
1

SAMAT - A Tool for Software Architecture
Modeling and Analysis

Su Liu, Reng Zeng, Zhuo Sun, Xudong He
School of Computing and Information Sciences

Florida International University
Miami, Florida 33199, USA

{sliu002, zsun003, rzeng001, hex}cis.fiu.edu

Abstract—A software architecture specification plays a critical
role in software development process. SAM is a general frame-
work for developing and analyzing software architecture speci-
fications. SAM supports the scalability of architectural descrip-
tions through hierarchical decomposition and the dependability
analysis of architectural descriptions using a dual formalism
based on Petri nets and temporal logic. In this paper, we
present SAMAT (Software Architecture Modeling and Analysis
Tool), a tool to support the hierarchical modeling and analyzing
of software architecture specifications in SAM. SAMAT nicely
integrates two external tools PIPE+ for behavioral modeling
using high-level Petri nets and SPIN for model checking system
properties.

I. INTRODUCTION

Since late 1980s, software architecture has become an active
research area within software engineering for studying the
structure and behavior of large software systems [16]. A
rigorous approach towards architecture system design can help
to detect and eliminate design errors early in the development
cycle, to avoid costly fixes at the implementation stage and
thus to reduce overall development cost and increase the
quality of the systems. SAM [17], [8], [9], [10] is a general
framework for systematically modeling and analyzing software
architecture specifications. Its foundation is a dual formalism
combining a Petri net model for behavioral modeling and a
temporal logic [9] for property specification. To support the
application of SAM framework, we are developing a tool set,
called SAMAT.

SAMAT has the following features:
1) supporting software architecture modeling through hier-

archical decomposition;
2) modeling software component and connector behaviors

using high-level Petri nets [2];
3) specifying model constraints (system properties) using

first-order linear time temporal logic [15];
4) analyzing the SAM’s behavior model through model

translation and model checking using SPIN [11].
In the following sections, we discuss our development of
SAMAT and its main features. Section 2 gives an overview
of the SAM framework as well as its foundation. Section 3
presents the components and functionality of SAMAT and the
design of SAMAT. Section 4 provides the model translation
process from SAM to PROMELA for model checking in SPIN.
Section 5 shows an example to illustrate the use of SAMAT.

Section 6 compares the SAM famework and SAMAT with
related software architecture framework and tools. Section 7
contains a conclusion.

II. THE SAM FRAMEWORK

SAM [17] is a general formal framework for specifying and
analyzing software architecture. SAM supports the hierarchical
modeling of software components and connectors.

The architecture in SAM is defined by a hierarchical set of
compositions, in which each composition consists of a set of
components (rectangles), a set of connectors (bars) and a set
of constraints to be satisfied by the interacting components.
The component models describe the behavior (Petri net) and
communication interfaces (called ports, represented by semi-
circles). The connectors specify how components interact with
each other . The constraints define requirements imposed on
the components and connectors, and are defined by temporal
logic formulas.

Figure 1 shows a hierarchical SAM specification model.
The boxes, such as “A1” and “A2”, are called compositions,
in which “A1” is component and “A2” is connector. Each
composition may contain other compositions, for example
“A1” wrap up three compositions: “B1”, “B2” and “B3”.
Each bottom-level composition is either a component or a
connector and has a property specification (a temporal logic
formula). The behavior model of each component or connector
is defined using a Petri net. Thus, composing all the bottom-
level behavior models of components and connectors implic-
itly derives the behavior of an overall software architecture.
The intersection among relevant components and connectors
such as “P1” and “P2” are called ports. The ports form the
interface of a behavior model and consist of a subset of Petri
net places.

A. The Foundation of SAM
The foundation of SAM is based on two complementary

formal notations: predicate transition nets [6], [7] (a class of
high-level Petri nets) and a first-order linear-time temporal
logic [15].

1) Predicate transition nets (PrT nets), a class of high-
level Petri nets, are used to define the behavior models
of components and connectors. A PrT net comprises
a net structure, an underlying specification and a net

2

Figure 1. Hierarchical SAM Specification Model

inscription [7]. A token in PrT nets contains typed data
and the transitions are inscribed with expression as guard
to move or stop the tokens.

