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Abstract

Matrix multiplication is a fundamental building block in various distributed computing algorithms. In order to multiply large
matrices, it is common practice to distribute the computation into multiple tasks running on different nodes. In order to tolerate
stragglers among such nodes, various coding schemes have been proposed by adding additional coded tasks. However, most existing
coding schemes for matrix multiplication are constructed for only one matrix multiplication, while batch matrix multiplication
is common in large-scale distributed computing workloads. In this paper, we propose Rook Polynomial Coding (RPC), a novel
polynomial-based coding framework for batch matrix multiplication. Designed for decentralized encoding, we construct RPC to
recover the result of batch matrix multiplication from a small number of tasks. We also extend RPC to allow partitioning input
matrices to save the task complexity. Through extensive experiments, we show that RPC can enjoy much lower time of encoding

and achieve lower completion time of the job compared to other coding schemes for batch matrix multiplication.
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I. INTRODUCTION

ECENT advances in large-scale distributed computing have demonstrated success in various applications, such as
Rmachine learning and data analytics. With the massive sizes of modern datasets, it has become inevitable to run large-
scale computing jobs in a distributed infrastructure, by distributing the computation into multiple tasks running in parallel on
a large number of nodes.

However, it is well known that nodes in a distributed infrastructure are typically built with commodity hardware and are
subject to various faulty behaviors [2]. For example, nodes may experience temporary performance degradation, due to load
imbalance or resource congestion [3]. It is measured in an Amazon EC2 cluster that a virtual machine affected can have a
performance degradation by up to 5 times [3], [4]. A node may even fail to complete a task due to hardware failures, network
partition, or power failures. In a Facebook data center, it has been reported that up to more than 100 such failures can happen
on a daily basis [5], [6]. Therefore, when the computation is distributed onto multiple nodes, its progress can be significantly

affected by the tasks running on such slow or failed nodes, which we call stragglers.
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The adversarial effects of stragglers can be mitigated by launching redundant tasks in advance. A naive application in this
principle is replicating each task on multiple nodes. For example, if we run each task on three nodes, the results of any two
tasks affected by stragglers can be simply disregarded while all the other tasks can continue without being delayed. This
naive method, however, will further significantly increase the consumption of resources, including computing, communication,
and storage, with only a limited number of stragglers tolerable. Specifically, in order to tolerate any r stragglers, we have to

replicate each task on r + 1 nodes.

master master
(A X ] [T =1 [ (A+A4)X ]
AX:_A;X_ AX__O I 1A2X2 |
3
[AX] [AX] [AX] [AX] [A4X] [AX] [(4+4)X]

worker 1 worker 2 worker 3 worker 4 worker 1 worker 2 worker 3
(a) replicated task (b) coded task

Fig. 1. Examples of distributed matrix multiplications with additional workers (running replicated or coded tasks) to tolerate one single straggler, represented
with a gray dotted arrow.

On the other hand, it has been demonstrated that we can tolerate the same number of stragglers with much fewer tasks if
we run coded tasks as redundant tasks. Fig. 1 illustrates an example of distributed matrix multiplication with replicated and
coded tasks. We calculate AX on four worker nodes in Fig. 1a. The matrix A is split into two submatrices, A; and As, and
then AX can be obtained from the results of two tasks, i.e., A1 X and A;X. In Fig. la, such two tasks are replicated on
two workers, respectively. Therefore, any single straggler among the total four workers can be tolerated without affecting the
overall performance. In Fig. 1b, however, a third worker executes a coded task (A; + A2)X, which can be decoded to recover
A1 X or A; X if any other task runs on a straggler. Therefore, compared to replicating the two tasks in Fig. 1a, coded matrix
multiplication in Fig. 1b can save the number of additional workers by 50% and tolerate the same number of stragglers.

Although significant attention of research has been attracted to straggler-free coding for distributed computing (i.e., coded
computing), especially coded matrix multiplication (e.g., [3], [7]-[9]), most existing coding schemes have been focusing on
the code construction for one single matrix multiplication so far. In this paper, we consider batch matrix multiplication, a more
general scenario where multiple matrix multiplications need to be computed altogether. Conventionally, we can launch multiple
distributed jobs for each multiplication. However, additional tasks must be added into each job to tolerate its own stragglers,
i.e., a coded task can only tolerate a straggler inside the same job.

In this paper, we propose Rook Polynomial Coding (RPC), a novel coding framework for distributed batch matrix multi-
plication where the results of multiple matrix multiplications can be obtained concurrently with one job only. In this coding
framework, additional coded tasks can be used to tolerate any stragglers. Based on polynomials, we first construct a special
case of RPC with a proof of its optimality, and then propose two general constructions based on the special case. With
generalized constructions, we save the recovery threshold, i.e., the number of tasks required for recovering the results of n
matrix multiplications from O(n?) to O(n!°®23). We further integrate RPC with entangled polynomial code, a polynomial-

based coding scheme for distributed matrix multiplication, so that RPC can also work with partitioned input matrices when



they are large.

Moreover, RPC is designed towards decentralized encoding so that each worker will only need to encode its own coded
task. Compared to existing coding schemes for batch matrix multiplication, RPC is constructed with a much simpler form of
polynomials, leading to the lowest complexity for decentralized encoding. With experiments running on AWS, we demonstrate
that RPC achieves much lower time of encoding, and thus also achieves lower job completion time than other coding schemes
for batch matrix multiplication.

The rest of this paper is organized as follows. We first discuss related works on coded matrix multiplication, especially
coding for batch matrix multiplication in Sec. II, and then present motivating examples of RPC in Sec. IIIl. We then present
the general coding framework in Sec. IV. In Sec. V we consider a special case in the coding framework and construct RPC
in this special case with a proof of its optimality. We then extend the construction into two general constructions that require
fewer tasks to recover the whole job in Sec. VI and Sec. VIIL. In Sec. VIII we integrate RPC with entangled polynomial codes
to allow matrix partitioning. We present the implementation of RPC and its evaluation results in Amazon EC2 in Sec. IX and

conclude this paper in Sec. X.

II. RELATED WORK

There has been a surge of interests recently on the mitigation of stragglers in distributed computing, which runs a large
number of parallel tasks on different nodes. It is well known that stragglers are common in distributed computing with a large
number of nodes, and stragglers can add significant long-tail latency to the overall performance, even though there are only
a small number of tasks affected by stragglers [3], [4]. Conventionally stragglers are tolerated by replicating each task on
multiple nodes [10]-[14], such that a task affected by a straggler can be simply disregarded. However, replication incurs a
significant resource overhead as all tasks need to be replicated. Compared to replication, coding-based techniques have been
proposed which tolerate the same number of stragglers with much lower resource overhead (e.g., [3], [4]).

