
International Journal of Parallel Programming, Vol. 15, No. 6, 1986

Optimal Parallel Algorithms for
Constructing and Maintaining a
Balanced m-way Search Tree

Eliezer Dekel, 1 Shietung Peng, t and S. Sitharma

Received July 1987, revised May 1987

lyengar 2

We present parallel algorithms for constructing and maintaining balanced
m-way search trees. These parallel algorithms have time complexity 0(1) for an
n processors configuration. The formal correctness of the algorithms is given in
detail.

KEY WORDS(S): Parallel algorithms; MIMD; search trees.

1. I N T R O D U C T I O N

The use of tree structures to represent symbol tables, dictionaries has been
extensively studied. (1) In all these structures we hae a collection of records
that are to be manipulated with regard to a certain key field in a record.
Common operations on these structures are SEARCH, INSERT, and
DELETE. SEARCH(K) returns a pointer to the record that contains the
requested key field K. If no record with key K is in the given collection, it
returns a pointer to the location in which a record with such a key can be
inserted. INSERT(R) inserts a new record into the collection. DELETE(K)
removes the record with key K from the collection. The tree structure sup-
ports efficient INSERT, SEARCH, and D E L E T E operations. In some
implementations the operations are designed so that a balanced tree is
maintained through the process. Another approach is to periodically
rebalance the tree.

1 University of Texas at Dallas, Programs in Computer Science.
2 Lousiana State University, Computer Science Dept.

503

0885-7458/86/1200-0503505.00/0 �9 1986 Plenum Publishing Corporation

504 Dekel, Peng, and lyengar

In our discussion we refer to these structures as dictionaries. The
operations INSERT, SEARCH, and D E L E T E will be referred to as basic
dictionary operations.

When the data associated with the dictionary fit into main memory,
the most common structure used would be a balanced binary search tree.
When the data are too big to fit in main memory, a balanced m-way search
tree would be used. Many type of balanced m-way search trees are reported
in Refs. 1 and 2. In our discussion we refer to the following:

Def ini t ion 1.1. An m-way search tree, T, is a tree is which all
internal nodes are of degree ~< M. If T is empty, then T is an m-way search
tree. When T is not empty, it has the following properties:

1. T is a node of type Ao, (K~,AI), (K2 , A2) (K m l, Am_l) where
the Ai, O<,i<m, are pointers to the subtrees of T and the Ki,
1 ~< i < m, are key values.

2. Ki<Ki+x, l ~ < i < m - 1 .

3. All key values in subtree Ai are less than value K~+ l, 0 ~ i < m - 1.

4. All key values in the subtree A m _ 1 are greater than Km-~.
5. The subtrees Ai, 0 ~< i ~< m - 1, are also m-way search trees.

As an example of a 4-way search tree consider the tree of Fig. 1. This
tree is constructed for key values 2, 3, 10, 11, 14, 16, 17, 19, 22, 25, 30, 32,
35, 40, 47, 60, 65, 90. In order to search for any key value x in this tree, we
start at the root T and look for keys K~ and Ki + ~ for which Ki ~< x < K~+ 1
(for convenience we assume the existence of keys Ko = - o e and

Fig. 1. Example of a 4-way search tree.

A Balanced m-way Search Tree 505

K,,+I = Go). In case x = Ki then the search is complete. Otherwise, by the
definition of the m-way tree, x must be in sbstree A i if it is in the tree.
Clearly, the 4-way search tree in Fig. 1 is not the only possibility for a
4-way search tree construction with the given keys. In general we would
prefer the construction with the minimal possible height.

D e f i n i t i o n 1.2. A balanced m-way search tree is an m-way search
tree minimal height.

In this paper, we present parallel algorithms for balancing and main-
taining m-way search tree. Since the complexity of a parallel algorithm
depends very much on the architecture of the parallel machine on which it
runs, it is necessary to keep the architecture in mind when designing
parallel algorithms. Many parallel architectures have been proposed and
studied. In this paper, we deal directly with only the multiple-instruction
stream, multiple-data stream (MIMD) model. Our technique and
algorithms readily adapt to other models (e.g., single-instruction stream,
multiple-data stream (SIMD) and data flow models). MIMD computers
have the following characteristics.

(1) The consist of p processing elements (PEs). The PEs are indexed
0, 1,..., p - 1, and an individual PE may be referenced as PE(i).
Each PE is capable of performing the standard arithmetic and
logical operations. In addition, each PE knows its index.

(2) Each PE has some local memory.

(3) The PEs operate asynchronously under the control of individual
instruction streams.

(4) Different PEs can execute different instructions at any time.

During the computation the PEs communicate results to each other.
In many MIMD models the time required to communicate data from PE
to PE often dominates the overall complexity of the algorithm. Several
interprocessor communication models for MIMD computers have been
proposed in the literature.

The communication overhead of an algorithm varies from one com-
munication model to another. To simplify the discussion we deal only with
the shared-memory model (SMM) in this paper. This model has no com-
munication delay. In a shared-memory computer there is a large common
memory that is shared by all PEs. It is assumed that any PE can access any
word in common memory in O(1) time. When two or more PEs access the
same memory word simultaneously, we say that a conflict has occurred. As
far as our discussion is concerned, no conflicts are allowed.