2) First-order linear time temporal logic (FOLTL) is used
to specify the properties (or constraints) of components
and connectors. The vocabulary and models of our
temporal logic are based on the PrT nets. Temporal
formulae are built from elementary formulae (predicates
and transitions) using logical connectives ¬ and ^ (and
derived logical connectives _,) and ,), the existential
quantifier 9 (and derived universal quantifier 8) and the
temporal always operator ⇤ (and the derived temporal
sometimes operator }).

SAM supports the behavior modeling using PrT nets [14]
and property specification using the FOLTL. SAM supports
structural as well as behavioral analysis of software archi-
tectures. Structural analysis is achieved by enforcing the
completeness requirement imposed on the components and
connectors within the same composition, and the consistency
requirement imposed on a component and its refinement.
Behavioral analysis requires the checking of system properties
in FOLTL satisfied in the behavioral models in PrT nets. In
this paper, we analyze SAM behavior model by leveraging
SPIN [11], which is a popular formal verification tool used
worldwide.

III. SAMAT

In this section, we present the functional view and the design
view of SAMAT.

A. Functional View of SAMAT

SAMAT is comprised of a modeling component, a SAM
model, and an analysis component (Figure 2). The modeling
component has three functions: structure modeling creates
hierarchical compositions, behavior modeling specifies behav-
iors of software components/connectors using Petri nets, and

Figure 2. The Functional View of SAMAT

property modeling defines property specifications using tem-
poral logic. The SAM specification is a hierarchical structure
integrating the results of structure, behavior, and property
modeling, which can be transformed into XML format. The
analysis component contains a translator to generate a model
suitable for model checking.

B. Design View of SAMAT
SAMAT is a platform independent (implemented in Java)

and visual software architecture modeling and analysis tool.
As shown in Figure 3, SAMAT is designed using the Model-
Vew-Control pattern.

1) The model of SAMAT includes a hierarchical layer of
SAM compositions that builds the SAM model in Figure
2. It also include the functionalities of generating flat
Petri net model and conjunctions of FOLTL formulas
for analysis purpose.

2) The graphical interface of SAMAT is developed using
Java Swing API as it provides full GUI functionalities
and mimics the platform it runs on. It consists of a SAM
composition editor, a PIPE+ editor, a FOLTL editor and
an analysis displayer. The composition editor is used
for modeling the SAM compositions into a hierarchical
structure; the PIPE+ editor is used for modeling the
behaviors of SAM model via PrT nets; the FOLTL editor
is used for defining the properties into FOLTL formulas;
the analysis displayer is used for showing the analyzing
result generated by SPIN [11].

3) The controller is comprised of composition controllers, a
XML transformer and a PROMELA translator. The com-
position controllers provide options to specify detailed

3

Figure 3. The Design View of SAMAT

properties of a SAM composition; the XML transformer
transforms SAMAT model into hierarchical XML format
for storage purpose; the PROMELA translator translates
the generated flat Petri net model and the conjunction
of FOLTL formulas into PROMELA language, which is
the input to SPIN.

SAMAT integrates two external tools: PIPE+ [14] for behavior
modeling and SPIN [11] for model analysis.

C. SAM Hierarchical Model in SAMAT
SAMAT stores the SAM model in a hierarchical way. As

we can see in Figure 4, the SAM model’s data structure
are in layers. In addition to the SAM compositions, the top
layer contains a sub-composition model called sub-layer that
has the same elements of the parent one except the bottom
layer, which instead of a sub-composition model, is a Petri
nets model. Therefore, each sub-composition model also has
allocated space for its own sub-composition and a user can
model arbitrarily number of levels by this recursive layer
structure.

The Petri nets layer in the bottom of Figure 4 is the behavior
model of its parent composition. In this case, it is a high-level
Petri net formalism modeled in PIPE+ editor. Once a Petri net
model is created, it is transformed and saved in XML format
and is appended to its parent SAM composition.