One of the critical applications of coded distributed computing is the distributed matrix multiplication, as matrix multiplication
is a common operation in various machine learning models and data analytics algorithms. In Lee ef al.’s pioneering paper [3],
MDS codes are applied in matrix-vector multiplication of the form Ax where the matrix A is large and hence will be partitioned
vertically along the rows and encoded with MDS codes. This direction was continued by Yu ef al. [8] and Dutta et al. [7] who
considered a more general problem of matrix-matrix multiplication, i.e.. A-B. The two input matrices A and B are partitioned
along their rows and columns, respectively, or the other way round. The proof of the optimally for such configurations have
been given by Yu et al. [8], [9], where the authors have also derived entangled polynomial codes that allow partitioning the
input matrices in a more general way, i.e., A and B can both be arbitrarily partitioned by their rows and columns.

In this paper, we consider a more general problem, i.e., distributed coded computing for batch matrix multiplication. In
other words, different from existing works above that consider one matrix multiplication only, this paper investigates coding
for batch matrix multiplication, i.e., the computation of all matrix multiplications is completed in one round. A related problem
was investigated by Krishnan ef al. [15] where the computation is complete with additional rounds such that coding can be

applied across time. In this paper, we focus on the problem of batch matrix multiplication.



Existing works for batch matrix multiplication have been constructed as polynomials, either using the Lagrange polyno-
mial [16], [17] or based on the Cauchy-Vandermonde matrix [18], [19]. Although fast algorithms (e.g., [20]-[23]) exist for
the encoding of such coding schemes, which achieve a low complexity, the encoding algorithms must be centralized, i.e, input
matrices will be encoded into all tasks on one single node. As input matrices are large, it will still consume a significant amount
of time for encoding. In this paper, we propose rook polynomial coding (RPC), another polynomial-based coding scheme for
batch matrix multiplication. Different from existing works, RPC is constructed as a polynomial with a much simpler form,
making it faster for decentralized encoding where each worker will encode input matrices for its own task only. Although
the recovery threshold of RPC will be larger than existing coding schemes designed for centralized encoding, RPC can still
achieve lower completion time thanks to its low encoding overhead.

It is worth mentioning that security and privacy can be supported in coded batch matrix multiplication, by adding additional
matrix multiplications of random matrices [16]-[19], [24]. Similar designs for a single matrix multiplication have also been
proposed by Nodehi and Maddah-Ali [25], [26]. Although RPC is not originally designed to support security and privacy, it
can be extended following the same approach, by adding additional multiplications of randomly generated matrices. Hence,

we focus on the coding scheme of RPC to tolerate stragglers in this paper.

III. MOTIVATING EXAMPLES

We start with a toy example to demonstrate the advantages of our coding framework for batch matrix multiplication. Instead
of applying coding individually in each matrix multiplication, we propose RPC in this paper which encodes all input matrices
in batches. In this section, we discuss a case of RPC with two multiplications as a toy example. We will present the general
construction of RPC in the rest of this paper.

Assume that we need to compute the results of two matrix multiplications, i.e., A1 B; and A3 Bs, where A; and B; are of
the same size with A5 and Bs, respectively. If the two multiplications are computed as two jobs, we can replicate their sole
tasks on r 4+ 1 nodes, such that any r stragglers can be tolerated. In other words, we need to have 2(r + 1) tasks to tolerate
any r stragglers and complete the two matrix multiplications, since the replicated tasks for one job cannot be used in the other
job.

A naive way to add coded tasks for the two jobs is to embed the two matrix multiplications into one larger job as

A . B a A1 . |:B B :| AlBl A1B2
= 1 B
A, AsBy AxB»

In this way, the result of A;B; and A3 By can be obtained as submatrices of AB. However, the complexity of AB becomes
four times as A;B;. In order to generate coded tasks with the same complexity as A;B;, we can apply polynomial codes [8],
a polynomial-based coding scheme for matrix multiplication, to the job of AB, by encoding A as fl(x) = AjzY + Ay2? and
B as B(z) = Bya° + Byaz', and then the sizes of A(z) and B(z) equal those of A; and B, respectively. A coded task can

then be generated as a polynomial of C(z) £ A(z)B(z), i.e.,

O(SC) = AlBlCL’O —+ A1B2£L'1 + A2B1£E2 —+ A2B2£E3.



Given any 4 coded tasks C () with different values of z, the coefficients of this polynomial can be solved with interpolation
or Reed-Solomon decoding. In other words, the recovery threshold is 4 and we can tolerate r stragglers with a total of 4 4 r
tasks. With n matrix multiplications, it is easy to infer that the recovery threshold is n?.

In this paper, we propose a coding framework that requires significantly fewer tasks than replication and polynomial codes,
tolerate the same number of stragglers with the same complexity in the coded tasks. Given the two matrix multiplications
above, A(z) and B(z) can be generated differently as A(x) = A;2° + Aya?, and B(z) = Bya® + Bya!, respectively. Hence,
C (r) = Ay B12° + (A1 Bo+ Ay By )x' + As Box®. In this way, we only need the results of any three coded tasks (with different
values of x), and the recovery threshold becomes 3.

Although when n = 2 the recovery threshold can only be saved by 25%, we demonstrate in the rest of this paper that the
recovery threshold can be saved from O(n?) to O(n'°%23) as n scales.

Compared to other schemes that construct codes for batch matrix multiplication based on Lagrange interpolation polynomial
or its variant, such as LCC codes [16] and CSA codes [18], our coding scheme enjoys much simpler form in fl(x) and B(x),
as the input matrices directly become the coefficients in the two polynomials. Although our coding scheme requires more
tasks, we demonstrate that in practice the corresponding additional time will be compensated by the saving of encoding time.

We also extend RPC to support batch matrix multiplication while allowing A;s and B;s being partitioned into submatrices.

IV. CODING FRAMEWORK

Given n matrix multiplications, i.e., A1 By, A3Bs, ..., and A, B, we assume that Aq,..., A, are of the same size, and
Bi,..., B, also have the same sizes. In this paper, we propose a polynomial-based coding scheme which requires a low
number of tasks to tolerate any r stragglers with a low complexity for decentralized encoding. In other words, coded tasks
are not encoded by one single node, e.g., the master node, but individually by every workers. Hence, each worker only needs
to run one single evaluation of fl(m) and B(x), and existing fast algorithms [20]-[23] for polynomial evaluations cannot be
applied for such decentralized encoding.

In particular, we only consider the case where the input matrices are not partitioned in this section, i.e., the coding is only
applied across multiplications, without partitioning each input matrix. Hence, the complexity of each coded task remains the
same as that of the original matrix multiplications. In Sec. VIII, we discuss the extension of applying coding across multiple
matrix multiplications with matrix partitioned simultaneously.

