
1

On Precision Bound of Distributed Fault-Tolerant
Sensor Fusion Algorithms

Buke Ao, Yongcai Wang, member, IEEE Richard Brooks, Senior member, IEEE,
Iyengar S.S., Fellow, IEEE, and Yu Lu,

Abstract—Sensors have limited precision and accuracy. They extract data from their environment through physical interactions, which
contain noise. The goal of fusion is to make the final decision more robust and minimize the influence of noise and system errors. One
aspect of the fusion problem that has not been adequately addressed is establishing the bounds on fusion result precision. Precision is
the maximum range of disagreement that can be introduced by one or more faulty inputs. This definition of precision is consistent both
with Lamport’s Byzantine General’s problem and the minimax criteria commonly found in game theory. This paper considers the
precision bounds of fault tolerant information fusion approaches, including Byzantine agreement, Marzullo’s interval based approach
and the Brooks-Iyengar fusion algorithm. We reviewed and derived the precision bounds for several fault-tolerant distributed sensor
fusion algorithms. The analysis provides both insight into the limits imposed by fault tolerance and guidance for mapping fusion
approaches to applications.

Index Terms—Sensor Fusion, Distributed Agreement, Fault Tolerance.

F

1 INTRODUCTION

Sensing applications are limited by a number of physical
constraints, which make fault tolerant sensor fusion a criti-
cal problem in research and in applications. Sensors extract
information from their environment by physical interaction
with the environment to detect signals from the target
traversing an ambient gas, fluid, or solid medium. If the
medium is uniform, stochastic models can generally be
applied to the sensor readings. So that statistical combi-
nation of samples, with increasing number of inputs, will
usually increase the accuracy of the system output; increase
confidence and bound variance [1].

Unfortunately the ambient medium is rarely uniform,
which introduces additional factors, such as multi-path
fading, shadowing and occlusion. A large number of noise
factors exist in typical sensing scenarios [2]. These factors are
not consistent with the assumptions used to create statistical
models, which limits the practical utility of statistics.

In physical systems, component failures can lead to the
introduction of arbitrary inputs instead of small magnitude
noise factors of uniform variance. Loss of network connec-
tivity can remove arbitrary subsets of inputs from calcu-
lations. In fact, networking errors can arbitrarily modify
the inputs from any sensor traversing the affected network
region [3]. Another fact is that sensors are generally dis-
tributed.

• Buke Ao is with the School of Information and Communication Engineer-
ing, Beijing University of Posts and Telecommunications, Beijing, P.R.
China. E-mail: aobuke@hotmail.com

• Yongcai Wang are with Tsinghua University, Beijing, P.R. China. E-mail:
wangyc@tsinghua.edu.cn

• Iyengar S. S. are with Florida International University, Miami. FL. E-
mail: iyengar@cis.fiu.edu

• Richard Brooks and Yu Lu are with Clemson University, SC. E-mail:
rrb@acm.org,lyu@g.clemson.edu

To counteract errors in systems like this, Lamport et al
[4] proposed the Byzantine Generals Problem (BGP) where a
number of decision makers strive to make the same decision
in the presence of a limited number of purposely deceptive
inputs. If an approach could reach correct consensus under
these conditions, the system would be robust. The BGP can
be considered as a fault tolerant logic problem. Lamport et
al proved that agreement on the correct answer is always
possible as long as (ignoring network topology constraints)
fewer than 1/3 of inputs are faulty. Where the original prob-
lem considered a binary choice, later researchers considered
problems that included continuous variables.

Fault-tolerant sensor fusion shares the same goal as
BGP, which is to achieve agreement (consensus) among the
processing units (PEs) in the presence of faulty, noisy or
malicious data. A critically important issue in evaluating
algorithms quality in this area is how to define algorithm.
There are two related, but subtly different, values that are
used in defining the quality of the fusion algorithms, i.e.,
accuracy and precision. 1 In distributed sensor fusion,

• Accuracy – which we specify in this paper as δ,
measures the difference from a sensor’s fusion result
to the ground truth being measured [5].

• Precision – which we specify as ε, measures the de-
gree of disagreement among sensors’ outputs, which
is the maximum distance between any two sensors’
outputs due to different faulty inputs [6].

Although accuracy has been widely evaluated in various
algorithm design, precision, especially the precision bound,
which measures the worst case (maximum possible) dis-

1. We note that in the literature different variables have been used
inconsistently to denote these concepts. The reader is warned to not
assume that the variable notations we use will match the variable
names in the papers we reference.

2

agreement among the PEs’ outputs, is not thoroughly eval-
uated. In this paper, we investigated precision bounds for
a set of distributed fault-tolerant sensor fusion algorithms,
which suggest agreement properties of these algorithms for
properly selecting them according to different input data
type and output requirements.

The rest of the paper is organized as follows. Section
II discusses related work and describes some important
algorithms in this domain. Section III looks at the precision
of these algorithms. Section IV gives a formal proof on
the precision bounds of the Brooks-Iyengar algorithm. The
paper finishes with Section V comparing the accuracy and
precision of the algorithms discussed.

2 BACKGROUND

Reaching consensus is a fundamental problem that has been
applied in many domains [7]. One important application is
fusing unreliable sensor inputs. Many algorithms have been
proposed [3].

Consider a network of N PEs S = {S1, S2, . . . , Sn}.
Among the PEs, τ < N of them may be faulty and provide
erroneous data. For the sake of analysis, we assume faulty
PEs can maliciously conspire to create the worst possible set
of inputs to force our algorithm to fail. This is a conservative
assumption, that provides performance guarantees while
also simplifying our analysis.

For each non-faulty PE Si, vi measures some parameter
with a noise factor that introduces a random, bounded devi-
ation from the true value. For a faulty PE Sf , it can generate
arbitrary vf values and broadcast different values to each
collaborating PE. For reaching consensus, the number of
faulty inputs must be bounded and proofs of these limits
are in [4].

PEs exchange values with others. In this paper, we
ignore the effects of the network topology on fusion. Let
V = {v1, v2, . . . , vn} be the data at a PE, which includes
its own data and data received from other PEs. In some
algorithms, inputs are scalar values, represented by vi; in
some other algorithms, inputs are intervals where vi is
represented by an interval [vi,l, vi,h]. If all PE’s were non-
faulty, any deterministic algorithm should reach consensus
in this case, since each PE would run the same algorithm
with the same set of inputs.