In this way, SAMAT is capable of storing hierarchical
layers of the SAM architecture model. SAMAT supports a top-
down approach to develop a software architecture specification
by decomposing a system specification into specification of
components and connectors and by refining a higher level com-
ponent into a set of related sub-components and connectors
at a lower level. From the SAMAT’s GUI, each component
provides options for a user to define a sub layer or a behavior
model. If the sub-layer is selected, a new tab of drawing
canvas is built in the mainframe editor with designated title
of “parent name :: sub composition name”. Furthermore, if

Figure 4. The SAM Hierarchical Model

Figure 5. The Architecture of SAM Model Package

the sub composition can be further decomposed, another new
tab will be built. If the behavior model option is selected,
PIPE+ is triggered for the user to build a behavior model using
Petri nets. Therefore, the top-down decomposition process is
straightforward.

D. Inheritance Class Design in SAMAT

The design of the SAM model package in SAMAT must
include all the SAM’s graphical elements (i.e. components,
connectors, arcs and ports). Figure 5 illustrates the class
design hierarchy diagram. For the reusability and extensibility
purpose, all of the SAM graphical elements are derived from
SamModelObject class that holding basic features of a graph-
ical object such as position, label and handler. Furthermore,
Arc, Port and RectangleObject classes are inherited from
SamModelObject, and Component and Connector classes are
inherited from RectangleObject class.

E. FOLTL Editor

One of the underlying formalism in SAMAT is FOLTL. The
vocabulary and models of FOLTL used in SAMAT are based
on the high-level Petri net formalism and follow the approach
defined in [13]. An example FOLTL formula is ⇤((x>y)) }
(b=1)), where variables are restricted to the underlying behav-
ior models’ arc variables. Since in each composition, SAMAT
integrates a FOLTL formula editor where a user can specify
system properties, the composition-level property specification

4

is obtained by conjoining the property specifications of all
components and connectors. The FOLTL compiler checks
the syntax of a FOLTL formula and the translator generates
constraint code in PROMELA.

F. PIPE+
The other formalism in SAMAT is PrT nets, which are a

class of high-level Petri nets. We integrate an existing open
source high-level Petri net tool PIPE+ [14] to specify the
behavior model of the SAM architecture. PIPE+ is capable
of specifying and simulating high-level Petri nets proposed in
[2]. SAMAT leverages PIPE+’s editing mode in which a high-
level Petri net behavior model can be developed graphically
with dragging and dropping actions. The high-level Petri net
model is comprised of:

1) A net graph consists of places, transitions and arcs.
2) Place types: These are non-empty sets restricting the

data structure of tokens in the place.
3) Place markings: A collection of elements (tokens) as-

sociated with places. For analysis purpose, a bound of
tokens’ capacity on each place is necessary, so that
verification run on SPIN can always stop.

4) Arc annotations: Arcs are inscribed with variables that
contributes to the transition expression formula vari-
ables;

5) Transition conditions: A restricted first order logic for-
mula Boolean expression is inscribed in a transition. It
is called restricted because the grammar doe not permit
free variables.

With all of the above high-level Petri net concepts specified,
the behavior model is formally defined and can be verified by
model checking engines.

G. XML Transformer
SAMAT transforms a SAM structure model into a XML

model based on its hierarchical structure; and then appends
the high-level Petri net XML model generated by PIPE+ to
it. In this way, the SAM structural and behavior models are
complete and are stored and loaded via XML saver and loader.

IV. VERIFYING SAM SPECIFICATIONS

To ensure the correctness of a software architecture spec-
ification in SAM, we have to check all the constraints are
satisfied by the corresponding behavior models. To automate
the verification process in SAMAT, we leverage an existing
linear time temporal logic model checking tool SPIN [11].