In our coding framework, the parameters of the coding scheme can be described by four vectors with n elements, M, N, P,
and Q. In particular, M and N are permutations of {1,...,n}. The values in P and @ can be arbitrary integers, which will be
used as the exponents in the polynomial. The n matrix multiplications can be encoded into coded tasks which multiply fl(x)
and B(z), where A(z) = S0 Ap2" and B(z) = Y27, By, 2% Compared to other polynomials such as the Lagrange
interpolation polynomial, our encoding polynomials have a much simpler form since all input matrices appear directly as a
coefficient, making it ideal for decentralized encoding.

Given A(z) and B(z), a coded task will then compute C(z) = A(z)B(z) = Y1, Sy A, By,aP+ Q5 which is still

a polynomial of z. The result in each task can be considered as a evaluation of C (z) if = in each task is unique. We can



then interpolate C’(:C) if the number of results received from different workers is no less than the recovery threshold. With
appropriate choices of M, N, P, and @), we can find A;B; from the coefficients of C‘(m) In other words, their corresponding
exponents of = should be unique.

To illustrate the code scheme, in this paper, we use a n X n table to depict a particular choices of M, N, P, (), as shown in
Fig. 2a. In this table, the entry in the i-th row and the j-th column is filled with P; + Q;, the exponent of Az, By,. We also
place Ay, and By, @ =1,...,n, as the head of each row and each column, respectively. We demonstrate three examples of

feasible coding schemes under our coding framework in Fig. 2b-Fig. 2d.
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Fig. 2. The illustrations of the coding schemes achieved under the coding framework with n = 2.

As shown in Fig. 2b, a naive choice of parameters in the coding framework istolet M = N = (1,...,n), P = (0,...,n—1),
and Q = (0,n,...,(n — 1)n), corresponding to the example of polynomial codes in Sec. IIL. In this way, we have A(z) =
S At and B(x) = Y01, Biz("=)". Therefore, in C(), there are n? terms whose coefficients are 4;B;, 1 < i,5 < n.
As shown in Fig. 2b, the exponents of the four terms in C (x) ranges between 0 and 3. Hence, we need to have the results of
any 4 tasks to obtain the results of A; By and A;Bs, as the coefficients of 29 and z3. In other words, the recovery threshold
in Fig. 2b is 4. We can see from Fig. 2b that the polynomial code can be seen as a special and non-optimal scheme that is
feasible in our framework.

In Fig. 2c, we present another possible way to construct the coding scheme where N = (2,1). Hence, we can see that the
exponents of A; By and A;Bs are placed in the counter diagonal, as highlighted in the table. We also highlight the entries
of A;B; and A3 B in the other examples. As M and N can be any permutations of {1,...,n}, the pattern of highlighted

entries can be more flexible in our coding framework. However, there should be one and only one highlighted entry in each



row or each column.

Furthermore, we demonstrate an optimal coding scheme for n = 2 in Fig. 2d, which minimizes the number of exponents,
and hence the recovery threshold. To prove its optimality, we consider the number of exponents needed in the table. The
highlighted entries must have unique exponents, and the other two entries also need to have at least one more exponent. Hence,
there need to be at least three exponents, proving the optimality of the coding scheme illustrated in Fig. 2d. This scheme
also corresponds to the example we demonstrated in Sec. III. We can see that in a feasible coding scheme, the exponents in
highlighted entries in the corresponding table must be unique, while the exponents in other entries can coincide which help to

achieve lower recovery thresholds.

V. ROOK POLYNOMIAL CODING: A SPECIAL CASE
A. Scopes of Parameters

To make it convenient for the code construction, we first narrow down the scopes of the parameters. Without loss of
generality, we assume that elements in P and () are non-decreasing, i.e., P, < ... < P, and @ < ... < @,,. In fact, to make
the exponent of A;B; unique, the elements in P and @ should be strictly increasing. Otherwise, if there exist two distinct
integers j; and jo such that Q;, = @Q;,, we have P, + Q;, = P, + Q,, for any integer ¢ € [1,...,n]. Considering i such that
M; = Nj, (as M and N are both permutations of {1,...,n}), the exponent of Ay, BNj1 equals that of Ay, BNJ.Q. In other
words, Ay, B N, cannot be obtained after decoding, which is the result of one of the n matrix multiplications. Therefore, we
have P < ... < P, and Q1 < ... < Q.

Without loss of generality, we can also assume that Py = Q9 = 0, or we can easily get an equivalent coding scheme by
subtracting Py (and (QQg) from all elements in P (and Q).

In this section, we consider a special case where P = (0,...,n — 1).! We construct RPC with this condition and prove the
optimality of the construction in this special case. We extend the construction of RPC to the general values of P in Sec. VI
and Sec. VIL

Given a placement of highlighted entries in the table, there can be multiple possible choices of M and N that lead to the
same placement. For example, in Fig. 3a, M = (1,2,3,4) and N = (3,1,2,4), where we place corresponding Ay, and By,
as the title of each row and each column, respectively. If we switch A;, with A;, and meanwhile B;, with Bj,, if A;, = By,
and A;, = Bj,, the highlighted entries will remain unchanged. After such a switch, the new coded tasks will remain equivalent
as the original coded tasks, only having entries in M and N switched. For example, the same entries will be highlighted if
M = (2,1,3,4) and N = (3,2,1,4). Hence, we can assume, without loss of generality, that M = (1,2,3,4), so that the
coding scheme will only depend on the value of N.

Now we have fixed the values in P and M. In the rest of this section, we will construct RPC by finding the best values in
@ and N that optimize the recovery threshold.

't is equivalent to having @ = (0,...,n — 1) and then choosing the optimal P. In this paper, we simply choose the value of P first and then optimize
the value of Q.
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Fig. 3. Two placements of highlighted entries and their corresponding optimal coding schemes.

B. Achieving the Optimal Degree of C(x)

Besides having P and M fixed, we first construct a coding scheme with the optimal degree of C (z) from a given placement
of highlighted entries, i.e., the values in IV has also been fixed. In Alg. 1, we propose an algorithm that constructs such a
coding scheme. The optimal coding scheme can then be found in two steps: 1) finding the optimal placement of highlighted
entries; and 2) finding the values of () that achieve the optimal degree in C (x). We now discuss the algorithm for the second

step in Alg. 1 and leave the first step in Sec. V-C. We also prove the optimality of Alg. 1 with Theorem 1.

Algorithm 1 The optimal values of @ with a given placement of highlighted entries.
Input: N (with M fixed, the placement of highlighted entries only depends on N
Output: Q

1: Ql =0

2: for i < 2 ton do

3: if n — N;_1 < N; — 1 then

4 Qi Qi1+ Nia

5 else

6: Qi+ Qi1 +n—N;+1
7 end if

8: end for

Theorem 1. Given highlighted entries, i.e., M = (1,...,n), P=(0,...,n—1), and N given as a permutation of {1,...,n},

Alg. 1 finds the optimal values in Q) that minimize the recovery threshold.