The values sent from faulty PEs can arbitrarily differ
from PE to PE. We will assume that the faulty PEs construct
values in a way that maximizes the difference that the other
PEs compute. The agreement algorithm should minimize
the influence of the faulty inputs; reach consensus, and max-
imize the precision of the algorithm output. The agreement
precision of a fusion algorithm is defined as:

Definition 1 (Agreement Precision). Agreement precision of
the fusion algorithm for scalar and interval inputs is:

PA=


max

∀i,j=1,···N,i6=j

{∣∣∣v′i − v′j∣∣∣} , for scalar;

max
∀i,j=1,···N,i6=j

{∣∣∣v′i,h − v′j,l∣∣∣,∣∣∣v′j,h−v′i,l∣∣∣} , for interval

(1)

where Si and Sj are non-faulty PEs with respective fusion
results v′i and v′j .

We now review the set of fusion approaches most rele-
vant to this problem.

The Byzantine Generals Problem (BGP) for synchronous
systems was addressed in [8] and [4]. However, Fischer
[9] proved that in a complete asynchronous systems it is
not possible to guarantee convergence. In [6], the authors
showed that convergence was possible in the presence
of some synchronous parameters in an incomplete asyn-
chronous system.

Dolev et al’s approximate agreement algorithm reached
consensus within known precision bounds. Fekete [10] mod-
ified Dolev’s approach by using a Byzantine agreement
step to remove values that are inconsistent across PEs.
Mahaney and Schneider proposed another approach that
they call inexact agreement, which considers both accuracy
and precision.

More recently, Vaidya [11] proposed an iterative approx-
imate Byzantine consensus (IABC) algorithm to reach con-
sensus in an arbitrary directed graph. This was followed by
[12] Byzantine vector consensus (BVC) which, like the other
algorithms we discuss in Section III ignored the network
topology.

Marzullo [13] proposed a fault tolerance fusion approach
that used intervals. It finds an interval where all non-
faulty intervals intersect. In most cases, Marzullo’s approach
achieves better accuracy than individual sensor inputs. The
fused interval is at least as accurate as the range of the least
accurate individual sensor. Parhami [14] considered interval
voting that combines either preference or uncertainty inter-
vals.

The Brooks-Iyengar algorithm was used as a distributed
tracking algorithm in the DARPA Sense-IT program and
was then applied to a real-time extension of Linux [15]. This
approach finds intervals where N − τ intervals overlap and
performs a weighted average of the interval midpoints. This
minimizes the influence of faulty inputs by only considering
ranges where faulty inputs agree with a number of valid
inputs.

Instead of assuming the presence of malicious inputs,
other fusion approaches assume the data is contaminated
by a limited amount of noise [16] [17] [18] that typically is
Gaussian. Fusion typically uses tools from probability, such
as maximum likelihood estimation. The PEs try to agree
on a value only by iteratively exchanging information with
neighbors.

3 PRECISION BOUNDS

The objective of sensor fusion is to achieve consensus among
the PEs and minimize the impact of bad data. In this section,
we review the precision bounds of a set of fusion algorithms.
Frequently used notations in this section are listed in Table 1.

3.1 Naive Averaging

Let S denote the set of PEs, we assume |S| = N . Each PE
broadcasts its local measurement to all the other PEs and cal-
culates its output as the average value of the measurements

3

TABLE 1: List of Notations

Notations Description
N number of PEs
τ number of faulty PEs
vj,i measurement received by PE i from PE j
Vi the set of values at PE i
U the set of values from non-faulty PEs
v′i estimation result at PE i
Si PE i
S set of PEs
δ(U) max(U)−min(U)

ε precision of fusion results
δ accuracy of fusion results
κ the accuracy requirement of input in inexact agree-

ment algorithm
d dimension of vector in Byzantine Vector Consensus

algorithms
[lj,i, hj,i] the reading sent to PE i by PE j in interval agreement

algorithms

it has collected. Let vn,i denote the measurement received
by PE i from PE n and v′i be its output, then

v′i =
v1,i + v2,i + · · ·+ vN,i

N

If we assume there is a malicious node k, who sends
different readings to other PEs, the difference between PE i
and PE j is written as∣∣v′i − v′j∣∣

=

∣∣∣∣v1,i + · · ·+ vk,i + vN,i
N

− v1,j+ · · ·+vk,j+vN,j
N

∣∣∣∣
=
|vk,i − vk,j |

N

Since vk,i, vk,j ∈ (−∞,∞), the above value is unbounded.
So the naive averaging algorithm is not well fault-tolerant.

3.2 Approximate Byzantine Agreement

To reduce the impact of faulty inputs, Dolev et al. [19]
propose an approximate agreement algorithm, aiming to
filter out the extreme inputs.

3.2.1 Algorithm Introduction

The values received by PE i can be written as an ordered
vector Vi = {v1,i, · · · , vN,i}, which is called the multiset at
PE i. Note that faulty PEs may broadcast different values
to different PEs. As a result, each PE may have different
vectors. PE i uses the following equation to estimate its
output

v′i = fk,τ (Vi) = mean(selectk(reduceτ (Vi))) (2)

where reduceτ (Vi) removes the largest τ values and small-
est τ values from Vi; The reduced result is denoted by a
sorted vector W = {w0 ≤ w1 ≤ · · · ,≤ wm}. selectk(W)
makes a selection on W with an interval k. Selection can
be understood as a kind of downsample. k is no smaller
than the number of different elements between data of two
PEs. The result of selection is {w0, wk, w2k, . . . , wjk}, where
j = b(m− 1)/kc; and mean(x) returns the mean over the
selection.

3.2.2 Precision bound

Theorem 1 (Maximum difference after one round). After one
round of estimation, the maximum difference between
the outputs of any two non-faulty PEs Si, Sj is [19]:

max
∣∣v′i − v′j∣∣ =

δ(U)

bN−2τ−1
k c+ 1

, k ≥ τ (3)

Proof 1. Please see Appendix A.

where δ(U) = max(U)−min(U) is the maximum distance
in U . Furthermore, [19] shows that the lower bound of
max

∣∣∣v′i − v′j∣∣∣ with all possible k is obtained when k = τ

and thus we have∣∣v′i − v′j∣∣ ≤ δ(U)

bN−2τ−1
τ c+ 1

, k = τ (4)

Since τ = b(N−1)/3c is the maximum number of faulty
PEs allowed in the system for obtaining a correct estimate,
the precision bound after one round of estimation is given
by

max
∣∣v′i − v′j∣∣ ≤ δ(U)

2
(5)

3.2.3 ε Approximate Agreement

The agreement precision in Equation (5) can be made ar-
bitrarily small by repeating the estimation in Equation (2)
multiple times. A ε-approximate agreement metric was de-
fined to tolerate some inconsistency. It is proved in [19]
that the algorithm can achieve ε-approximate agreement after
multiple rounds:

• Agreement: ∀Sp, Sq ∈ S ,
∣∣v′p − v′q∣∣ ≤ ε.