A. SPIN and PROMELA
1) The SPIN Model Checker: SPIN [11] is a model checker

for automatically analyzing finite state concurrent systems. It
has been used to check logical design errors in distributed
systems, such as operating systems, data communications
protocols, switching systems, concurrent algorithms, railway
signaling protocols, etc. A concurrent system is modeled in the
PROMELA (Process or Protocol Meta Language) modeling
language [11] and properties are defined as linear temporal

Figure 6. Verifying SAM Specifications

logic formulas. SPIN can automatically examine all program
behaviors to decide whether the PROMELA model satisfies the
stated properties. In case a property is not satisfied, an error
trace generated, which illustrates the sequence of executed
statements from the initial state. Besides, SPIN works on-
the-fly, which means that it avoids the need to preconstruct
a global state graph or Kripke structure, as a prerequisite for
the verification of system properties.

2) PROMELA: SPIN models in PROMELA consist of
three types of objects: processes, message channels and vari-
ables. Processes specify the behavior, while the channels and
variables define the environment for processes to run. The
processes are global objects and can be created concurrently,
which communicate via message passing through bounded
buffered channels and via shared variables. Variables are
typed, where a type can either be primitive or composite in
the form of arrays and records.

B. From SAM Model to PROMELA Model
As shown in Figure 6, SAMAT starts by generating a flat

(high-level) Petri net model from its hierarchical SAM model.
Then, SAMAT automatically translates the flat Petri net model
into a PROMELA model. Combined with FOLTL constraint
formulas, SPIN can check the PROMELA model and output
a verification result to SAMAT.

1) Generating An Integrated Flat Petri Net Model: Because
a SAM model is hierarchically specified and each component
in a different layer has its own behavior model, direct trans-
lation of a hierarchical SAM specification into PROMELA
could result in a complex model not preserving the original
semantics. Thus, SAMAT preprocesses the model by flattening
the hierarchical structure.

In this phase, all the individual Petri net models created in
different components of a SAM model need to be connected
by directed arcs in both horizontal and vertical dimensions.
Therefore, selecting interfaces among all the Petri net models
are important. Because each Petri net model has input places
(places without input arc, e.g. Sender in Figure 1) and output
places (places without output arc, e.g. Receiver in Figure 1),
which are used to communicate with other models, these input
and output places are chosen as candidate interface places
heuristically. Similarly, each SAM component has its input
ports (P1 in Figure 1) and output ports (P4 in Figure 1) for
the communication with other components, these input and
output ports form the interface of the component.

The connection strategies are :
• Horizontally: Each SAM component has its input ports

and output ports specified by one of the interface places
of the underlying Petri net model (e.g. in Figure 7,

5

Figure 7. Generating Analysis Model by Horizontal Connection

Port 1 specified by P1 and Port 2 specified by P2).
Integrating Petri net models from different components in
the same hierarchical layer is by connecting the interface
places. Moreover, the components in the same layer
are connected by SAM connectors and arcs, so that
SAMAT transforms them into Petri net transitions and
arcs respectively. A new transition is created for each
connector during the transformation (e.g. in Figure 7
is T3). The pre-condition of such transition is true by
default; however a post-condition may be added. In the
example, a post-condition “Y=X” is added. The variables
in the new transition formula match the connector’s
input and output arc variables. The sort of the variables
is exactly the sort of the interface places, specified in
ports, through connected arcs. Corresponding new arcs
are added to reserve the flow relationships, which are
connected with the interface places in ports and related
transitions. For example, a new arc between place P2 in
Port2 and T3 in Connector1.

• Vertically: The input or output ports not connected with
any arcs in a component are mapped to the corresponding
input and output ports in the parent component. For ex-
ample in Figure1, ports P1 and P2 in top layer component
A1 map to the second layer’s input port P5 and output
port P8.

Thus, the Petri net models are connected and flattened into an
integrated flat Petri net model that is ready to be translated
into PROMELA model.

2) Translating Behavior Models to PROMELA: The trans-
lation process maps a high-level Petri net model to a
PROMELA model. The resulting PROMELA model should
catches the concept of high-level Petri nets defined in [2]
and preserves the semantics. The PROMELA program’s major
parts are definitions of places and place types, transition
enabling and firing inline functions, a main process and an
init process that defines the initial marking.