Proof. The intuition of Alg. 1 is making the overlaps of exponents as large as possible. As shown in Fig. 3, within two
neighboring columns, the overlapped exponents go up (down) from the bottom (top) entry until reaching a highlighted entry.
For example, in Fig. 3a the two entries at the bottom in the third column share the same exponents with the top two entries in
the last column. We can also find exponents of 1, 2, and 3 shared in the same way in Fig. 3b, as well as 7 and 8. In the i-th
column, the highlighted entry is in the N;-th row since My, = IN;. Hence, there are N; — 1 entries in the gap above it and
n — N; entries below it. To determine the value of );, we consider if the number of entries above it is greater or less than the
number of entries below the highlighted entry in the (i — 1)-th column, and we illustrate such two cases in Fig. 4. In order to
make overlaps of exponents as large as possible, if the gap at the top in the i-th column is smaller than the gap at the bottom

of the (i — 1)-th column, i.e., N; — 1 < n — N;_1, there can be at most IV; — 1 entries with the same exponents as the entries
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Fig. 4. Two placements of highlighted entries and their corresponding optimal coding schemes.

at the bottom in the (¢ — 1)-th column. Since the last exponent in the (i — 1)-th column is Q;_1 +n — 1, the first exponent in
the i-th column should be @Q;—1 +n — 1 — (N; —2) = Q;—1 +n — N; + 1, which also equals @; as P; = 0.

On the other hand, if the gap at the bottom in the (j — 1)-th column is smaller than the gap at the top of the j-th column,
the first exponent in the j-th column should be at least greater than the exponent of the highlighted entry in the (j — 1)-th

column, which equals );_1 4+ N;_1 — 1. In other words, (); should be @Q;_1 + N;_;. O

Since N;_1 > n— N;+1if n—N;_; < N; —1, we can further simplify Line 3-6 in Alg. 1 as Q; = Q;—1 + max{N;_1,n—
N; + 1}, and the degree of C(z) is Y7, max{N;_1,n — N; + 1} +n — 1.

Moreover, we can see from Alg. 1 that all integers between 0 and the degree of C (x) appear at least once as the exponents in
C (x), otherwise there must exist 4 such that (); can be reduced to use the missing integer as the exponent. Hence, the recovery
threshold should also be " , max{N;_1,n — N; + 1} + n. We can also compute the recovery threshold as P, + Q,, + 1

since values in both P and () are both strictly increasing.

C. Optimal Placement of Highlighted Entries

As Alg. 1 minimizes the degree of C (z) given a placement of highlighted entries, we now discuss how to find the optimal
placement of highlighted entries (when P = (0,...,n—1)). Applying Alg. 1 to two different placements with n = 4 in Fig. 3a
and Fig. 3b, we can see that different placements of highlighted entries can lead to different degrees of C (z).

We now propose a placement of highlighted entries which can be proved to achieve the optimal degree in C (). The
placement can be obtained by induction. When n = 1, there is one and only one possible placement which is the only entry
itself, as shown in Fig. 6a. When n = 2, ) has two permutations, leading to two patterns of highlighted entries which we can
find in Fig. 2c¢ and Fig. 2d. We can see that the placement in Fig. 2c does not have any overlapped exponent, and hence the

placement in Fig. 2d is optimal.
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Fig. 6. Examples of the optimal placements of highlighted entries with n = 1,2, 3, 4.

We now construct the placement with n + 2 from a placement constructed from the n x n table. As shown in Fig. 5, we
first construct a placement for the n X n table and place it between the second and the (n + 1)-th row and between the first
and the n-th column. We then highlight the top entry in the (n + 1)-th column and the bottom entry in the (n + 2)-th column.
In Fig. 6¢ and Fig. 6d, we show the two placements with n = 3 and n = 4 constructed from the placement in Fig. 6a and
Fig. 6b, respectively. With M fixed, N can also be determined after getting the optimal placement, and then we apply Alg. 1

to get the exponents in the table and hence obtain the value of (). We summarize this recursive construction in Alg. 2.

Algorithm 2 The algorithm that constructs the optimal placement of highlighted entries with P = (0,...,n — 1).
Output: N
if n = 1 then
N=(1)
else if n = 2 then
N =(1,2)
else
construct N for the placement with n — 2, and denote it as (N1, Na, ..., N,_o)
N = (N]_ —‘rl,Ng—‘rl,...,Nn,Q—f—l,l,n)
end if

e A o e

As a preparation to prove the optimality of the RPC constructed by Alg. 1 and Alg. 2, we first analyze the properties of

our code construction in Sec. V-D. The proof of the optimality will be given in Sec. V-E.

D. Analysis
In Sec. V-B, we have demonstrated that the recovery threshold of RPC constructed with Alg. 1 and Alg. 2 is one more than
the degree of C (z). To analyze the degree of C (x), we first count the number of unhighlighted entries with unique exponents

as u(n).



When n =1 and n = 2, we can directly get u(1) = «(2) = 0 from Fig. 6a and Fig. 6b.

As for other values of n, we can get the value of u(n) recursively. With the construction in Fig. 5, we can see that the
right-bottom entry is always highlighted. In the two rightmost rows, all unhighlighted entries share the same exponents as
those in the other row. For example, in Fig. 6d, the exponents of unhighlighted entries in the rightmost two columns are both
7, 8, and 9. Moreover, given an (n + 2) x (n + 2) table, in the n columns on the left, entries on the top row and the bottom
row are always unhighlighted. Except the top entry in the first column and the bottom entry in the n-th column, the top entry
in the i-th column can share the same exponent with the bottom entry in the (i — 1)-th column, ¢ = 2, ..., n. Therefore, there
are only two additional unhighlighted entries with unique exponents, i.e., u(n + 2) = u(n) + 2. For general values of n, we

thus have

n—1 nis odd;
u(n) =
n—2 mniseven.

Among a total of n? entries, there are n highlighted entries and u(n) unhighlighted entries with unique exponents. Then

2

the number of unhighlighted entries with shared exponents is n* — n — u(n). As each exponent can be shared by at most two

entries (since both P and Q are strictly increasing), the total degree of C(x) is w +n+un)—1= w -1,
n2

which equals & +n — % if nis odd or = +n — 2 if n is even. We use r(n) to denote the recovery threshold of RPC

2
constructed with Alg. 1 and Alg. 2, and then r(n) equals %2 +n— % (or %2 +n — 1) if n is odd (or even). We can further

simplify it as r(n) = VHTDJ 1

E. Optimality

We now prove that the construction of RPC given by Alg. 1 and Alg. 2 is optimal when P = (0,...,n — 1). Equivalently,
we can prove that u(n) is optimal.