The advent of parallel processing (specifically VLSI) has led to the
development of a number of special purpose parallel machines to support

506 Dekel, Peng, and lyengar

dictionary structures. (3-1~ Leiserson, (7~ Bently and Kung, (5) Ottmann, et
al., (8~ and Atallah and Kosaraju (4) proposed pipelined architectures based
on a balanced binary tree. O(N) PEs are used in order to support a search
tree containing up to N elements. The machines vary in their wiring com-
plexity and the variety of dictionary operations that they support.
Generally, all of them can perform the basic dictionary operations in
O(log N) time. They vary on the input pipeline intervals. The Atallah and
Kosaraju's machine (4) provides O(log N) performance with a pipeline inter-
val of O(1) for a wide range of dictionary operations. (n is the actual num-
ber of elements stored in the O(N) PEs machine). These designs maintain
the dictionary elements in some sorted order. Somani and Agarwal (9)
propose a binary tree machine with O(N) PEs that does not require any
sorted order for the dictionary elements. Their design supports all
dictionary operations and provides an O(logn) time performance with
constant pipeline interval. Armstrong, (3~ Tanaka, e t al., (1~ and Carey and
Thompson (6) propose a pipelined architecture for maintaining a search tree
of N elements with only O(log N) PEs. The most recent design, by Carey
and Thompson supports the richest set of dictionary operations among
these three designs. This design can perform the basic dictionary operations
in O(logN) time with O(1) pipeline interval. Fisher ('a/ developed an
architecture based on the Trie structure. (11 In his design the number of PEs
is proportional to the length of the maximum key. Like the Carey and
Thompson's design, (6) his machine supports a smaller set of operations
than the O(N) PEs machines. Fishers scheme (a~/is advantageous when the
dictionary keys are long.

These pipelined architectures achieve only an O(log N) throughput
improvement over the serial balanced tree algorithms. When the number of
records in the dictionary becomes bigger than N these designs will not
function. That is, the hardware is tailored to the maximal possible number
of elements in the tables. While to O(N) PEs architectures can handle
efficiently operations be!)ond basic dictionary functions, they have no
advantage over the O(log N) designs when only the basic operations are
considered.

These parallel designs follow the trend in most serial algorithms for
search trees: They maintain the tree balanced through the INSERT and
DELETE operations by splitting and combining nodes. Another strategy is
to allow insert and delete to "unbalance" the tree and to periodically
rebalance the entire tree. (12 14) Recently, Moitra and Iyengar (13) explored a
technique of transforming a sequential algorithm for balancing a binary
search tree into an efficient parallel algorithm. Furthermore, they have
shown that the resulting parallel algorithm has a time complexity O(1)
when a tree with N elements is balanced with N PEs. An O(log N) time

A Balanced m-way Search Tree 507

set-up overhead is incurred when a new N is considered. For broader
treatment of this, see Ref. 13.

Manber (15) discusses the concurrent maintenance of a variation of the
binary search tree. He considers the basic dictionary operations in a
concurrent environment. His approach is to allow the tree to become
unbalanced as a result of an INSERT or DELETE operation. To allow
rebalancing, he introduces maintenance processes.

In this paper, we consider the construction of parallel algorithms for
balancing and maintaining a general m-way search tree. These parallel
algorithms are examples of algorithms with no communication overhead.
That is, once the assigned processors read in the input, they do not need to
communicate until after the result is written out. Our algorithms have O(1)
time complexity on an n-PEs configuration, where n is the number of
elements in the tree. No setup overhead is required.

The complexity analysis is carried out on the assumption that as many
PEs as needed are available. This assumption is of course unrealistic. A
parallel algorithm will eventually be run on a machine with a finite number
of PEs, say k. It should be easy to see that all our algorithms are easily
adapted to the case of k PEs. If our algorithm has O(1) complexity using
O(N) PEs, then with k PEs k < N, its complexity is O(N/k). Thus wth only
1 PE our tree balancing algorithm will have the same time complexity as
the best serial algorithm for this problem.

The paper is organized as follows. In Section 2, we review some
properties of m-way search trees. In Section 3 we develop the general
m-way search tree rebalancing/construction algorithm, we discuss in detail
the development of the algorithm and its correctness. I this section we also
present algorithms for rebalancing after one insertion or one deletion. In
Section 4, we discuss the implementation of the algorithms on an MIMD
machine.

2. M - W A Y S E A R C H T R E E S

In this section we review some general properties of m-way search
trees. As mentioned in the introduction, m-way trees are used to represent
dictionaries that do not fit in internal memory, i.e., m-way search trees are
structures tailored for external search. The choice of m is hardware depen-
dent.

Dictionary searches are more efficient when they are done on a balan-
ced tree. Thus the insertion and deletion algorithms are designed to leave
the tree balanced. Because of this requirement, it is more convenient to
consider balanced m-way search trees that are not necessarily of minimal
height (e.g., B-trees). These trees lend themselves to easier splitting and

828/15/6-4

508 Dekel, Peng, and lyengar

combining. While this is true in the serial case, we show that in the parallel
case the complete m-way search tree proves to be an efficient choice.

We now present some definitions and review properties of m-way
search trees.

Def ini t ion 2.1. A search tree of minimal height is called route-
balanced.

It is easy to show the correctness of the following two lemmas:

L e m m a 2.1. The maximum number of nodes on level i of an m-
way search tree is m (i- 1).

L e m m a 2.2. The maximum number of nodes in an m-way search
tree of height h is (m h - 1)/(m - 1).

Definit ion 2.2. A full m-way search tree of heigh h is an m-way
tree of height h having (m h - 1) / (m - 1) nodes.

Definit ion 2.3. A level labeling of an m-way search tree is a
labeling in which nodes are numbered sequentially, from top down and left
to right. The root node is always labeled 1.

Definit ion 2.4. An m-way search tree with n nodes and of height h
is complete if its nodes correspond to the nodes which are numbered 1 to n
(by level labeling) in a full m-way search tree of height h.

Figure 2 shows a full 4-way tree of height 3. Its 21 nodes are labeled
by level labeling. In Fig. 3, we show a complete 3-way tree.

L e m m a 2.3. If the nodes of a complete m-way tree are labeled by
level labeling, then the m children of node i (if they exist) are labeled
(i - 1) * m + 2 + j , O < < . j < < . m - 1.

Fig. 2. A full 4-way tree.

A Balanced m - w a y Search Tree 509

Fig. 3. A complete 3-way tree.

ProoL By induction on the number of nodes in the complete m-way
tree.

D e f i n i t i o n 2.4. In an m-way tree T, the (i, j) ' th node refers to the
j t h node, (from the left), on the ith level, if it exists. We refer to this
indexing method for m-way search trees as two-dimensional indexing.

L e m m a 2.5. A full m-way search tree of height h can accommodate
at most m h - 1 key elements.