The translation map is shown in Table 1:
• Translating places: We predefined each message type

(place type) into a new structure. Places and place types
are mapped to PROMELA’s buffered channels and pre-
defined message types. Besides, structured tokens are
mapped to typed messages in PROMELA. Because SPIN
verifies a model by exhaustive state searching, we set
bounds to limit the number of tokens in places. The
bounds are then mapped to the length of the channels. A

High-level Petri net PROMELA
Place Channel

Place Type Typedef Structure
Token Message

Transition Inline Function
Initial Marking Message in Channel

Table I
MAP FROM HIGH-LEVEL PETRI NET TO PROMELA

sample PROMELA program resulted from place transla-
tion is shown below:

d e f i n e Bound_Place0 10
t y p e d e f t y p e _ P l a c e 0 {

i n t f i e l d 1 ;
s h o r t f i e l d 2

} ;
chan P l a c e 0 = [Bound_Place0]

of { t y p e _ P l a c e 0 } ;

• Translating transitions: In high-level Petri nets, a transi-
tion expression consists of a precondition and a postcon-
dition. The precondition defines the enabling condition of
the transition, and the postcondition defines the result of
the transition firing. Each precondition and postcondition
are translated into two inline functions, is_enabled() and
fire(), respectively. fire() is triggered by the Boolean
variable in is_enabled() evaluated to be true, otherwise it
is skipped as the transition is not enabled. To check the
precondition of a transition expression, we first consider
a default condition that whether each of the input place
has at least one token by checking the emptiness of
each mapped channel. Because the expression is usually
defined by conjunct clauses, we then evaluate each clause
(the postcondition clauses are not evaluated this time).
The evaluation process includes non-deterministically re-
ceiving a message from an input channel to a local
variable, instantiating the Boolean expression, and eval-
uating it. A sample PROMELA program from transition
translation is shown below:

i n l i n e i s _ e n a b l e d _ T r a n s i t i o n 0 {
}
i n l i n e f i r e _ T r a n s i t i o n 0 { . . . }
i n l i n e T r a n s i t i o n 0 {

i s _ e n a b l e d _ T r a n s i t i o n 0 () ;
i f
: : T r a n s i t i o n 0 _ i s _ e n a b l e d

�> f i r e _ T r a n s i t i o n 0
: : e l s e �> sk i p
f i

}

• Defining main process: The dynamic semantics of Petri
nets is to non-deterministically check and fire enabled
transitions, so the main process is defined by including all
the transitions in a loop, “do ... od”. Since PROMELA has
finer granularity that a transition firing process includes
multiple sub-steps, we aggregate them into an atomic
construct. A sample PROMELA program for an overall
PrT net structure is shown below:

6

proctype Main () {
. . .
do
: : atomic { T r a n s i t i o n 0 }
: : atomic { T r a n s i t i o n 1 }
od

}

• Defining initial marking: Since PROMELA has a special
process “init{}”, which is often used to prepare the true
initial state of a system. Therefore, the initial marking
is defined in init process by declaring typed messages
and send them into buffered channels. A PROMELA
prototype is shown below:

i n i t {
t y p e _ P l a c e 0 P0 ;
P0 . f i e l d 1 = 1 ;
P0 . f i e l d 2 = 0 ;
P l a c e 0 ! P0 ;
run Main ()

}

• Using basic data types: Since the basic data types
supported in PIPE+ are integer and string, which are
mapped to “int” and “short” in PROMELA respectively.

• Handling non-determinism: In high-level Petri nets, to-
kens are meaningful data and usually different from each
other and thus different firing orders result in different
markings. Therefore, a non-deterministic inline function
is defined and is called to non-deterministically pick a
token from an input place each time a precondition is
evaluated.

• Supporting power set: Because PIPE+ supports quanti-
fiers in restricted first order logic formulas in transition
expression, the domain of each quantified variable is a list
of tokens as a power set contained in a place. For this
kind of places, we are not dealing with one message but
all the messages in the channel, we do not put all received
messages into a local variable but directly manipulate
the channel. The strategy is when the first message is
received from the channel, it is used and then is sent
back immediately.