We first prove a lemma which characterizes the highlighted entries with unique exponents.

Lemma 1. In a n x n table (n > 2), the number of unhighlighted entries with unique exponents between two highlighted
entries in two neighboring columns is no more than half of the total number of unhighlighted entries with unique exponents

in the whole table.

Proof. Assume that the index of the highlighted entry in the j-th column is N;, 1 < j < n. Additionally, we set Ny = n and
N,41 = 1. Then the number of unhighlighted entries with unique exponents is [(n—N;)—(N;41—1)| = |(n+1)—(N;+N;41)|.
We then have |(n+ 1) — (N; + N;41)| as the number of unhighlighted entries with unique exponents in the j-th column, then
the total number of unhighlighted entries with unique exponents is Z;’L:() |(n+1) — (N; + Nj+1)|, and we aim to prove that
Vi =0, (1) = (N + Nyl < 350 l(n+ 1) = (N + Ny,

We know that 37| N; = W, and then we have Y7 (N;+Nj11) = (n+1)%. Hence, Y7 ((n+ 1) — (N + Njy1)) =
0. Hence, we can divide the n + 1 terms above into three parts: J; = {j|(n + 1) — (N; + N;11) > 0}, Jo = {j|(n +1) —
(n+1) = (Nj + Njp)| <
Sien |l +1) = (Nj + Njy)| = Yjes [(n+1) = (N + Njpa)l = 530 o [(n 4+ 1) = (Nj + Njy1)|. If j € Ja, then
|(n+1) — (Nj + Nj41)| = 0 which is also no more than %Z?:o [(n+1) — (Nj + Njt1)l. O

(Nj + Nj+1) < 0}, and J3 = {j|(n + ].) — (NJ + Nj+1) = 0} Ifj e J; or j € Ja,




Theorem 2. When P = (0,...,n — 1), Alg. 2 finds the best values in N that lead to the optimal placement of highlighted

entries.

Proof. To prove that the placement of highlighted entries constructed in Sec. V-C is optimal, we demonstrate that given any
placement in an (n + 2) x (n + 2) table, the number of unhighlighted entries with unique exponents will be two more than
that of an optimal placement in an n X n table.

Given a placement in an (n + 2) X (n + 2) table, we can always find two columns whose highlighted entries appear in the
top row or in the bottom row. In other words, there exist j; and j» such that N; =1 and N;, = n + 2. After removing the
top and the bottom rows, as well as the j;-th and the j»-th columns, we can get a placement of the n x n table.

We first assume that such two columns are not neighbors, i.e., |j1 — j2| > 1. In this case, we can consider these two columns
individually, i.e., their exponents will not coincide with each other. We first consider the j;-th column.

If 1 < j1 < n+ 2, before removing the two rows and two columns, between the highlighted entries in the (j; — 1)-
th column and the (j; + 1)-th column, the number of unhighlighted entries with unique exponents is (n +2 — N;, _1) +
(n+1—Nj41+1) =2(n+2)— (Nj,—1 + Nj,41). After the removal, the number of unhighlighted entries with unique
exponents between the same two entries is [(n + 1 — Nj,_1) — (Nj,41 — 1)| = |(n + 2) — (N}, + N;,)|. By Lemma 1,
[(n+2) — (Nj,—1+ Nj,41)| < @ = 221 otherwise the placement in the n x n table after the removal is not optimal. If
so, we have |(n +2) — (N}, + N;,)| <2(n+2) — (I, + Nj,).

If 71 = 1, we only need to count the number of unhighlighted entries with unique exponents between the first entry in the
first column and the highlighted entry in the second column. Before the removal, the number is (n+1) — (No—1) = n+2— Ns.
After the removal, the number becomes N — 1, which is no more than ”T’l Hence, No — 1 <n—+2— Ns.

If j1 = n + 2, then after removing the number of unhighlighted entries with unique exponents will be reduced, as all the
unhighlighted entries in the j;-th column are not be shared by any other entries anyway.

We now consider the jo-th column. Similarly, if 1 < j» < n + 2, before the removal, the number of unhighlighted entries

with unique exponents between the highlighted entries in the (jo — 1)-th and the (j3 + 1)-th column is [(n 4+ 1) — (n + 2 —

Nj,—1)] + (Nj,41 —1) = (Nj,—1 + Nj,11) — 2. After the removal, the number still becomes |(n + 2) — (N;, + N,, )|, which

is no more than 251. Hence, |(n + 2) — (Nj, + Nj,)| < (Nj,—1 + Nj,41) — 2.

If jo = 1, then after removal the number of unhighlighted entries with unique exponents will be reduced, as all the
unhighlighted entries in the jo-th column are not be shared by any other entries anyway.

If jo = n+2, we only need to count the number of unhighlighted entries with unique exponents between and the highlighted
entry in the (n + 1)-th column and the last entry in the last column. Before the removal, the number is (n + 1) — (N —
1) = n + 2 — Na. After the removal, the number becomes Ny — 1, which should be no more than ”7’1 Hence, we have
No—1<n+2— N,.

Combine the two columns together, the number of unhighlighted entries with unique entries will be decreased by 2 at least
after the removal, if the placement in the n x n table is optimal.

If |j1 — j2| = 1, then there can be two possibilities of their positions. Without loss of generality, we assume j; < jo. If

Nj, = n+ 2, then after the removal, there will be at least two unhighlighted entries with unique exponents removed, i.e., the



entry in the last second row of the j;-th column, and the entry in the second row of the js-th column.

If N;, =1, then N;, = n+ 2. Hence, all entries in these two columns will not coincide with any other entries in the table.
If the two columns are on the left or on the right of the table, then one entry in the first row and one entry in the last row
will also be removed that have unique exponents. For example, if the two columns are on the left, then the top entry in the
third column and the bottom entry in the last column are also removed and originally have unique exponents. We can also
find these two entries if the two columns are on the right. If these two columns are in the middle, the top entry in the first
column and the bottom entry in the last column will be removed, whose exponents are unique.

Combining all the statements above, we have u(n + 2) > u(n) + 2. By our analysis in Sec. V-D, the equality is achieved

by Alg. 2 in Sec. V-C. O

Note that the optimality of the construction above is achieved under the assumption that P = (0,...,n — 1). Based on this
construction, we propose two general constructions in Sec. VI and Sec. VII which do not have such a requirement for P and

counter-intuitively reduce the recovery threshold from O(n?) to O(n!°823).