Proof. This follows directly from Lemma 2.2 and the m-way search
tree definition (Def. 1.1).

D e f i n i t i o n 2.5. Inorder traversal of an m-way search tree is
defined by the following recursive procedure:

procedure MINORDER(T)
{*T is an m-way search tree as defined in Def. 1.1"}
if T r null then

begin
call MINORDER(A0);
for i : = 1 t o m - 1

begin
if no Ki key then exit;
visit(Ki);
MINORDER(Ai);
end;

end;
end. {*MINORDER* }

510 Dekel, Peng, and lyengar

D e f i n i t i o n 2.6. An index can be associated with each key in an
m-way search tree. If this index corresponds to the order in which
MINORDER visits the keys, it is called the inorder indexing.

Figure 4 shows a 3-way search tree. The inorder index is given for each
key. The inorder index can be obtained by modifying MINORDER to
execute the line X i := count + 1 in place of the line visit(Ki). The variable
count should be a global variable initialized to zero by the calling program,
and Xi will be the inorder index associated with key Ki. It is easy to see
that if the keys are printed out by their inorder index the result would be a
sorted sequence of keys. In the following lemmas we consider the relation
between the inorder indexing of a key and its location in the m-way search
tree.

L e m m a 2.6. Suppose node I is at level r of a full m-way search tree
of heigh h. Let the inorder index associated with key Ki in I be Xi. Then
X i + l - X i = m h - r for l ~ < i < m - 1 .

Proof . The keys visited by MINORDER between g i and Ki+l are
exactly the keys of the subtree pointed by pointer Ai. These keys will have
inorder indexes starting from X;+ 1 to X~+I - 1. Since the tree is a full tree,
the height of the subtree Ai is h - r. The number of keys in a tree of height
h - r is m (h - r) - 1 (Lemma 2.5). Hence Xi+ 1 - - X i = m (h - r) for 1 ~< i < m - 1.

L e m m a 2.7. a) Let nodes I and J be two adjacent sibling nodes at
level r of a full m-way search tree of heigh h. Let I. X m _ ~ be the inorder
index of the last key in node I and J.X1 the inorder index of the first key in
node J. Then J . X 1 - - I . X m _ 1 = 2 * m (h - r) .

b) The previous claim is true for any two adjacent nodes at level r.

Proof . a) Observe that MINORDER, after traversing 1 .Km_~ and
assigning it an index I . X m _ 1, goes on to traverse subtree I. A m _ 1. When

Fig. 4. A full 3-way search tree.

A Balanced m - w a y Search Tree 511

this tree is completed the procedure will traverse S.Kg, where S . A f _ 1 = I
and S . A f = J (S is the parent node of I and J). Next MINORDER will
traverse subtree J.Ao and only then key J.K1. Thus indexes between
I. Xm_ 1 and J.X1 are associated with keys in two subtrees of height h - r
and an extra key in the parent node. Since each subtree has m (h r)_ 1 keys
(Lemma 2.5), we get: J.X1 - I . X , , _ ~ = 2 �9 (m (h-r~- 1)+ 1 + 1 = 2 * m (h-r).

b) One can readily observe that the only difference between sibling
nodes at level r and nonsibling adjacent nodes is the level in which the
extra key resides. For the sibling case the extra key is one level above. If
the parents of the nodes are siblings then the extra node is two levels
above, and so on.

Theorem 2.1. Consider a full m-way search tree of height h. The
inorder indexes for keys in node i at level r (node(r , i)) are:
(i - 1) �9 m(h-r + l) + j * m (h-r), where 1 <~ i ~m(~- J); 1 <~ j <m.

Proof. The number of nodes at level r is m (r- ~) (Lemma 2.1). Pointer
A o in the first node (from the left) points to a subtree with m (h-~)- 1 key
elements (Lemma 2.5). All these elements are traversed before the first
element in this node. Hence the inorder index of this key is m (h-r). From
Lemma 2.6 we know that the inorder index of the second element in that
node should be 2 �9 m (h-r). From Lemma 2.7 we get that the inorder index
of the first element in the second node should be x + 2 �9 m (h-r), where x is
the index of the last element in the first node. Thus the first m nodes should
contain elements with the following indexes:

m(h- r), 2 * m (h - r),..., (m - 1) * m (h - r) , i = 1 first node

m(h-r+])Wm(h-r), . . . ,m(h-r+t)-b(m--1)*m(h-r), i = 2

(m-- 1) * m(h-r+l)+m(h-r) (m-- 1) * m (h - r +]) + (m-- 1)*m (h r) i = m

We may now generalize for arbitrary node (r, i), and conclude that it
contains elements with indexes as claimed.

Corollary 2.1. A key with inorder index t is at level r of a full
m-way search tree if and only if t mod m (h-~+ 1)~ 0 and t rood m (h - r) = O.

Proof This readily follows from Theorem 2.1.

Corollary 2.2. Let t be the inorder index associated with a key at
level r of an m-way tree of height h, and let q = I t /m (h- ~+ 1/]. Keys with
the same r value (Cor. 2.1) and q value are in the same node, in the m-way
search tree. Moreover, the two-dimensional indexing of this node will be
(r, q + 1).

512 Dekel, Peng, and lyengar

ProoL Integer division of (i - 1) �9 m (h - - r +1)__ j , m(h--r) by m (h-r + 1)
yields (i - 1) , where i is the node number in the previous representation
(Theorem 2.1).

Corollary 2.3. Let t be the inorder index associated with a key at
level r of an m-way tree of height h. The position of the key within the node
is given by s, 1 ~s<<,m-1, where s=[_(t rood m(h-r+l))/m(h-r)l.

Proof. This readily follows from Theorem 2.1.

Lemma 2.8. Let h be highest level in a complete m-way tree. The
inorder indexes associated with keys in node (h,p) are (p - 1) , m + j ,
where 1 <~j<u. (h, v) is the last node in this level, v<,m (h 1). u = m - 1 for
all nodes except (h, v).