3) FOLTL Formula: Since the FOLTL constraint formula
extracted from the SAM composition model is conjoined into
one integrated conjunctive FOLTL formula, the translation
process is straightforward. We only need to wrap the formula
by following PROMELA’s syntax:

l t l f { /⇤ f o r m u l a ⇤ / }

4) Translation Correctness: The translation correctness is
ensured by the following completeness and consistency criteria
[18], [3]

Let N be a given Petri net and PN be the resulting
PROMELA program from the translation.

• Completeness Each element in N is mapped to PN

according to the mapping rules described in Section 4.2.2.
• Consistency The dynamic behavior of N is preserved by

PN as follows:
– A marking of N defines the current state of N in

terms of tokens in places, our place translating rule

correctly maps each marking into a corresponding
state in PN ;

– The initial marking of N is correctly captured by the
initial values of variables in the init{} process of PN ;

– The enabling condition and firing result of each
transition t in N is correctly inline functions
“is_enabled_Transition_i” and “fire_Transition_i” re-
spectively;

– The atomicity of enabling and firing a transition in N
is preserved in PN by language feature “atomic{}”.

– An execution of N is firing sequence ⌧ =
M0t0M1t1...Mntn..., where Mi(i 2 nat) is a mark-
ing and ti(i 2 nat) denotes the firing of transition
ti. Each execution is correctly captured by the con-
struct “do ... od” in the “Main” Promela function,
which produces an equivalent execution sequence
� = S0T0S1T1...SnTn, where Si(i 2 nat) is a
state and Ti denotes the execution of inline function
“Transition_i”.

The proofs of the completeness and consistency are
straightforward and can be found in [18], [3] .

C. Verification using SPIN
The two inputs to SPIN are a PROMELA model and a

property formula. SPIN performs verification by going through
all reachable states produced by the model behaviors to check
the property formula. If the property formula is unsatisfied, it
produces a trail file indicates the error path. SPIN also provides
a simulation function to replay the trail file so that any error
path that leads to the design flaw can be visualized. SAMAT
encapsulates the verification process in SPIN and displays the
verification result as well as captured error path by SPIN in
the GUI.

V. USING SAMAT
The alternating bit protocol (ABP) is a simple yet effective

protocol for reliable transmission over lossy channels that
may lose or corrupt, but not duplicate messages. It has been
modeled and analyzed in [10]. In this section, we show some
snapshots of using SAMAT in modeling and verifying this
protocol.

In Figure 8, the top layer of ABP model in SAMAT
consists of three components and four connectors. The first
component “Sender” has a behavior model shown in Petri net.
On the right, it shows the FOLTL editor to editing formula
<>(Deliver(m) = 5). After the modeling process, SAMAT
automatically generates PROMELA code as an input for SPIN
and displays the model checking result after SPIN finished
model checking. In this case an error is found, the replayed
simulation on the error path is shown below the model
checking result. The error indicates the ABP specification
model in [10] is incorrect. A deadlock state (a none final
state such that none of the transitions are enabled) can be
reached when an acknowledgement message was corrupted in
the channel and a resend message successfully reached the
receiver’s DataIn place. This discovery highlights the great
benefits and usefulness of SAMAT.

7

Figure 8. Model the ABP in SAM Tool

Framework

Name

Hierarchical

Structure

Formalism Tool Verification

Engine

Darwin/FSP Yes FSP and FLTL Darwin LTSA

Archware Yes Archware ADL and

Archware AAL

ArchWare CADP

CHARMY No State and Sequence

Diagram and PSC

Charmy SPIN

Auto

FOCUS

Yes Model-based AF3 NuSMV and

Cadence SMV

PoliS No PoliS and PoliS TL N/A PolisMC

Fujaba Yes UML and LTL/CTL Fujaba UPPAAL

SAM Yes Petri Nets and

FOLTL

SAMAT SPIN

Table II
SOFTWARE ARCHITECTURE FRAMEWORKS

VI. RELATED WORK

In the past decades, many software architecture modeling
and analysis framework were proposed and their supporting
tools were built. Several comparative studies[19], [4], [5] on
these frameworks were published. Table 2 presents a compari-
son of several architecture modeling and analysis frameworks
and their supporting tools.