VI. FIRST GENERAL CONSTRUCTION

We now extend the construction of RPC in Sec. V by removing the assumption of P = (0,...,n — 1). We propose two
constructions that achieve similar recovery thresholds, yet either one of them may have a better performance with a specific
value of n. In those general constructions, we allow choosing arbitrary values in P. Although minimizing P to be (0,...,n—1)
seems also minimizing the degree of C' (), we find that the degree of C () can be even lower with general values in P as
it creates more chances to share exponents. We now present the first general construction in this section. The second general

construction is based on the first general construction and will be presented in Sec. VII.

A. A Toy Example

It is counter-intuitive to have values in P larger than n — 1, since it seemingly will only increase the corresponding degree
of C(x). However, as illustrated in Fig. 7a, the degree of C(z) is reduced from 10 to 8 with P = (0, 1,3,4), compared to
the original construction in Fig. 6d. The reason for this better result is that the construction in Fig. 7a allows more overlaps
among exponents. In the construction in Sec. V, an exponent can only overlap with another one. In Fig. 7a, we can see that
the exponent 4 appears 4 times.

The increase in overlaps in Fig. 7a is due to a recursive construction. In this example, we group the four matrices Ay, ..., Ay
into two groups {A;, A2} and {A3, A4}, and also By, ..., By into { By, B2} and {Bs, B4}. We then construct the code in two
steps. We first place the four groups in a 2 x 2 table, as shown in Fig. 7b. It is easy to see that the intersection of {A4;, A2}
and {B1, B2} and that of {A3, A4} and {Bs, B4} need to have unique exponents and the other two intersections can have
shared exponents. Hence, we apply RPC for such four groups with n = 2, as shown in Fig. 7b, with only one difference that
the exponents need to be amplified for the next step.

In the second step, we construct RPC again for each intersection, with n = 2. Note that in each intersection, there are

3 different exponents, and the first and last exponents need to be unique. Hence, the exponents in the first step need to be
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Fig. 7. An toy example of the first general construction of RPC.

multiplied by 3, and the exponents in each entry in Fig. 7a should be the sum of the corresponding exponents of the two steps,
such that the exponents of A;B;, @ = 1,...,4 can be both unique in each intersection and across different intersections. In

this way, we can get P = Q = (0,1, 3,4).

B. Code Construction

From Fig. 7, we can see that the first general construction is recursive. We assume that given n matrix multiplications, n is
a composite number, i.e., n = pg where n,p,q € Z*. For now we assume both p and ¢ are prime numbers. We then group
Aq,..., A, into p groups, where each group contains ¢ matrices, i.e., {A1,..., 44}, ..., {An—g+1,...,An}. We can also do
the same to By, ..., By,. To avoid ambiguity, we rewrite P, @, N as P(n), Q(n), N(n) for RPC constructed with n matrix
multiplications.

We first construct a RPC for n = p, where each entry is for the intersection of two groups of A; and B;. In Fig. 8 we
demonstrate the recursive construction with p = 3. We can see that the p = 3 groups of A;s and B;s are placed along the
rows and columns of the 3 x 3 table, corresponding to the RPC for n = p = 3. The only difference is that the exponents
are multiplied by r(q), the recovery threshold of RPC for n = ¢, as there will be r(g) exponents to accommodate in each
intersection in the second step.

In the second step, we construct a RPC for n = ¢ for each intersection in the first step, and then we can determine the
placement of A;s and B;s in each group. Note that all intersections actually have the same placement as they are all RPCs
for n = ¢, so all intersections in the same rows (columns) have the same placements of A;s (B;s). In particular, each entry of
such RPCs needs to be added with the exponents of its corresponding intersection in the first step. In other words, each entry
should be added with a value that equals r(g) times the corresponding exponent in the first step, such that unique entries in
each intersection do not coincide with any unique entries in other intersections.

Given the general construction above, we can now formalize the algorithms to obtain P(n),Q(n), N(n), M(n) for n =
pq. Given entry (i,7) which indicates the entry at the i-th row and the j-th column, by definition its exponent should be
P;(n)+ Q;(n). For convenience, we choose 41,5 such that ¢ = (i1 —1)g+iz where 1 <43 < pand 1 < i3 < g, and similarly

j=(j1—1)g+ jo where 1 < j; <pand 1< jp <gq. In this way, (i1,7;) indicates the corresponding intersection in the first
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Fig. 8. An illustration of the first general construction of RPC with p = 3. In this example ¢ is also assumed to be prime.

step and (o, j2) indicates corresponding entry in this intersection. Therefore, we have
Pi(n) + Qj(n) = (Piy (p) + Q;, (p)) - 7(9) + (Pir(9) + Qj,(4))-

Since Py(n) = Qo(n) = 0, we have P;(n) = P;, (p)r(q) + P, (q) and Q;(n) = Qj, (p)r(q) + Qjs(q)-

Now we consider the placement of matrices, i.e., N(n). At the j-th column in the n X n table, it belongs to the j;-th
column of the p intersections and js-th column in this intersection. The group corresponding to this intersection then should
be {B(Nj1 (P)=1)g+1s- - > B(le_l)(p)q+q}. Hence, the matrix at the i-th column should be N(x; (p)-1)g+14N;,(¢)—1- In other
words, N;(n) = (N, (p) — D) + Ny, (q).

Moreover, if p or q is still a composite number, we can recursively use the construction above until they are both prime
numbers. We use Rj(n) to represent the recovery threshold of RPC constructed with the first general construction, and then
we can replace 7(¢) with R;(g) in the second step. We summarize the first general code construction of RDP in Alg. 3, and

then analyze the recovery threshold R;(n) in Sec. VI-C (used at Line 11 in Alg. 3).

Algorithm 3 The first general construction of RPC.
Input: n
Output: P(n),Q(n), N(n), R1(n)

1: if n is a prime number then

2: Obtain P(n),Q(n), N(n) by Alg. 1 and Alg. 2

3: else

4: Obtain P(p), Q(p), N(p) from an RPC with n = p

5: Obtain P(q), Q(q), N(q), R1(g) from an RPC with n = ¢

6: for i < 1 ton do

7: Leti—(il—l)q+igwhere1§i1Spandlgiggq
8: Pi(n) = P;,(p)R1(q) + Pi, (q)

o: Qi(n) = Qn( JR1(a) + Qi (q)

10: Ni(n) = (Ni, (p) — 1)g + Ni, (q)

1: Ri(n) = R ( )R1(q)

12: end for

13: end if




C. Analysis

From Fig. 8, we can see that if the exponents in the RPC for n = ¢ is consecutive, then the exponents for RPC for n = pgq,
given by the first general construction, will also be consecutive. This is because each intersection in the first step separates from
each other by R;(g) which is the number of exponents in each intersection. As the number of exponents in each intersection
is R1(q), and the exponents in different intersections do not overlap, the total number of exponents is R;(p)R1(q). Since we
will also recursively construct RPC for n = p or n = q if p or q is still a composite number, we can also recursively get
the recovery threshold of R;(n). If n can be factorized as n = [, p;"" where p;s are prime factors of n, then the recovery
threshold of the general construction Ry(n) is [, r(p;)*.

