symbolic bounded reachability of abstract state
machines was presented. An abstract state machine written in AsmL was trans-
lated into a logic formula checked by an SMT solver with rich background the-
ories including set comprehensions. The running times of the prototype tool in
[38] and our tool PIPE+ Verifier on property Count(n) are shown in Table 5.

Table 5. Running time of checking Count model

Model program Step
bound

Verdict Time of
M.Veanes’s Tool

Time of
PIPE+Verifier

Count(5) 10 Sat 0.14s 1.43s

Count(5) 9 Unsat 1.5s 0.24s

Count(8) 16 Sat 2.2s 86.1s

Count(8) 15 Unsat 152s 15.26s

6 Related Work

6.1 Petri Nets Tools

Model checking Petri nets continues to be an active research topic. Various tools
for modeling and verifying various forms of Petri nets have been built. Some of
them are no longer maintained due to the evolution of new techniques. A Petri
net model checking contest is held annually for the evaluation of some active
tools. Table 6 lists the most recent participating tools (except for the last two).
In this table, ALPiNA [23], Neco [21], CPN Tools [25] and SAMAT [31] support
different types of high level Petri nets.

Colored Petri Nets Tool. Colored Petri Nets (CPNs) [25] are a kind of high
level Petri nets that use tokens with typed values and functional programming
language Standard ML [36] to define the guards of transitions. CPN Tools [1]
is an industrial strength tool that is widely used to analyze modeled systems
through simulation and model checking. CPN Tools integrates a model checking
engine that explicitly searches the whole state space of a model.

ALPiNA. ALPiNA [23] is a model checker for algebraic Petri nets (APNs),
which use algebraic abstract structured data type (AADTs) to define data and
term equations to define transition guards and arc expressions. To symbolically
model checking APNs, ALPiNA uses extended binary decision diagrams (BDDs)
to represent the state space.
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Table 6. Analysis Tools for Petri Nets

Name Petri Net Type Model Checking Technique

ALPiNA Algebraic Petri Nets Decision Diagrams

Cunf Contextual Net Net Unfolding, Satisfiability Solving

GreatSPN Stochastic Petri Nets Decision Diagrams

ITS-Tools (Time) Petri Nets, ETF,
DVE, GAL

Decision Diagrams, Structural Reductions

LoLA Place/Transition Nets Explicit Model Checking, State
Compression, Stubborn Sets

Marcie Stochastic Petri Nets Decision Diagrams

Neco High Level Petri Nets Explicit Model Checking

PNXDD Place/Transition Nets Net Unfolding, Decision Diagrams,
Topological

Sara Place/Transition Nets Satisfiability Solving, Stubborn Sets,
Topological

CPN Tools Colored Petri Nets Explicit Model Checking

SAMAT High Level Petri Nets Explicit Model Checking

Neco. Neco [21] is a Unix toolkit that checks the reachability and other proper-
ties of high level Petri nets. Neco supports high level Petri nets annotated with
Python objects and Python expressions. For model checking, Neco explicitly
builds the state space.

SAMAT. SAMAT [31] is a tool for modeling and analyzing software architec-
ture descriptions where component behavior models are expressed in predicate
transition nets. SAMAT leverages an existing on-the-fly model checker SPIN [22]
to check the satisfiability of properties expressed in linear time temporal logic
in predicate transition net models.

6.2 Symbolic Model Checking Tools

Alloy. Alloy analyzer [24] is a software tool for analyzing a system defined in the
Alloy specification language. The analysis in Alloy is based on reducing a model
to a propositional formula and leveraging a SAT solver to solve the formula.

Java Path Finder. JPF [39] is a verification and testing environment for
Java that integrates techniques such as model checking, program analysis and
testing. Despite its state compression technique, JPF still cannot avoid the state
explosion problem especially in terms of memory and time in checking high level
data structures such as array.

CBMC and SMT-CBMC. C Bounded Model Checker (CBMC) [14] is an
SAT based bounded model checker on C programs. SMT-CBMC [3] is an SMT
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based model checker that has significant improvement over the traditional SAT
based model checkers. SMT-CBMC encodes sequential C programs into more
compact first-order logic formulas that can be solved by SMT solvers.

7 Conclusion

In this paper, we have presented a method to analyze safety properties of HLPNs.
Our method translates a HLPN model along with the negation of safety proper-
ties into a first order logic formula and uses the state of the art SMT solver Z3
to solve this formula. Our method is sound but incomplete since it requires a k
value as an upper-bound to limit the length of firing sequences. By leveraging
the theory of set in SMT solvers, our method supports HLPNs with unlimited
number of tokens. However, checking a model with a large number of tokens
may lead to an explosion of checking time. We have implemented this analy-
sis method into a prototype, PIPE+Verifier, and embedded it into PIPE+, a
graphical HLPNs modeling and simulation tool [30]. PIPE+Verifier is capable
of analyzing a system defined in HLPNs automatically. We have applied our
tool to analyze the safety properties of HLPN models of various problems from
Model Checking Contest @ Petri Nets, the Mondex system, and the counter
model. PIPE+Verifier is an open source tool and is available for sharing and
continuous enhancements from worldwide research community.
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