• Validity: ∀Sx ∈ S ,v′x ≤ δ(U)

where Validity means the output of non-faulty PEs is in the
range indicated by initial values of the non-faulty PEs.

3.3 Inexact Agreement

3.3.1 Algorithm Introduction

Mahaney and Scneider [5] assume the initial values vi
of non-faulty PEs have bounded differences and bounded
distances from the true value. Therefore, if vp, vq are two
initial estimates at non-faulty PEs with correct values, then

max |vp − vq| ≤ δ(U),max |vp − v̂| ≤ κ,

Note that U is the value of the set of non-faulty PEs. and v̂
is the true value to be measured.

They proposed a Fast Convergence Algorithm (FCA), as
shown in Algorithm 1, which is executed by each PE in
parallel. Each PE finds a set of τ -acceptable PE values from
its multiset V . A value v in a multiset V is acceptable if
(∃s, f ∈ R : s ≤ v ≤ f and f − s ≤ δ : #(V, [s, f]) ≥
N −m), where #(V, [s, f]) is the number of elements of V
that have values in the interval [s, f]. The algorithm replaces
the unacceptable values with e(Vaccept) (average, median or
midpoint of Vaccept) and computes the average of this set.
The result is the output of inexact agreement.

4

Algorithm 1 FCA in one round at a PE p

1: Collect values from other PEs to form a multiset V .
2: Construct an τ -acceptable set Vaccept from V .
3: Compute e(Vaccept)
4: Replace any values in V that is not in Vaccept by
e(Vaccept).

5: v′p ← mean(Vaccept)
6: return v′p;

3.3.2 Precision bound

FCA gives better precision than Approximate Byzantine
Agreement [5][19].

Theorem 2 (precision bound of FCA). FCA algorithm can
lead to convergence as long as only fewer than 1/3 pro-
portion of PEs are faulty. If less than 1/3 PEs are faulty,
then the one-round precision and accuracy bounds [5]
are :

• precision:
∣∣v′p − v′q∣∣ ≤ 2τ

N δ(U)
• accuracy:

∣∣v′p − v̂∣∣ ≤ κ+ τ
N δ(U)

After multi-rounds, the precision can converge to an arbi-
trarily small value, however the accuracy bound is larger
than κ, which will not converge towards zero.

Proof 2. Please see Appendix B.

3.4 Byzantine Vector Consensus (BVC)

Vaidya et al. [12] and Mendes et al.[20] consider multidi-
mensional Byzantine agreement problems, where the input
value at each PE is a vector of dimension d.

3.4.1 Algorithm Introduction

To measure agreement, Mendes used Euclidean distance
between vectors, while Vaidya measured distance between
each element in the vector[12]. We consider Vaidya’s Byzan-
tine Vector Consensus (BVC) algorithms for exact and ap-
proximate BVC.

Approximate Byzantine Vector Consensus redefines
the ε-Approximation Agreement into the vector version. ε-
Approximation Agreement is met if:

• ε-Agreement: For 1 ≤ l ≤ d, the distance between the
l-th elements of any two non-faulty PEs is within ε,
where ε is a pre-defined constant.

• Validity: The decision vector at each non-faulty PE is
in the convex hull formed by the initially input non-
faulty PEs.

Let function Γ(Y) find the intersection of all subsets of
Y . LetH(T) be the convex hull formed by a multiset T , then

Γ(Y) = ∩T⊆Y,|T |=|Y |−τH(T) (6)

Then for a distributed systems with N PEs, suppose each
PE holds a vector vp ∈ Rd. Suppose τ of them are faulty.
The approximate BVC algorithm is:

Note that |∗| denotes the size of this multiset. V contains
at least n− τ elements. |Z| ≤ Cn−τn .

Algorithm 2 Approximate BVC in one step at p PE

1: Each PE collects values from other PEs and forms a
multiset V .

2: for each C ⊆ V such that |C| = N − τ do
3: Construct Γ(C) and choose a point deterministically

from Γ(C) and add it to Z
4: end for
5: return v′ =

∑
z∈Z z

|Z| .

3.4.2 Precision bound

Vaidya et al. [12] proved the precision bound by finding two
most divergent PEs. We show here the precision shrink of
one round between t − 1 and t. We first introduce some
notations.

- t denotes the rounds number
- vi[t] is the vector of PE Si in tth round
- vil[t] is the l-th element of vi[t], where 1 ≤ l ≤ d.
- Ωl[t] = max1≤k≤m vkl[t] in m non-faulty PEs
- µl[t] = min1≤k≤m vkl[t] in m non-faulty PEs

Theorem 3 (Precision bound of BVC). The most divergent
element in two decision vectors after one round is:

Ωl[t]− µl[t] ≤ (1− γ)(Ωl[t− 1]− µl[t− 1]) (7)

γ =
1

n(n
n−τ)

, 1 ≤ γ ≤ 1 (8)

Proof 3. Please see Appendix C.

This result shows that the maximum difference of all l-th
elements among v′i(1 ≤ i ≤ N) will reduce by a scale factor
(1− γ).

3.5 Interval-based Sensor Fusion Algorithm

3.5.1 Algorithm Introduction

Marzullo [13] proposed an interval-based agreement sen-
sor fusion algorithm. Interval-based agreement algorithm-
s share the same assumptions like point-based algo-
rithms, except that each PE gives an interval type
measurement [li, hi] where the true value lies in. Let
[lj,i, hj,i] represent the reading sent to PE i by PE j,
the collected measurements at PE i is written as Vi =
{[l1,i, h1,i] , [l2,i, h2,i] , · · · , [li, hi] , · · · , [lN,i, hN,i]}, 1 ≤ i ≤
N . The interval type measurements overlap each other. We
construct a weighted region diagram (WRD) to illustrate the
scenario. An example is shown in Figure 1. The following
terms are used to describe a WRD.

- k-overlapping interval: the interval overlapped by k
PEs.

- Weight: the number of PEs overlapping on an inter-
val.

- Region: a set of continuous overlapping interval with
weights no smaller than a certain number.

- aw: the most left endpoint of a region consisting of
overlapping intervals whose weight are no smaller
than w.

5

- bw: the most right endpoint of a region consisting of
overlapping intervals whose weight are no smaller
than w..

- a = aN−2τ ,
- b = bN−2τ

- Ui: Ui ⊆ Vi is set of correct measurements.