We now analyze the recovery threshold by discussing some representative special cases. Obviously, if n is a prime number,
then Ry (n) = r(n) = [@J ~1.

When n is not a prime number, the recovery threshold becomes

Ri(n) = Ur(pi)o‘i = 1:[0 (p;)a =0 (%) =0 (gl) :

From the equation above we can see that the recovery threshold can be minimized when ZZ «; 1s maximized, i.e., when n

is a power of 2. Specifically, when n = 2%, Ry(n) = r(2)® = 31°92" = O(n!°823) ~ O(n!5%?).
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Fig. 9. The growth of the recovery threshold Ri(n).

We show in Fig. 9 how R;(n) grows with n, when 2 < n < 128. In order to make it easy to compare, we show log, R1(n)
in the Y-axis. We can see that Ri(n) grows between O(n'°8%) (when n is a power of 2) and O(n!®7°). We expect that
log,, R1(n) — 2 when n — oo if n is a prime.

In order to make the recovery threshold be O(n!°823), we can apply an easy trick that adds dummy matrix multiplications
in order to increase the number of matrix multiplications to a power of 2. If 5 is the smallest integer such that n < n/ = 2,
i € Z*t, we have n’ < 2n. Therefore, the recovery threshold is less than or equal to (2n)°823 = 3pl°823 je., the recovery
threshold will always be O(n!°823). Sometimes this trick can help to save the recovery threshold. When n = 7, we can save

the recovery threshold from 31 to 27 by adding one dummy matrix multiplication. However, in many cases, the actual recovery
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threshold may be increased after adding dummy matrix multiplications. For example, when n = 3, adding one dummy matrix

multiplication will make the recovery threshold be increased from 7 to 9.

VII. SECOND GENERAL CONSTRUCTION

We now present the second general construction for RPC. From Fig. 9, we can see that in the first general construction the
recovery threshold does not monotonically increase with n. In other words, if additional matrix multiplications are added for
some n, it is possible that we can save the number of workers. In this section, we present another construction that not only
makes the recovery threshold strictly monotonically increase with n, but also achieves a better recovery threshold for some

values of n.

A. Intuition and Construction

The second general construction of RPC is, in fact, based on the first general construction, and hence we first present
an example of the RPC given by the second general construction. In Fig. 10a we first present a construction of RPC using
the first general construction for n = 8, where M = N = (1,2,...,8), P = Q = (0,1, 3,4,9,10,12,13). By taking the
first seven entries from all the four parameters, we can construct an RPC for n = 7, such that M = N = (1,2,...,7),
P=0Q=(0,1,3,4,10,12). As shown in Fig. 10b, the recovery threshold of this construction is 25. This recovery threshold

is even smaller than that of RPC for n = 7 using the first general construction (as shown in Fig. 10c).

B, B, By B, By Bg By Bg

B, By By By Bs Bs Br B, B,y By B, Bs Bs Bz

Ayl 1 2 4 5 10 11 13 14 [[A:f O 1 3 4 9 10 12 Al 0 5 8 14 16 23 24

Azl 3 4 6 7 12 13 15 16 || Az 1 2 4 5 10 11 13 Ayl A 6 9 15 17 24 25

Ayl 4 5 7 8 13 14 16 17 ||4s| 3 4 6 7 12 13 15 | A3l 2 7 10 16 18 25 26

As| 9 10 12 13 18 19 21 22 [|Ay] 4 5 7 8 13 14 16 | A4f 8 8 11 17 19 26 27

Ag| 10 11 13 14 19 20 22 23 [|4s] 9 10 12 13 18 19 21 As[ 4 9 12 18 20 27 28

A7l 12 13 15 16 21 22 24 25 ||As| 10 11 13 14 19 20 22 | A¢| 5 10 13 19 21 28 29

Ag| 13 14 16 17 22 23 25 26 ||A7[ 12 13 15 16 21 22 24 | A7| 6 11 14 20 22 29 30

(@) RPC for n = 8 by the first (b) RPC for n = 7 by the second (c) RPC for n = 7 by the first
general construction general construction general construction

Fig. 10. Examples of RPC constructed with the first and second general construction.

In the first general construction, when n = 2 the values of M and N are sequential. Since we construct RPC recursively
when n is a power of 2, i.e., n = 2% where i is an positive integer, entries in M and N will still be sequential. Therefore,
if n = 2%, we can arbitrarily take the first ng entries (ng < n) in M, N, P, and @, to construct the RPC for ny matrix

multiplications.



Following this intuition, we give the second general code construction in Alg. 4.

Algorithm 4 The second general construction of RPC.

Input: n
Output: P(n),Q(n), N(n)

1: Find the smallest positive integer such that 20~1 < n < 2¢,
2: Obtain P(2%),Q(2%), N(2%) from an RPC constructed with the first general construction
3: for i <~ 1 ton do
& Pn)=P()
5: Qi(n) = Qi(2")
6: Nl(n) = NZ(T)
7: end for
B. Analysis

Since from the first general construction of RPC with n = 2% we can get the RPC of the second general construction with
any ng < n, we only need to analyze the exponents of highlighted entries in the first general construction when n = 2. Let
R2(n) denote the recovery threshold for RPC constructed with the second general construction. We have Ry(n) = Ri(n) =
3logam — 3% if = 2%, since the two constructions are the same in this case. As for the general value of n, we prove the

following theorem.

Theorem 3. Using the second general construction, Ro(n) satisfies the following equation:

Ro(n) 1 n =1;
2(N) =
Ro(n —2i71) +2.3171 217l <« <20 i € Z+.

Proof. If n = 1, we have Ry(1) = R;(1) = 1. Otherwise, there exits i € Z* such that 2¢=! < n < 2%. Based on the second
general construction, we will first construct an RPC with n = 2 using the first general construction, and then the recovery
threshold Ry (n) = P, (2) 4+ Q. (29) + 1.

In the first general construction, an RPC with n = 2 should be recursively constructed from the RPC with n = 2¢~!. From
Alg. 3 we have n = 271 + (n — 2i71), and then P,(2%) = Py(2)r(271) + P,_5i-1(271) and Q,,(2%) = Q2(2)r(2071) +
Qn_2i—1(271). Therefore, Ro(n) = r(271)(P2(2) + Q2(2)) + P _0i-1 (2771 + Qp_0i-1 (2071) +1 = 2- Ry (271) + Ra(n —
2i71) = 2. 3171 4 Ry(n —2¢71).