Proof. Observe that the leftmost key in this level (K 1 of node (h, 1))
is the first key to be visited by MINORDER. Hence the inorder index for
this key is 1. Since all the pointers in level h are set to null, the next key to
be visited by MINORDER will be key/(2 of node (h, 1), the index for this
key is 2. In the same manner the inorder index for the m - 1 keys of node
(h, 1) (if they exist.) are assigned inorder indexes 1, 2,..., m - 1. The first key
of node (h, 2) is visited after key K I in the parent node is visited, where
pointers A i_ 1 and A F are pointing at nodes (h, 1) and (h, 2) respectively. It
follows that the inorder index of K1 in node (h, 2) is m + 1. Observe that
MINORDER will visit a key in a node at level s < h after the last key of
node (h, p) and before the first key of node (h, p + 1). The key visited is in
a node that is the nearest common ancestor to nodes (h, p) and (h, p + 1).
For example the key visited after the last key of node (h, m) and before the
first key of node (h, m + 1) is in a node at level h - 2. Thus the keys within
a node at level n are indexed by consecutive integers. The inorder index
associated with the first key in node (h, p) is g + 2, where g is the inorder
index of the last key in node (h, p - 1) . Hence the inorder indexes
associated with node (h, p) are (p - 1) �9 m + j , where 1 ~<j~< u and u is the
number of keys in this node.

Corol lary 2.4. Consider a complete m-way search tree of height h.
Let w be the inorder index of the last key in the rightmost node, (h, v),
in level h. Furthermore let the number of keys in node (h, v) be u. Then
w = (v - 1) , m + u .

Proof. This follows immediately from Lemma 2.8.

A Balanced m-way Search Tree 513

3. A L G O R I T H M S FOR R E B A L A N C I N G A N M - W A Y
S E A R C H TREE

Operations of m-way search tree are most efficient when the tree is
balanced. In this section we develop parallel algorithms for balancing a
general m-way tree. We develop first a rebalancing algorithm for the special
case where the number of keys in the m-way search tree fit exactly into a
full m-way search tree of height h. this algorithm is then generalized to
rebalance an m-way search tree with any number of keys. Finally we
present rebalancing algorithms for the basic dictionary operations:
INSERT and DELETE. A discussion about SEARCH is given in Section 4.

It is instructive to look first at the case where the number of keys in
the tree is m h - 1 for some h ~> 1. This is the maximal number of keys that
can be accommodated in a full m-way search tree of height h (Lemma 2.5).
We assume that the input m-way search tree is unbalanced. The tree could
become unbalanced as a result of some insertions and deletions of records.

Our first approach will be to assign a PE to each key. The PE com-
putes the location of the key in the balanced m-way tree. This approach to
the problems is similar to the approach taken by Moitra and Iyenger (13~ in
their algorithm for balancing a binary tree. We follow Moitra and Iyenger
and allow for an extra field to be associated with each key. The content of
this field is the inorder index of the key. If no inorder index exist, it can be
computed using a parallel version of the MINORDER procedure from Sec-
tion 2. The parallel procedure is based on the Euler path technique, (16) and
can perform the operation in O(log n) time using n PEs, where n is the
number of nodes in the tree. It is easy to see that assuming the availability
of the inorder index, is equivalent to assuming that the keys are sorted in a
nondecreasing order of key values and stored in an array. Key Ki is in
location j in the array if and only if its inorder index is j. PE(i) is assigned
to the key with inorder index i. The PE uses the inorder index of the key in
order to compute the two-dimensional index of the node in which the key
is to be stored. It is assumed that each PE knows the height of the tree and
its degree. (These might be passed to the PE as procedure parameters.) We
now present the algorithm:

3.1. A l g o r i t h m 1

(*The input keys can be accessed by their inorder index, i.e., by key Kj we
mean the key with associated inorder index j, 1 <~j<~m h - 1.*)

Step 1. (*Find the level (r) for each node.*)

for each key Kt; 1 ~< t ~< m h - 1 do
find i, such that

514 Dekel, Peng, and lyengar

Step 2.

t mod m ~ ~ 0 and t mod m (~- 1) = 0
r : = h - i + l;

(*Find the second index (q) for two-dimensional indexing of each
node.*)

for each key Kt; 1 <~ t <<. m h - 1 do
in Kt is at level r then q := [_t/m (h r+ 1~ + 1];

Step 3. (*Find the position of key K, in node (r, q).*)

for each key Kt; 1 <. t <~ m h - 1 do
s := [_ (t m o d m (h-r+ 1))/m(h-r).j

Step 4. (*Elements with equal r and q are grouped together in the same
node.*)

for each key Kt; 1 ~< t ~< m h - 1 do
Assign key K~ to node (r, q) as key s of the m keys associated with the node;

Step 5. (*Compute the pointer values*)

for each node(r, q) do
create m pointers Ao, A ~,..., Am_ ~ ;
if r = h then A j := null

else Aj : = n o d e (r + 1, (q - 1) * m + j + 1);

T h e o r e m 3.1. Algorithm 1 correctly constructs the required full
m-way search tree.

Proof . The correctness of the algorithm follows from the discussion
in Section 2. In Step 1, PE(i) correctly computes the level r of key K~ (the
key with inorder index i) in the m-way tree (Cor. 2.1). The specific node q
in level r in which key Ki is stored is computed in Step 2 (Cor. 2.2). The
exact position s of key Ki in node (r, q) of the search tree is computed in
Step 3 (Cor. 2.3). In Step 4,' PE i uses the values r, q, and s to position
element Ki in its correct location in the tree. Step 4 establishes the values of
the pointers. One can readily observe that the m children of node (r, q) are
(r + l , (q - 1) , m + j) w h e r e l~<j~<m.

Clearly Steps 2-4 can be executed in constant time. ach PE computes
the q, r, and s values for its associated key. Since m - 1 PEs end up being
associated with any node, it is easy to see that Step 4 can also be completed
in constant time. In Step 1 PE t has to compute the level r in which the key
with inorder index t will reside. To compute r PE(t) searches for a power i
of m such that t m o d m i # 0 and tmodm(~- l~=0 . This i can be found in
O(log n) time by conducting a search over the possible values. The search

A Balanced m - w a y Search Tree 515

has to be conducted once for given tree size. The i values computed can be
used in future rebalancing operations. Thus the O(log n) search time can be
considered as a set-up cost. Having observed that, we can conclude that the
time required for rebalancing a full m-way search tree with m h - 1 keys is
O(1) when using m h - 1 PEs.