Consider the example shown in Figure 1 where N =
6, τ = 2 (τ is the number of faulty PEs), we assume PE 1
and PE 2 are two malicious PEs, whose readings are shown
by two red bars at the top of the figure, while the good
measurements are represented by black bars. The union of
all measurements, is divided into multiple overlapping ar-
eas according to the number of overlapping measurements.
Each overlapping area shows a height with respect to the
vertical axis, which is equal to its associated weight. The
WRD is then constructed by connecting the overlapping
areas together. The black stair-step line in Figure 1 is the
WRD obtained by only considering the good measurements,
which is transformed to the red stair-step line if the bad
readings are included. For example, region [a3, b3] consists
of overlapping areas whose weights > 3.

Figure 1: Interval fusion process

Given the WRD built out of the collected measurements,
each PE outputs an interval estimate [aN−τ , bN−τ]. The
interval agreement is said to be achieved, if all non-faulty
PEs’ output intervals contain a same region.

Theorem 4 (Precision bound of Marzullo’s algorithm). Let
I ′i , I

′
j be output intervals of two non-faulty PEs i and j,

then the interval precision bound, as defined in (1) can
be calculated as:

max
∀i,j=1,···N,i6=j

{∣∣v′i,h − v′j,l∣∣,∣∣v′j,h−v′i,l∣∣}≤|bw=N−2τ−aw=N−2τ |
(9)

Proof 4. In Marzullo algorithm, regions with weights larger
than or equal to N−τ will be chosen as the output. Since
there are τ faulty intervals, only the regions with weights
larger than or equal to N − 2τ have the possibilities
to be chosen. So any two non-faulty output intervals
Ix, Iy satisfy Ix, Iy ⊆ [aw=N−2τ , bw=N−2τ], then ∀i, j =
1, · · ·N, i 6= j, v′i,h, v

′
j,l, vj,h, v

′
i,l ∈ [aw=N−2τ , bw=N−2τ].

Therefore, the precision bound is the distance(Ix, Iy) =
|bw=N−2τ − aw=N−2τ |.

3.6 Brooks-Iyengar Algorithm

3.6.1 Algorithm Introduction

Brooks-Iyengar algorithm [21] is also interval-based. The
output of the algorithm includes a point estimate and an
interval estimate around the point estimate. The concrete
steps of Brooks-Iyengar algorithm are shown in Algorithm
3. Each PE performs the estimation separately.

Algorithm 3 Brooks-Iyengar Distributed Sensing Algorithm

Input:
The measurement sent by PE k to PE i is a closed interval
[lk,i, hk,i], 1 ≤ k ≤ N .

Output:
The output of PE i includes a point estimate and an
interval estimate.

1: PE i receives measurements from all the other PEs.
2: Divide the union of collected measurements into mu-

tually exclusive intervals based on the number of mea-
surements that intersect, which is known as the weight
of the interval.

3: Remove intervals with weight less than N − τ , where τ
is the number of faulty PEs.

4: If there are L intervals left, let Ai denote the
set of the remaining intervals. We have Ai =

{(Ii1, wi1), · · · , (IiL, wiL)}, where interval Iil =
[
lIil , hIil

]
and wil is the weight associated with interval Iil . We also
assume hIil ≤ hIil+1

.
5: Calculate the point estimate v′i of PE i as:

v′i =

∑
l

(
l
Ii
l
+h

Ii
l

)
·wil

2∑
l w

i
l

(10)

and the interval estimate is
[
lIi1 , hIiL

]
Consider an example of 5 PEs, in which PE 5 (S5) is

sending wrong values to other PEs. Table 2 is the values
received by S1.

TABLE 2: S1 in Brooks-Iyengar algorithm

S1 S2 S3 S4 S5

S1 values [2.7, 6.7] [0, 3.2] [1.5, 4.5] [0.8, 2.8] [1.4, 4.6]

As shown in Figure 2, we can determine A1 for PE 1
according to Algorithm 3:

A1 = {([1.5, 2.7], 4), ([2.7, 2.8], 5), ([2.8, 3.2], 4)} (11)

which consists of intervals where at least 4(= N−τ = 5−1)
measurements intersect. With Equation (10), the output of
PE 1 is equal to

(4 ∗ 1.5+2.7
2 + 5 ∗ 2.7+2.8

2 + 4 ∗ 2.8+3.2
2)

13
= 2.625 (12)

and the interval estimate is [1.5, 3.2].

3.6.2 Precision Bound

We analyze the precision bound of Brooks-Iyengar algorith-
m.

6

Figure 2: Brooks-Iyengar algorithm in S1

Theorem 5 (Precision of Brooks-Iyengar Algorithm). Given
N PEs, τ of which are faulty and α = N−τ

(2N−τ)τ , the
precision bound of Brooks-Iyengar algorithm is

1

1 + α
|bw=N−2τ − aw=N−2τ | (13)

According to Theorem 5, the precision bound in the
”worst case”, i.e., when τ = dN3 e, is equal to N

N+1.2 .
Furthermore, as N → ∞, the precision bound approaches
(b− a).

3.6.3 Accuracy Bound

The definition of accuracy bound here keeps consisten-
cy with inexact agreement. In addition to point esti-
mation vi, each non-faulty PE also outputs an interval
[aw=N−τ , bw=N−τ], which is the smallest interval that must
contain the true value v̂.

|vi − v̂|≤|bw=N−τ−aw=N−τ |≤minτ+1{|u| : u ∈ U} (14)

minτ+1{|u| : u ∈ U} (where |u| denotes the length of u)
indicates the length of the (τ + 1)th shortest interval in the
set U . For example, if U = {[1, 14], [2, 16], [3, 18]}, τ = 1,ζ =
{|u| : u ∈ U} = {13, 14, 15}, then minτ+1{|u| : u ∈ U} =
min2{ζ} = 14.

This statement also indicates the fusion accuracy since it
describes the distance between the output value and the true
value. For |bw=N−τ − aw=N−τ | ≤ minτ+1{|u| : u ∈ U}, an
upper bound of fusion accuracy can be inferred by Marzullo
[13] as given in Theorem 6.

Theorem 6. Let U be the (unknown) subset of V that are non-
faulty. if τ < N

3 , then
∣∣∣⋂τ,N (V)

∣∣∣ ≤ minτ+1{|u| : u ∈ U}.

This theorem means that the derived interval is bound-
ed by a non-faulty sensor that is (τ + 1)th best. Here⋂
τ,N (V) = [aw=N−τ , bw=N−τ] is the output interval of

Marzullo’s algorithm and Brooks-Iyengar algorithm, it is the
smallest interval that is guaranteed to contain the correct
true value.

3.6.4 Robustness

Brooks-Iyengar algorithm can tolerant up to τ
2 faulty PEs,

the term “tolerant” means that the derived value and inter-
val is bounded by non-faulty PEs. Marzullo [13] proved it
in the paper (Theorem 1).