Besides, CPN Tools [1] is a widely used Coloured Petri nets
[12] tool that can also be used for modeling and analyzing soft-
ware architecture. In terms of software architectural modeling,
CPN Tools do not directly support architecture level concepts
and features and thus the resulting models do not match user’s
abstraction well and can be difficult to understand. In terms
of analysis, CPN Tools generates a full state space during

verification and thus is often limited by the memory size while
SPIN can perform verification on-the-fly to avoid full state
space preconstruction so that it can handle complex behavior
models.

VII. CONCLUSION

In this paper, we present a tool SAMAT for modeling
and analyzing software architecture specifications in SAM.
SAMAT leverages two existing tools, PIPE+ for building Petri
net models and SPIN for analyzing system properties. SAMAT
can be a valuable tool for complex concurrent and distributed
system modeling and analysis. SAMAT is an open source tool
and is available for sharing and continuous enhancements from
worldwide research community.

Acknowledgments This work was partially supported by
NSF grants HRD-0833093.

REFERENCES

[1] Cpn tools. http://cpntools.org.
[2] High-level Petri Nets - Concepts, Definitions and Graphical Notation,

2000.
[3] Gonzalo Argote-Garcia, Peter J. Clarke, Xudong He, Yujian Fu, and

Leyuan Shi. A formal approach for translating a sam architecture to
promela. In SEKE, pages 440–447, 2008.

[4] Paul Clements and Mary Shaw. The golden age of software architecture:
A comprehensive survey. Technical report, 2006.

[5] L. Dobrica and E. Niemela. A survey on software architecture analysis
methods. Software Engineering, IEEE Transactions on, 28(7):638 – 653,
jul 2002.

[6] H.J. Genrich and K. Lautenbach. System modelling with high-level petri
nets. Theoretical Computer Science, 13(1):109 – 135, 1981.

[7] Xudong He. A formal definition of hierarchical predicate transition nets.
In Application and Theory of Petri Nets, pages 212–229, 1996.

[8] Xudong He and Yi Deng. Specifying software architectural connectors
in sam. International Journal of Software Engineering and Knowledge
Engineering, 10(4):411–431, 2000.

[9] Xudong He and Yi Deng. A framework for developing and analyzing
software architecture specifications in sam. Comput. J., 45(1):111–128,
2002.

[10] Xudong He, Huiqun Yu, Tianjun Shi, Junhua Ding, and Yi Deng.
Formally analyzing software architectural specifications using sam.
Journal of Systems and Software, 71:1–2, 2004.

[11] Gerard Holzmann. Spin model checker, the: primer and reference
manual. Addison-Wesley Professional, first edition, 2003.

[12] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured
petri nets and cpn tools for modelling and validation of concurrent
systems. In INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR
TECHNOLOGY TRANSFER, page 2007, 2007.

[13] Leslie Lamport. The temporal logic of actions. ACM Trans. Program.
Lang. Syst., 16:872–923, May 1994.

[14] Su Liu, Reng Zeng, and Xudong He. Pipe+ - a modeling tool for high
level petri nets. International Conference on Software Engineering and
Knowledge Engineering (SEKE11), pages 115–121, 2011.

[15] Zohar Manna and Amir Pnueli. The temporal logic of reactive and
concurrent systems. Springer-Verlag New York, Inc., New York, NY,
USA, 1992.

[16] Mary Shaw and Paul Clements. The golden age of software architecture.
IEEE Softw., 23:31–39, March 2006.

[17] Jiacun Wang, Xudong He, and Yi Deng. Introducing software architec-
ture specification and analysis in sam through an example. Information
& Software Technology, 41(7):451–467, 1999.

[18] Reng Zeng and Xudong He. Analyzing a formal specification of mondex
using model checking. In ICTAC, pages 214–229, 2010.

[19] Pengcheng Zhang, Henry Muccini, and Bixin Li. A classification and
comparison of model checking software architecture techniques. Journal
of Systems and Software, 83(5):723 – 744, 2010.