Observe that when executing the algorithm, the PEs are only involved
in computation. Each PE has all the information that it needs for com-
puting the required values. Thus Algorithm 1 has no communication
overhead. When the number of available PEs is smaller than the number of
keys, we can let each PE compute the values for several keys. If only p PEs
are available, where l<< .p<m h - 1, then we can associate r(m h - 1)/p7
keys with each PE. The time complexity of the algorithm with only p PEs
available will be then O((m h - 1)/p), not counting the set-up overhead.

We can avoid the set-up overhead altogether if we approach the
problem differently. For our next algorithm we assume the same input as
for Algorithm 1. This time we associate a PE with each node in the m-way
balanced search tree. We now let each PE calculate the inorder indexes for
keys that should reside in the node. As in the previous algorithm we
consider a full m-way search tree and assume that each PE knows the
height and degree of the tree.

3.2. Algorithm 2

(*Assume that there are (m h - 1)/(m- 1) PEs. The number of keys that are
to be associated with this tree are m h - 1 (Lemma 2.5).*)

Step 1. (*Each PE computes the two dimensional index of the node it is
associated with, i.e., this is a mapping from i, the PE index, to
(r, q), where 1 <<.i<~(m h - 1) / (m - 1), 1 ~<q~<m (h-l), 1 <~r<~h.*)

for each PE i do
begin
j := [_log m/_](*/is the PE index*)
if i > (m U+ 1) _ 1)/(m - 1) then

begin
r : = j + 2 ;
q : = i - (m (j + l) - 1) / (m - 1);
end

else

end

begin
r : = j + l ;
q := i - (m j - 1)/(m - 1);
end

516 Dekel, Peng, and lyengar

Step 2. (*Each PE represents a node (r, q). Node (r, q) has m - 1 inorder
index associated with it. Each inorder index is associated with a
unique key. The inorder index for key Ks in node (r, q) is held in
X,, where 1 ~< s ~< m - 1.*)

for each node (r, q) do
begin
for s:= 1 to m - 1 do
X, := ((q - 1) , m + s) , m(h-r);
end

Step 3. (*The m pointers for node (r,q) are stored at A s, where
0 ~ s ~ < m - 1.*)

for each node (r, q) do
begin
fors : = 0 t o m - 1 do

if r < h then
As :=node (r+ 1, (q - 1) , m + s + 1)

else
A s := null

end

In the first step of Algorithm 2 we map level labeling (Def. 2.3) to two-
dimensional labeling (Def. 2.4). That is, PE i is assigned to the node with
level label i in the m-way search tree. The value of i is then used in order to
compute the level of the node in the tree, r, and its displacement from the
left on this level, q. One can readily observe the correctness of this step.

(level in l, wo=dimensional indexing)

1 2 3 h

II IL II II I
. $ ~ . :,1r

.

(index of PEs)

h - l

0

Fig . 5. T h e r e l a t i o n b e t w e e n level l a b e l i n g a n d t w o - d i m e n s i o n a l i n d e x i n g .

A Balanced m - w a y Search Tree 517

There are at most (m h - 1) /(m - 1) nodes in a tree of height h (Lemma 2.2).
Each PE find the height of the full tree that could be constructed using
indexes that are smaller than its own index. Hence it finds the level of the
node with level labeling i. Once the level of the node is known the
displacement of the node within that level can be computed by subtracting
the number of nodes in the full tree above the node from the level label of
the node (Fig. 5).

The correctness of the other two steps in Algorithm 2 can be easily
observed. Step 2 follows directly from Theorem 2.1, and Step 3 is the same
as Step 5 in Algorithm 1. If one prefers to work with level labeling, then
Step 3 should be (Lemma 2.3):

for each node i do (*i is the level label for the node*)
begin
f o r s : = 0 t o m - 1 do

if r < h then
A , : = (i - 1) , m + 2 + s

else
A, := null

end

T h e o r e m 3.2. Algorithm 2 correctly constructs the required full
m-way search tree.

Proof . The correctness of this theorem follows from the previous
discussion.

As far as the complexity of Algorithm 2 is concerned, it should be clear
that there is no set-up overhead. With (m h - 1) / (m - 1) PEs Steps 1, 2, and
3 of the algorithm can be carried in constant time. If one wants to minimize
the processing time within a node (Steps 2 and 3) then up to m - 1 PEs
can be utilized in each node. This, however, does not change the overall
O(1) time complexity of our parallel algorithm.

While it is instructive to go over Algorithms 1 and 2, in practice it will
be more often the case that the number of keys will not be of the form
m h - 1. We now consider the general case where the number of keys can be
positive integer. Algorithm 3 will produce a complete m-way search tree for
the given number of keys. Only the last node in the tree (greatest level
label) can have less then m - 1 keys associated with it. We assume that
each PE knows the number of keys and the degree of the search tree. These
values might be passed to the PE as procedure parameters.