4 PROOF OF PRECISION BOUND OF BROOKS-
IYENGAR ALGORITHM

In this section, we give the details to prove the precision
bound of Brooks-Iyengar algorithm.

4.1 Model of Brooks-Iyengar Algorithm

The algorithm can be described as a flow in Figure 3.
Non-faulty and faulty intervals fuse to generate region and
weight. The Threshold remove all regions that weight is
less than N − τ . Last, all these passed regions’ midpoint
participate the weighted average and the output is derived.

Figure 3: Flow chart of Brooks-Iyengar Algorithm

PE Si forms set Ai in step 2 and 3 in Brooks-Iyengar
algorithm. Table 3 shows an example of the regions, corre-
sponding midpoints and weights in set Ai. N − τ ≤ wp ≤
N,mi = (rp,l + rp,h)/2, 1 ≤ p ≤ M , and M is the number
of regions that pass the threshold.

TABLE 3: Example of Ai in Brooks-Iyengar algorithm

Index 1 . . . p . . . M

Region [r1,l, r1,h] . . . [rp,l, rp,h] . . . [rM,l, rM,h]

Mean m1 . . . mp . . . mM

Tuple (ω1, I1) . . . (ωp, Ip) . . . (ωM , IM)

4.2 A framework of Proof solutions

4.2.1 Notion and outline
- Interval: the input interval
- Region: a middle result of Brooks-Iyengar algorithm

and also is subset of interval.
- [lfi, hfi]: ith faulty interval, where 1 ≤ i ≤ τ
- g, f : A set consists of N − τ non-faulty or τ faulty

intervals.
- G,F : A set consists of all possible g and f .
- v = BI(g∪f): g, f are non-faulty and faulty intervals

set, v denotes the output value of Brooks-Iyengar
algorithm with threshold N − τ .

- δ(g, f) = BI(g∪f)−BI(g), which is the output bias
caused by f .

- mi: variables in weighted avearge, midpoint of ith
region.

- p, q: pth and qth region with weight larger than or
equal to N − 2τ ,1 ≤ p, q ≤M .

7

4.2.2 Problem Transformation

We use typical precision bound definition here, this point-
based precision bound is maximum distance between non-
faulty output values. In a N, τ distributed system, we
can address the precision problem by considering the bias
caused by two set of faulty inputs (f1, f2) that try to
maximize and minimize the output v respectively:

∀g ∈ G,∀f1, f2 ∈ F,max(δ(g, f1)− δ(g, f2)) (15)

We can turn this problem into two similar optimization
problems:

max
∀g∈G,∀f1,f2∈F

δ(g, f1)− δ(g, f2)

≤ max
∀g∈G,∀f1∈F

δ(g, f1) + max
∀g∈G,∀f2∈F

(−δ(g, f2))

(16)

Challenge

The main problem in this precision bound problem is that
it is hard to use an unified model or expression to describe
v = BI(g ∪ f). While if we define that M regions have pass
the threshold, the output will follow this pattern:

v = BI(g, f) =
ΣMi=1wimi

ΣMi=1wi
(17)

We use term “item” to denote each wimi in Equation 17.
Now we have transformed the problem into two similar

optimization problems, we first consider how to positively
maximize the bias δ(g, f1) then obtain the bound. The
following passage tries to find optimal solutions g∗ ∈ F
and f∗ ∈ F and this process reflects how the interaction
(e.g., position, length, placement strategies) between the
non-faulty and faulty intervals affect the output.

Assumption 1.
∀g ∈ G,∩I∈gI 6= ∅

This assumption means that all non-faulty intervals in-
tersect on a same region, also the output v = BI(g) is
exist.

Claim 1. ∀g ∈ G and faulty intervals set f ′ with 0 < |f ′| <
τ , and v0 = BI(g ∪ f ′). If a new faulty interval [rl, rh],
where rl > v0 is added and let v′ = BI(g∪f ′∪{[rl, rh]}),
then v′ ≥ v0.

Proof 5. Assume that the original result v0 is weighted
average of M regions with weight wi and mean mi. If
the added interval [rl, rh] can introduce new “items”,
then each “item” Ax increase the output because x ≥
ΣMi=1wimi

ΣMi=1wi
and

ΣMi=1wimi +Ax

ΣMi=1wi +A
− ΣMi=1wimi

ΣMi=1wi

= A
xΣwi − Σwimi

(Σwi +A)Σwi
≥ 0 (18)

If the added interval [rl, rh] can not introduce new “item”,
then the output remains the same.

We prove the precision bound by four Lemmas. In this
proof, we first consider the affect of one faulty interval and

then the combination of τ faulty intervals. Lemma 1,2,3
show how the movement of a faulty interval maximize
the output bias. Lemma 4 finds some conditions that at
least one optimal solution g∗, f∗ follows. The counterpart
of minimize the output is similar, then the Theorem 5 gives
the precision bound.

Lemma 1. ∀g ∈ G, f ∈ F , v0 = BI(g ∪ f) and if a
faulty interval [lf , hf] ∈ f, lf ≥ v0, then BI(hf) is
nondecreasing.

Proof 6. We use BI(hf) as the functional relation between
algorithm output and interval end-point hf . Whether or
not the increase of hf will across the region, we have two
cases.
a): When the increase of hf will not across the region,
BI ′(hf) ≥ 0 and the Lemma 1 is right. Suppose that hf
increase on qth and q′th region in Figure 4 (1) and Figure
5 (2), BI ′(hf) = 0. Suppose that hf increase on q′th and
qth region in Figure 4 (2) and Figure 5 (1), BI ′(hf) =
wq′

2 /ΣMi=1wimi > 0 and BI ′(hf) =
wq
2 /Σ

M
i=1wimi > 0

respectively.
b): When the increase of hf will across the region, the
Lemma 1 is also right because of Claim 1. Suppose that
hf increase on different regions, we consider whether
or not this will introduce new “items”. If no items are
introduced, then v = BI(hf) remains unchanged. If
new items are introduced, then v = BI(hf) will increase
according to Claim 1. In Figure 4 (1)(2), hf across qth to
q′th region and the introduced items cause v = BI(hf)
to increase. In Figure 5 (1)(2), hf across qth to q′th region
does not introduce new items, v = BI(hf) remains
unchanged.

Figure 4: Example 1 of increase of hf

Figure 5: Example 2 of increase of hf

Lemma 2. ∀g ∈ G, f ∈ F , v0 = BI(g ∪ f) and if a faulty
interval [lf , hf] ∈ f , where lf ≥ v0 and lf lies in region
[ra, rb), then BI(lf) is increasing on [ra, rb).

Proof 7. Like approach of Lemma 1 mentioned before, since
BI ′(lf) ≥ 0, where lf ∈ [ra, rb), then BI(lf) is increase

8

Figure 6: Example of increasing lf

function. Figure 6 gives two examples that BI(lf) is
increasing on pth region. limlf→rb BI(lf) = C , where C
is the algorithm’s output that allows single point region
[rb, rb] with weight wp + 1 to participate the weighted
average.

Lemma 3. ∀g ∈ G, v0 = BI(g), and one faulty interval
[lf , hf], where hf ≥ bw=N−2τ , lf = bw=w0−∆ and w0 ∈
{N − τ,N − τ − 1}, then δ(bw=w0) is increase function.

Proof 8. Lemma 3 indicates the g ∈ G that is more vulnera-
ble. Here we define lf ∈ [ra, rb) and use rb to substitute
bw=w0 . For different regions that lf is in (whether or not
lies in the region with weight N − τ that formed all
by non-faulty intervals), there are two cases should be
considered. Suppose that the region with weight N − τ
in Figure 6 is formed by all non-faulty intervals, then
Case 1: Figure 6 (1) shows an example that w0 = N −
τ − 1, it means that lf is not in the region with weight
N−τ that formed all by non-faulty intervals. In this case,
[lf , hf] = [rb −∆, hf]:

δ′(g ∪ {[rb −∆, hf]}) = BI ′(g ∪ {[rb −∆, hf]}) ≥ 0

Case 2: Figure 6 (2) shows an example that w0 = N−τ , it
means that lf lies in the region with weight N − τ that is
formed by all non-faulty intervals. In this case, Suppose
that (p+ 1)th region’s weight is wp+1, since lf = rb−∆,
then

δ′(g0 ∪ {[rb −∆, hf]})
= BI ′(g0 ∪ {[rb −∆, hf]})−BI ′(g0)

=
d

drb
(
(N−τ)ra+rb−∆

2 +(N−τ+1)rb−∆+rb
2 +wp+1

rb+rp+1

2

N − τ + (N − τ + 1) + wp+1

− ra + rb
2

)

=
(N − τ) 1

2 + (N − τ + 1) + wp+1
1
2

(N − τ) + (N − τ + 1) + wp+1
− 1

2
> 0

(19)

We can easily extend Lemma 3 to multiple faulty intervals,
it is similar that g with larger bw has larger δ(g, f), where
N−2τ ≤ w ≤ N−τ and f share conditions with Lemma 3.

Lemma 4. For all possible non-faulty and faulty intervals,
problem max δ(g ∪ f) exists an optimal solution g∗ and
f∗ satisfy the following conditions:

- ∀[li,f , hi,f] ∈ f∗, hi,f ≥ bw=N−2τ

- ∀[li,f , hi,f] ∈ f∗, li,f = bw=w0 −∆1 where N − 2τ ≤
w0 ≤ N − τ and ∆1 is an arbitrary small value.

- |bw=N−2τ−bw=N−τ | ≤ ∆2, where ∆2 is an arbitrary
small value.

Proof 9. We can use contradiction to prove it. If there
are no g, f that follow all these conditions, we can
always make the v = δ(g ∪ f) nondecreasing (increas-
ing hf , lf , bw=w0)and find a larger than or equal to v
according to Lemma 1, Lemma 2, Lemma 3.

Theorem 5 (Precision of Brooks-Iyengar Algorithm). Given
N PEs, τ of them are faulty, the precision bound of
Brooks-Iyengar algorithm is 1

1+α |b− a|.

α =
N − τ

(2N − τ)τ

Proof 10. According to Lemma 4, we use g∗, f∗ to get
maximum bias. For the weighted average in condition of
Lemma 4, all regions’ midpoint are within [bw=N−2τ −
∆2, bw=N−2τ] except the region that weight is w = N−τ
and is formed by all non-faulty intervals. We use wi to
represent the region’s weight and

max
∀g∈G,∀f1∈F

δ(g, f1)

= BI(g∗ ∪ f∗)−BI(g∗)

=
(N − τ)aw=N−τ+b

2 +
∑
wib

N − τ +
∑
wi

− aw=N−τ + b

2
(20)

To solve Equation 20, we should maximize
∑
wi and

minimize aw=N−τ if
∑
wi/(N − τ +

∑
wi) ≥ 1/2.

One possible strategy for maximize
∑
wi is bw=N−τ −

∆3 ≤ l1,f < · · · < lτ,f < bw=N−τ where ∆3 is
arbitrary small, and we can prove it by Mathematical
Induction. In this case, aN−τ can reach it’s minimum a.
For δ(g, f2), we have similar conclusions. Assume that
b = bN−2τ , a = aN−2τ and ∆3 → 0, Figure 7 shows a
solution of Equation 16 and we find

max
∀g∈G,∀f1∈F

δ(g, f1)− max
∀g∈G,∀f2∈F

δ(g, f2)

<
(N − τ)a+b

2 + (N − τ + 1 + ...+N + ...+N − τ)b

(N − τ) +N − τ + 1 + ...+N + ...+N − τ

−
(N− τ)a+b

2 + (N− τ+1 + ...+N+ ...+N− τ)a

(N− τ) +N− τ + 1 + ...+N+ ...+N− τ

=
b− a

1 + N−τ
(2N−τ)τ

(21)

Figure 7: One case to achieve precision bound

9

TABLE 4: Comparison of agreement-based distributed sensing algorithms

Algorithm Approximate
agreement

FCA Approximate BVC
Marzullo
sensor fusion

Brooks-Iyengar algorithm

Input scalar scalar vector interval interval/hybrid
Faulty PEs
tolerated

< N/3 < N/3 ≤ (N − 1)/(d+ 2) < N/2 < N/3

Maximum
faulty PEs

< N/3 < 2N/3 ≤ (N − 1)/(d+ 2) < N/2 < N/2

Convergence
rate [21]

1/(1+bN−2τ−1c) 2τ/N (1− γ) 2 ∗ accuracy 2τ/N

Accuracy δ(U) κ +
δτ/N

in the convex hull [aw=N−τ , bw=N−τ] [aw=N−τ , bw=N−τ]

Precision
of each round

δ(U)/2 2τδ/N (1−γ)(Ωl[t−1]−µl[t−1]) |bw=N−2τ−aw=N−2τ | |bw=N−2τ−aw=N−2τ | /(1 + α)

5 CONCLUSION

This paper surveyed a set of distributed, agreement-based
sensor fusion algorithms and investigated their precision
bounds. The precision bound indicates the disagreement
level of the fusion results of a distributed fusion algorithm.
We focused on point-based and interval-based distributed
fusion algorithms. The characters of the investigated al-
gorithms and their precision bounds were summarized in
Table 4. An comparable summary is in paper [21], but our
study include more performance metrics, including preci-
sion, faulty PEs tolerance etc.