518 Dekel, Peng, and lyengar

3.3. A lgor i thm 3

(*The input keys have inorder indexes in the range [l :n] , where n can be
any positive integer.*)

Step 1. (*Each PE computes the two-dimensional index of the node it is
associated with. This is, a mapping from i, the PE index, to (r, q),
1 <~i<~rn/ (m- 1)], 1 <~q<~m (h-l), 1 <~r~k .*)

for each PE i do
begin
j := Llogm i_](*i is the PE index*)
i f / > (m (j+ t) _ 1) / (m- 1) then

begin
r : = j + 2 ;
q := i - (m (j + l) - 1) / (m- 1);
end

else

end

begin
r : = j + l ;
q : = i - (m j - 1) / (m- 1);
end

Step 2. (*This computes the parameters of the tree.*)

for each PE i do
begin
h := [log m n.J;
ifn = m (h+ '~ - 1 then (*full tree*)

(*The height of the m-way search tree is h + 1.
It is a complete m-way search tree*)
execute steps 2 and 3 of algorithm 2 and stop;

c : = n - (m h - 1); (*number of keys for the last level*)
u := c mod(m - 1); (*number of keys in the last node*)
v := Lc/(m - 1)]; (*number of full nodes at last level*)
ifu = 0 then w := v ' m - 1 else w : = v * m + u ;
(*w is the inorder index of the right ost key at highest (last) level.*)
end

Step 3. (*Compute the inorder indexes that are directly influenced by the
extra (last) level. These will be associated with nodes in the left
part of the tree.*)

A Balanced m - w a y Search Tree 519

for each node (r, q) do
begin
s := 1;

loop
temp := ((q - 1) * r e + s) �9 m(h-r+ 1~;
if temp > w or s = m then exit;
X~ := temp;
s : = s + l ;
forever

end

Step 4. (*Compute the inorder indexes for the rest of the tree.*)

for each node (r, q) with r < h + 1 do
begin
s : = m - 1;

loop
temp : = ((q - 1) * m + s) �9 m (h - r) + c;

if temp ~< w or s = 0 then exit;
X, := temp;
s : = s = l ;
forever

end

Step 5. (*Compute pointer values*)

for each node (r, q) do
begin
if u = 0 then ql := v else q~ : = v + 1;
(*Node h + 1, q~) contains w.*)
q2 := [_(ql - 1)/m] + 1; (*(h, q2) is the parent of(h + 1, ql)*)
j := (q~ - 1) mod m; (*Aj of (h, q2) points (h + 1, q~)*)
fors : = 0 t o m - 1 do

if r < h or (r = h and q < q2) or (r = h and q = q2 and i ~< j)
then

A~ : = n o d e (r + 1, (q - 1) , m + s + 1)
else

A, := null;
end.

Before we proceed to show the correctness of this algorithm, it is
helpful to look at an example.

520

Example

Input:

Step 1.

Dekel, Peng, and lyengar

3.1

A set of n keys and their associated inorder indexes, the degree of
the search tree, m. Let n = 19, m = 3.

10 PEs are utilized to form the nodes of the tree

PE 1 2 3 4 5 6 7 8 9 10
n o d e (l , 1)(2, 1) (2 , 2) (2 , 3) (3 , 1) (3 , 2) (3 , 3) (3 , 4) (3 , 5) (3 , 6)

Step 2. h = 2 , c = l l , u = l , v = 5 , w = 1 6 .

Step 3. The set of elements of node (r, q) is {t = (3 �9 (q - 1) + s) * 3 (3- r),
where t~< 16 and s = 1 or 2}.

content
PE node (inorder indexes)

i (r, q) Jr1 X2

0 (1 ,1) 9 - -
2 (2, 1) 3 6
3 (2, 2) 12 15
4 (2, 3) - - - -
5 (3, 1) 1 2
6 (3,2) 4 5
7 (3, 3) 7 8
8 (3, 4) 10 11
9 (3 ,5) 13 14

10 (3,6) 16 - -

Step 4. The set of elements for node (r, q) r < 3 is
{ t = (3 * (q + 1) + s) * 3 (2- ~) + 11, where t > 16 and s --- 1 or 2 }.

content
PE node (inorder indexes)

i (r, q) XI)(2

1 (1, 1) 9 17"
2 (2, 1) 3 6
3 (2 ,2) 12 15
4 (2, 3) 18" 19"

* was assigned value in this step

A Balanced m - w a y Search Tree 521

Step 5. ql =6, q2=2, j = 2 .

PE node pointers (children)
i (r, q) A o A l A 2

1 (1, 1) (2, 1) (2, 2) (2, 3)
2 (2, 1) (3, 1) (3, 2) (3, 3)
3 (2,2) (3, 4) (3, 5) (3, 6)
4 (2, 3) null null null
5 (3, 1) null null null
6 (3, 2) null null null
7 (3, 3) null null null
8 (3, 4) null null null
9 (3, 5) null null null

10 (3, 6) null null null

In Fig. 6 we show the 3-way complete search tree for the example.
While Algorithm3 seems complicated, it is easy to show its

correctness.

tree:
Lemma 3.1. The following are true for a complete m-way search

(i) The right most node of level h + 1 is node(h+ 1, v) when u = 0
and node(h + 1, v + 1) otherwise.

(ii) The last element of the right most node at level h + 1 is w.

Fig. 6. The 3-way complete tree for Example 3.1.

522 Dekel, Peng, and lyengar

Proof. (i) For the resulting tree to be complete, it has to accom-
modate c keys in its last level h + 1. When c is a multiple of m - 1 (u = 0), v
nodes at level h + 1 are sufficient. When c is not an exact multiple of m - 1,
an extra node (h + 1, v + 1) is required. Node (h + 1, v + 1) will be only
partially full, i.e., it will have less then m-1 keys associated with it. (ii) This
follows immediately from Corollary 2.4.

L e m m a 3.2. Steps 3, 4 and 5 of algorithm 3 correctly assign the
values of indexes associated with nodes and the value of pointers among
the nodes.

ProoL Observe that key with inorder index i, where i ~< w should be
assigned using the construction for an m-way tree of height h + 1. Only
these keys are candidates for level h + 1 (Lemma2.8). These keys are
assigned to nodes in Step 3. Notice also that keys with inorder index i,
i > w are candidates for levels 1 through h in the m-way tree. The index for
these keys should be biased in order to compensate for the keys that were
assigned in step 3. One can easily show that this bias should be c. That is,
the keys with inorder index i, i > w, should be assigned as keys with inorder
index i-c in a full m-way tree with h levels. This is done in Step 4 of the
algorithm. It follows that the assignment of keys to nodes is performed
correctly.

As for the correctness of Step 5, assignment of pointers among the
nodes, only the case where r = h, needs to be justified. But in this case, we
only need to find the pointer Aj of node (h, q) such that Aj points to the
node containing the key with inorder index w. By the definition of a com-
plete tree, all pointers to the right of this pointer should be set to null. This
is exactly what is done in the algorithm.