From Table 4, i) regarding fault tolerance, FCA, Marzul-
lo sensor fusion, and Brooks-Iyengar show better perfor-
mances than other investigated algorithms, in terms of the
tolerable faulty PEs. ii) regarding estimation accuracy, ap-
proximate agreement algorithm can bound output to within
the accuracy bound of non-faulty input without any im-
provement; FCA can not guarantee the output be better than
the input in the worst cases. By our definition of accuracy
for interval-based fusion algorithms, Marzullo sensor fusion
method and Brooks-Iyengar provides the same accuracy
level. iii) for precision, all algorithms can iterate to improve
the precision except Marzullo sensor fusion method; For
interval-based sensor fusion, Brooks-Iyengar algorithm pro-
vides better precision bound than the Marzullo’s. iv). No
algorithms except Brooks-Iyengar algorithm conduct both a
point estimation and an interval estimation in one round.
Brooks-Iyengar algorithm considers different numbers of
PEs and provides a point estimation in the presence of fault-
s, which can be extended to solve problems in other areas
[21] (e.g., floating-point computations, software reliability).

Since agreement-based distributed fusion plays impor-
tant role in distributed computing, sensor networks and oth-
er distributed applications, selection of the fusion algorithm
will be important for users, which can be based on the above
mentioned characters of these investigated algorithms.

ACKNOWLEDGMENT

The authors would like to thank Vasanth Iyer on their
comments on paper presentation. This work was supported
in part by the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, the National Natural

Science Foundation of China Grant 61202360, 61033001,
61361136003.

REFERENCES

[1] Feng Zhao and Leonidas J Guibas. Wireless sensor networks: an
information processing approach. Morgan Kaufmann, 2004.

[2] David Swanson. ”environmental effects”. In S Sitharama Iyengar
and Richard R Brooks, editors, Distributed Sensor Networks: Image
and Sensor Signal Processing. CRC press, 2012.

[3] Richard R Brooks and Sundararaja S Iyengar. Multi-sensor fusion:
fundamentals and applications with software. Prentice-Hall, Inc., 1998.

[4] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzan-
tine generals problem. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 4(3):382–401, 1982.

[5] Stephen R Mahaney and Fred B Schneider. Inexact agreement:
accuracy, precision, and graceful degradation. In Proceedings of the
fourth annual ACM symposium on Principles of distributed computing
(PODC), pages 237–249. ACM, 1985.

[6] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the
minimal synchronism needed for distributed consensus. Journal
of the ACM (JACM), 34(1):77–97, 1987.

[7] Michael Barborak, Anton Dahbura, and Miroslaw Malek. The
consensus problem in fault-tolerant computing. ACM Computing
Surveys (CSUR), 25(2):171–220, 1993.

[8] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching
agreement in the presence of faults. Journal of the ACM (JACM),
27(2):228–234, 1980.

[9] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impos-
sibility of distributed consensus with one faulty process. Journal of
the ACM (JACM), 32(2):374–382, 1985.

[10] A D Fekete. Asymptotically optimal algorithms for approximate
agreement. In Proceedings of the Fifth Annual ACM Symposium on
Principles of Distributed Computing (PODC), pages 73–87, 1986.

[11] Nitin H Vaidya, Lewis Tseng, and Guanfeng Liang. Iterative
approximate byzantine consensus in arbitrary directed graphs. In
Proceedings of the 2012 ACM symposium on Principles of distributed
computing, pages 365–374. ACM, 2012.

[12] Nitin H. Vaidya and Vijay K. Garg. Byzantine vector consensus in
complete graphs. In PODC, pages 65–73, 2013.

[13] Keith Marzullo. Tolerating failures of continuous-valued sensors.
ACM Transactions on Computer Systems (TOCS), 8(4):284–304, 1990.

[14] Behrooz Parhami. Distributed interval voting with node failures
of various types. In Parallel and Distributed Processing Symposium,
2007. IPDPS 2007. IEEE International, pages 1–7. IEEE, 2007.

[15] Vijay Kumar. Impact of brooks-iyengar distributed sensing al-
gorithm on real time systems. IEEE Transactions on Parallel and
Distributed Systems (TPDS), page 1, 2013.

[16] Lin Xiao, Stephen Boyd, and Sanjay Lall. A scheme for robust dis-
tributed sensor fusion based on average consensus. In Information
Processing in Sensor Networks, 2005. IPSN 2005. Fourth International
Symposium on, pages 63–70. IEEE, 2005.

[17] Reza Olfati-Saber, J Alex Fax, and Richard M Murray. Consensus
and cooperation in networked multi-agent systems. Proceedings of
the IEEE, 95(1):215–233, 2007.

10

[18] Reza Olfati-Saber and Richard M Murray. Consensus problems
in networks of agents with switching topology and time-delays.
Automatic Control, IEEE Transactions on, 49(9):1520–1533, 2004.

[19] Danny Dolev, Nancy A Lynch, Shlomit S Pinter, Eugene W Stark,
and William E Weihl. Reaching approximate agreement in the
presence of faults. Journal of the ACM (JACM), 33(3):499–516, 1986.

[20] Hammurabi Mendes and Maurice Herlihy. Multidimensional
approximate agreement in byzantine asynchronous systems. In
Proceedings of the 45th annual ACM symposium on Symposium on
theory of computing(STOC), pages 391–400. ACM, 2013.

[21] Richard R Brooks and S Sitharama Iyengar. Robust distributed
computing and sensing algorithm. Computer, 29(6):53–60, 1996.

APPENDIX

5.1 Proof of Theorem 1

Proof 11. The following proof is based on the proof s-
ketch in [19]. Let Si and Sj formed multisets V and
W respectively after the information exchange. Then
|V | = |W | = N . Since there are at most τ faulty
processes, |V − U | ≤ τ and |W − U | ≤ τ . Moreover,
since V and W both contain the N − τ non-faulty values
, so |V −W | = |W − V | ≤ τ .
Let c(N, k) = bN−2τ−1

k c+ 1, M = reduceτ (V) and N =
reduceτ (W). It is easily to known that |selectk(M)| =
|selectk(N)| = c(N − 2τ, k). Let m0 ≤ m1 ≤ . . .mc−1

be the elements of selectk(M), and let n0 ≤ n1 ≤ · · · ≤
nc−1 be the elements of selectk(N). Notice that there are
at least ki + 1 elements in M that are less than or equal
to mi, and at most ki elements in M that are strictly less
than mi; similarly for N .

|fk,τ (V)− fk,τ (W)|
= |mean(selectk(M))−mean(selectk(N))|

=
1

c

∣∣∣∣∣
c−1∑
i=0

mi −
c−1∑
i=0

ni

∣∣∣∣∣
=

1

c

∣∣∣∣∣
c−1∑
i=0

(mi − ni)
∣∣∣∣∣

≤ 1

c

c−1∑
i=0

|mi − ni| (by the triangle inequality)

=
1

c

c−1∑
i=0

(max(mi, ni)−min(mi, ni)).

Showing that max(mi, ni) ≤ min(mi+1, ni+1) for 0 ≤
i ≤ c−2. It suffices to show that mi ≤ ni+1; a symmetric
argument demonstrates that ni ≤ mi+1. We proceed by
contradiction: Suppose that mi ≥ ni+1. As noted above,
there are at least k(i + 1) + 1 elements in N less than
or equal to ni+1. By our supposition, these elements
are strictly less than mi. However, there are at most
ki elements in M strictly less than mi. Therefore, there
are at least k(i + 1) + 1 − ki(= k + 1) elements in N
that are not in M ; thus, |N −M | ≥ k + 1. Now by
hypothesis, |W − V | ≤ k, so |W ∩ V | ≥ N − k. Then
Lemma 2 in [19] shows |N ∩M | ≥ N − k − 2τ , and
hence |N −M | ≤ (N − 2τ)− (N − k − 2τ) = k. This is
a contradiction, and we conclude that mi ≤ ni+1 .

By the inequality demonstrated above, for 0 ≤ i ≤ c −
2, (max(mi, ni) −min(mi, ni)) ≤ (min(mi+1, ni+1) −
min(mi − ni)); so we get

|fk,τ (V)− fk,τ (W)|

≤ 1

c
[max(mc−1, nc−1)−min(mc−1, nc−1)]

+
1

c

c−2∑
i=0

(min(mi+1, ni+1)−min(mi, ni))

≤ 1

c
(max(mc−1, nc−1)−min(m0, n0))

≤ 1

c
(max(U)−min(U))

=
1

c
δ(u)

The multiset V,W,U satisfy above inequality. Thus,∣∣v′i − v′j∣∣ ≤ δ(U)

bN−2τ−1
τ c+ 1

, k = τ

5.2 Proof of Theorem 2

We restate Theorem 2 as following: If N ≥ 3τ + 1, during
execution of FCA the estimation precision in one round is
bounded by 2τ

N δ(U) [5].

Proof 12. The following proof is based on the proof sketch
in [5]. Let G and F be the set of non-faulty and faulty
PEs respectively, and |F | = τ . Let |Fval| be the number
of non-faulty processors with faulty values and suppose
|F | + |Fval| ≤ m. Suppose PE Sp is correct and formed
Vp after information exchange. Let Ap be the set of
acceptable values of Vp, vrp be the value Sp obtains from
PE Sr and let v−rp be defined by

v−rp =

{
e(Ap) if vrp is not in Ap
vrp otherwise

Define v−rq for some other correct PE Sq similarly. The
following proof is based on the proof framework in [5].
First, we prove that

∣∣v−rp − v−rq∣∣ ≤ 2δ(U). By the def-
inition of an estimator, if v−rp = e(Ap) then v−rp must
lie in intvl(Ap), which is the acceptable interval of Vp;
otherwise, v−rp = vrp , which lies within intvl(Ap)
by definition. For the same reason, v−rp lies within
intvl(Aq). Then by applying Lemma 1 in [5], we can
yield

∣∣v−rp − v−rq∣∣ ≤ 2δ(U).
Next, let v′p and v′q be the result value of Sp and Sq
respectively computed by FCA.

∣∣v′p − v′q∣∣ =

∣∣∣∣∣∣ 1

N

∑
Sr∈F∪G

v−rp −
1

N

∑
Sr∈F∪G

v−rq

∣∣∣∣∣∣
=

1

N

∣∣∣∣∣∣
∑

Sr∈F∪G
(v−rp − v−rq)

∣∣∣∣∣∣
=

1

N

∣∣∣∣∣∣
∑
Sr∈F

(v−rp − v−rq)

∣∣∣∣∣∣

11

since for Sr ∈ G,
∣∣v−rp − v−rq∣∣ = 0,

≤ 1

N

∣∣∣∣∣∣
∑
Sr∈F

(v−rp − v−rq)

∣∣∣∣∣∣
≤ 2τ

N
δ(U)

5.3 Proof of Theorem 3

The following proof is based on the proof sketch in [12].
The prove of precision boundis based on that Zi and Zj
both contain one identical point. Suppose that m processes
p1, p2, . . . , pm(m ≥ n − τ) are non-faulty and vi[t], vj [t]
are vectors of two non-faulty PEs at rount t . In [12],
Observations 1 and 3 in Part III of the proof of Theorem
5 imply that:

vi[t] =
m∑
k=1

αkvk[t− 1] (22)

m∑
k=1

αk = 1, αk ≥ 0, αg ≥ γ (23)

vj [t] =
m∑
k=1

βkvk[t− 1] (24)

m∑
k=1

βk = 1, βk ≥ 0, βg ≥ γ (25)

where 1 ≤ k ≤ m and g is the index satisfies that αg ≥ γ(the
existence proof is in [12]), where γ = 1/(nCnn−τ).

vil[t] =
m∑
k=1

αkvkl[t− 1]

≤ αgvgl[t− 1] + (1− αg)Ωl[t− 1]

because vkl[t− 1] ≤ Ωl[t− 1],∀k
≤ γvgl[t− 1]+(αg−γ)vgl[t− 1]+(1− αg)Ωl[t− 1]

≤ γvgl[t− 1]+(αg−γ)Ωl[t− 1]+(1− αg)Ωl[t− 1]

because vgl[t− 1] ≤ Ωl[t− 1] and αg ≥ γ
≤ γvgl[t− 1] + (1− γ)Ωl[t− 1]

(26)

vjl[t] =
m∑
k=1

βkvkl[t− 1]

≥ βgvgl[t− 1] + (1− βg)µl[t− 1]

because vkl[t− 1] ≥ µl[t− 1],∀k
≥ γvgl[t− 1]+(βg−γ)vgl[t− 1]+(1− βg)µl[t− 1]

≥ γvgl[t− 1]+(βg−γ)µl[t− 1]+(1− βg)µl[t− 1]

because vgl[t− 1] ≥ µl[t− 1] and βg ≥ γ
≥ γvgl[t− 1] + (1− γ)µl[t− 1]

(27)

Subtracting Equation (26) from Equation (27) and ac-
cording to symmetry of i and j we get

|vil[t]− vjl[t]| ≤ (1− γ)(Ωl[t− 1]− µl[t− 1]) (28)