T h e o r e m 3.3. Algorithm 3 correctly constructs the required com-
plete m-way search tree.

ProoL The correctness of this theorem follows from the previous
discussion.

As far as the time complexity of Algorithm 3 is concerned, the
mapping of level labeling to two-dimensional indexing (Step 1) can be
performed in constant time. The number of nodes in the tree and, corre-
spondingly the maximal number of PEs that can be effectively utilized for
Step 1 is [-n/(m- 1)7, where n is the number of keys (length of input).
Next, each PE computes the values of c, u, v, and w. This can be done in
constant time using the same number of PEs. With one PE assigned to a
node, Steps 3-5 can be performed in O(m) time each. Since m is fixed, we
can conclude that the overall time complexity of Algorithm 3 is O(1). As in

A Balanced m-way Search Tree 523

the previous algorithm, up to m - 1 PEs can be utilized in each node (for
Steps 3-5). These additional PEs will not change the overall time
complexity of the algorithm.

When algorithm 3 available to rebalance the tree periodically, we can
allow the insertion and deletion operation to leave the tree unbalanced.
The INSERT (DELETE) procedure will use SEARCH to identify the point
of insertion (deletion) and insert (delete) the key at that point. Obviously,
the m-way search tree will become unbalanced after a few such INSERT
and DELETE operations. Algorithm 3 can then be utilized to rebalance the
tree.

In an environment where insertion and deletion are not common, it is
more efficient to insert or delete keys while maintaining the tree balanced.
To do that we need to transform a balanced m-way search tree with n keys
to a balanced m-way search tree with n + 1 or n - 1 keys. We consider a
transformation from n to n - 1 keys (a delete, Algorithm 4), and from n to
n + 1 keys (an insert, Algorithm 5). Each of the transformations described
here is simpler than the operation of rebalancing the whole tree described
earlier in this section. Observe that after a direct insertion or deletion we
need to update the structure and the content of the complete m-way search
tree.

In both Algorithms we modify first the structure to reflect the change
in the number of keys, and then move the keys into their correct locations
in the new balanced tree. We assume that the following parameters are
kept with the data structure:

n-- the number of keys in the tree.
u-- the number of keys in the last node of the highest level.
v--the number of full nodes in the highest level.
w--the inorder index of the last key in the last node.
h + 1--the height of the tree.

3.4. A l g o r i t h m 4

(*Insert key X into a balanced m-way search tree of height h + 1. The tree
remains balanced after the insertion.*)

Step 1. (*This transforms a given complete m-way search tree with n keys
to an m-way search tree with n + 1 keys.*)

n : = n + l ;
u := (u+ 1) m o d (m - 1);
if u = 1 then

begin
(*A new node is required.*)

828/15/6-5

524 Dekel, Peng, and lyengar

else

if n

else

=mh+ 1

begin
(*The new node is at a new level.*)
h : = h + l
v :=0;
w : = l ;
end

begin
v : = v + l
w : = w + 2 ;
end

create a new node(h + 1, v + 1) that contains only
one key, this key has inorder index w;
j := v mod m;
Aj of node (h, Lv/mJ+ 1) : = n o d e (h + 1, v+ 1);
end

begin
w : = w + l ;
just add the key with inorder index w to node(h + 1, v + 1);
end

Step 2. (*Reset the indexes effected by the increase in number of keys.*)

for each node(r, q) do
for each inorder index t associated with node(r, q) do

if t > w then t := t + 1;

Step 3. (*Insert key X.*)

for all keys K; with inorder index i ~< w and K,. > X do
(*Assume K0 = - ~ and Kw = ~ *)
i f K i _ l > X

Ki:=Ki 1
else

Ki:=X;
for all keys K~ with inorder index i ~> w and Ki ~ X do

(*Assume Kn+l = ~ .*)
if K~+ 1 < X

Ki : = Ki+ 1
else

Ki :=X;

A Balanced m - w a y Search Tree 525

3.5. Algorithm 5

(*Delete key X from a balanced m-way search tree of height h + 1. The tree
remains balanced after the deltion.*)

Step 1. (*Delete key X from the tree*)

for all keys Ki do (*i is the inorder index of the key*)
if Ki>>. X then Ki := Ki+ l ;

Step 2. (*This transforms a given complete m-way search tree with n keys
to an m-way search tree with n - 1 keys.*)

n : = n - 1 ;
u := (u - 1) mod(m - 1);
if u = 0 then

begin
if n = m h - 1 then

(*The only node at level h + 1 should be deleted.*)
begin
h : = h - 1 ;
V : = m h

W : = / / ;

delete node(h + 2, 1);
Ao of node(h + 1, 1) := null;
end

else

end
else

begin
w := w - 2 ;
v : = v - 1 ;
delete node(h + 1, v + 2);
j := (v + 1) mod m;
Aj of node(h, L(v + 1)/m] + 1) := null;
end

begin
just delete w from the right most node at level h + 1;
w : = w - 1 ;
end

Step 3. (*Update inorder indexes effected by the decrease in number of
keys*)

526 Dekel, Peng, and lyengar

for each node(r, q) do
for each inorder index t associated with node(r, q) do

if t > w then t := t - 1;

The correctness of these algorithms can be easily shown. The time
complexity of these algorithms is O(1). In Fig. 7 we show the tree of Exam-
ple 3.1 after 2 insertion operations. The values of the variables n, u, v, w,
and h before the first insertion are 19, 1, 5, 16 respctively. After the first
insertion the value of these variables would be 20, 0 = 2 m o d (3 - 1), 5, 17
respectively, and after the second insertion their values would be 21, 1,
6, 19.

CONCLUSION

In Section 3 we presented optimal parallel algorithms for rebalancing
or constructing belanced m-way search trees. If n keys are to be associated
with the tree then the construction can be carried out in O(1) time using
O(n) PEs. While our algorithm is more general then Moitra and Iyengar's
binary tree algorithm, (13) we can compare the two when m = 2. For this
case our algorithm is more efficient since it does not require any set-up
overhead. Notice also that the complexity of our algorithm is independent
of the degree of the tree, m. Hence m can be chosen to fit best with the
external storage hardware characteristics.

The problem of constructing a balanced m-way search tree was chosen
to demonstrate a parallel algorithm where communicating overhead is

4

]
Fig. 7. The 3-way search tree of Fig. 6, after 2 insertions.

A Balanced m - w a y Search Tree 527

completely eliminated. While in Section 3 we treated the problem from the
"Design of Algorithm" point of view, it is important to consider the
environment in which such algorithms can be useful.

In this context, let us examine the basic distionary operation
(SEARCH, INSERT, AND DELETE). Using straightforward information-
theoretic arguments, one can show that at least logk n parallel steps are
required for searching a sorted array of n elements with k PEs. SEARCH is
required as an initial operation for both INSERT and DELETE. It is clear
that once a location for insertion (deletion) is found, the insertion of an
element can be done in constant time. Hence the complexity of insertion is
bounded below by the complexity of searching.

Consider the case where the dictionary information fits in internal
memory. Using a "fan in" argument, we can see that there is no advantage
to using more than one PE for a search operations. This argument is based
on the practical assumption that a PE can send or receive information con-
currently from only a fixed number of ports. In our analysis we assume that
only one communication port can be active at a time. Assume that we have
k PEs and we need to search for a specific element in an ordered set of size
n. We will need O(log k) time to transmit the key for the search to the k
PEs. As observed, the search can be conducted in logk n parallel steps.
After each step the search location for the search step is transmitted among
the PEs. Hence each search step will require O(log k) communication
overhead. Thus the overall time complexity of a search is
(log2 k) �9 (logk n) = log2 n. Since this search can be conducted using binary
search and only one PE in O(log n) time, the argument follows. Notice that
this analysis provides a lower bound for any data structure or number of
PEs. The observation made for the case of one PE is the only one that
assumed ordered keys.

Having established the O(log n) lower bound, it is not surprising that
all the spcial purpose architectures have this time complexity for searching
no matter how many PEs. they use, see Refs. 3-10, 14. While those
solutions achieve the lower bound complxity, it was observed in Ref. 11
that they are "processor-profligate." Most of these architectures use O(n)
PEs to achieve only an O(log n) throughput improvement over the serial
balanced tree algorithm.

When the dictionary is stored in external memory, the optimization
criteria are different. The storage structure is chosen so that the number of
I/O operations are minimized. An m-way search tree is a popular choice.
The degree m is selected to fit the physical characteristics of the external
storage. (2)

These observations can be translated quite effectively to practice in our
MIMD environment. The system can initiate any number of searches in a

528 Dekel, Peng, and lyengar

"pipelined" fashion. Each search is conducted using only one PE leaving
one machine cycle between consecutive requests. Search results can be
obtained in a pipeline interval of O(1). While some PEs are conducting
searches, other PEs are free to perform other tasks.

Our solution is applicable for a general purpose machine environment.
The m-way search tree is kept in external storage. At any time k PEs are
available, where 0 ~< k ~< P (P is the maximal number of PEs available on
the a machine.). In such a machine the operating system can be instructed
to allocate only one processor for a search operation and as many PEs as
available or required (whichever is the minimum), in case a new tree has to
be constructed or an existing tree rebalanced.

REFERENCES

1. D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching.
Addison-Wesley, reading, Mass. (1973).

2. E. Horowitz and S. Sahni, Fundamentals of Data Structures, Computer Science Press,
Potomac, Md. (1982).

3. P. K. Armstrong, U. S. Patent 4131947 (December 26, 1978).
4. M. J. Attallah and S. R. Kosaraju, A generalized dictionary machine for VLSI, 1EEE

Trans. on Comput. C-34(2):151-155 (February 1985).
5. J. L. Bentley and H. T. Kung, Two papers on tree-structured paralel computer, Dep.

Comput. Sci. Carnegie Mellon University, Pittsburge, PA, Report CMU-CS-79-142
(1979).

61 M. J. Carey and C. D. Thompson, An efficient implementation of search trees on
[-log N + 1~ processors, IEEE Trans. on Comput. C-33(11):1038-1041.

7. C. E. Leiserson, Systolic priority queues, Dep. Comput. Sci. Carnegie Mellon University,
Pittsburge, PA, Report CMU-CS-79-115 (1979).

8. T. A. Ottmann, A. L. Rosenberg, and L. J. Stockmeyer, A dictionary machine (for VLSI),
IEEE Trans. on Comput. C-31:892-897 (September 1982).

9. A. K. Somani and V. K. Agarwal, An efficient VLSI dictionary machine, Proe. l l th Annu.
ACM Intl. Symp. on Comput. Arch., pp. 142-150 (June 1984).

10. Y. Tanaka, Y. Nozaka, and A. Masuyama, Pipeline searching and sorting modules as
components of data flow database computer, Proc. Int. Fed. Inform. Processing,
pp. 427-432 (October 1980).

11. A. L. Fisher, Dictionary Machines with a small number of processors, Proc. l l th Annu.
ACM Int. Symp. on Comput. Arch., pp. 151-156 (June 1984).

12. H. Chang and S. S. Iyengar, Efficient algorithms to globally balance a binary search tree,
Com. ACM 27:695-702 (1984).

13. A. Moitra and S. S. Iyengar, A maximally parallel balancing algorithm for obtaining
complete balanced binary trees, IEEE-T-SE, pp. 442-449 (1986).

14. Q. F. Stout and B. L. Warren, Tree rebalancing in optimal time and space, U. of
Michigan Computing Research Laboratory, Ann Arbor, MI, CRL-TR-42-84.

15. U. Manber, Concurrent Maintenance of Binary Search Trees, IEEE Trans. on Soft.
Engineering SE-10(6):777-784 (November 1984).

16. R. E. Tarjan and U. Vishkin, Finding biconnected components and computing tree
functions in logarithmic parallel time FOCS (1984).