Based on Theorem 3, we further prove that Ry(n) increase strictly monotonically with n.
Theorem 4. Vn € Z", Ra(n) < Ra(n + 1).

Proof. We use induction to prove this theorem. First, if n = 1, we have R2(1) =1 < 3 = R3(2).
We now prove that given i € Z7, if the theorem is true for all n < 2=, it is also true for all n < 2¢. Obviously we only
need to consider the cases when 2¢-1 < n < 20

If 2071 < n < 2%, we have Ry(n —271) < Ry(n +1—2'1). Therefore, by Theorem 3 we also have Ry(n) < Ra(n+1).



If n= 2i, RQ(TL+ 1) = R2(21 + 1) = R2(2l +1-— 2i) +2.3 = Rg(l) +2.-3 >3 = R2(2Z) = Rg(n) O]

Since Ry(n) is strictly monotonic and Ry (2%) = R;(2°), the recovery threshold of the second general construction is still
O(n'°#23). However, in many cases, the second general construction can achieve a lower recovery threshold than the first
general construction. For example, when n = 7, Ry;(n) = 31 and Rao(n) = 25. Fig. 11 illustrates the differences of the
recovery thresholds between the two constructions. In practice, given a specific value of n, we may simply try both two

constructions and choose the construction with a lower recovery threshold.

401
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Fig. 11. The difference of the recovery threshold between the first and second general constructions. Data entries are positive if the recovery threshold of
the first general construction is greater.

VIII. ROOK POLYNOMIAL CODING WITH MATRIX PARTITIONING

In this section, we extend our coding framework to apply coding on batch matrix multiplication and matrix partitioning at
the same time. In the code constructions of RPC we have presented so far, each entry in the table is associated with only one
exponent, whose corresponding coefficient is a multiplication between A; and B;, 1 < 4,5 < n. To further support matrix
partitioning, we extend the representation of the n x n table where each entry can be associated with multiple exponents, which
comes from the coding for distributed computing of the single matrix multiplication.

For the single large-scale matrix multiplication, various works (e.g., [7]-[9], [19]) have applied coding on the matrix
partitioned into submatrices. We choose to couple entangled polynomial codes [9] into our coding framework, which is one of
the state-of-the-art coding schemes for distributed matrix multiplication based on the polynomial. Given a matrix multiplication

A - B, we partition A and B into fh and hg submatrices, respectively. In other words,
A(L,1) ... A(1,h) B(1,1) ... B(l,9)
A= ,and B =

A(f,1) .. A(f.h) B(h,1) ... B(h.g)



Hence
S AQL)BG,) L. Y A(Li)B(, h)
AB =

S A(f)BG,1) . S A(f,9)B(, h)

By an entangled polynomial code,” we encode A and B into A(z) = Y3/, Z;L:l A(i, j)z?—1 =gk and B(z) =
Sy Sy B, )2+ DR Hence,

f 2h  min{h,l-1}

A@)B@) =333 Y Al m)B(h— 1+ m 1, j)ahC e,

i=1 j=1 1=2 m=max{1,l—h}

In particular, when | = h + 1, the fg corresponding coefficients become 22:1 AimBmj, 1 <i < f, 1 <j < g. Hence,
by decoding the coefficients of C'(x) £ A(z)B(x), we can obtain the fg submatrices in AB and hence complete the matrix
multiplication. As the degree of C' () is fgh+ h — 2, its coefficients can be obtained from any fgh + h — 1 coded tasks with

different values of .

Al A2
|u)(1,1) (1,2){2,1)[2,2) o|3|e]|o912]15]18]21
sl ol 3]s |0 5 1147 10]13]16]19]22

1 12]5|8[11]14]17]20]23

3] 1 4| 7 110 3|6 9|12]15]18]21]24
4|7 |10]13]16]19|22]25

41 2 5 8 | 11 12| 15]18]21] 24| 27| 30| 33
13|16 |19]|22| 25|28 | 31 |34

5] 3|6 | 9|12 B, |14[17[20]23]26 293235
15|18 |21 24| 27|30 33| 36

647 |10]13 16|19 |22 25| 28 |31 | 34 |37

(a) exponents of an entangled polynomial code (b) the integration of entangled polynomial code
with f=g=2 and h=3 Into two coded matrix multiplications

Fig. 12. The illustration of the exponents in an entangled polynomial code and its integration with two matrix multiplications

Similar to our coding framework, we represent the exponents in the entangled polynomial code in a fg x (21 — 1) table.
We can see in Fig. 12a that the exponents with [ = h + 1 are desired which need to be unique and other exponents can
be shared, and thus we highlight the corresponding entries. We can then replace each entry of our coding framework with
such an illustrative table of entangled polynomial code, leading to a two-level hierarchy of highlighted entries. The lower level
corresponds to the entangled polynomial codes. We can see in Fig. 12b that each entry now contains 5 x 4 cells that correspond
to the entries in Fig. 12a. The upper level, on the other hand, corresponds to RPC where the two diagonal entries in the table
are also highlighted, i.e., the two other entries can share the same exponents.

Formally, the coding scheme with the entangled polynomial code integrated can be defined as follows. We assume that the
n matrix multiplications are split in the same way, where A; is split into fh submatrices and B; is split into hg submatrices,

2More detailed knowledge of entangled polynomial codes can be found in [9].
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i=1,...,n. In an entangled polynomial code, the last exponent highlighted is fgh — 1. We then let y = 279", so that all

desired exponents can remain unique. The coded task can then be written as

and

h
Z By, (j, i)a =)+ G- DhtfghQu

Then we have A(z)B(z) = 321", > Apg, () By, (x)y"+i. The largest exponent of x is achieved when i = j = n,
which is (R(n) — 1)fgh + (fgh + h —2) = R(n)fgh + h — 2, where R(n) can be either R;(n) or R2(n) depending on
which construction is used. In other words, the recovery threshold of RPC coupled with the entangled polynomial code is

R(n)fgh+h — 1.

1X. EVALUATION

We implement the code constructions of RPC with mpi4py. The job of batch matrix multiplication will run in a master-
worker architecture. We assume that the input matrices of the n matrix multiplications have been placed on each worker, and
each worker will encode such input matrices into its own task. As the encoding is polynomial evaluations of fl(x) and B(a;)
in RPC, we simply use Horner’s method to encode input matrices after the code is constructed. Each worker then computes
the multiplication of fl(m) and B(m), where the value of x is uniquely chosen on each worker, and then upload the result
to the master using MPIl.send. The master will continuously polls (using MPI.Probe) to check if there is one worker which
has finished one task. Once the number of finished tasks reaches the recovery threshold, the master will stop receiving new
results (considering the rest of workers as stragglers), and decode the received results to obtain the results of batch matrix
multiplication.

As a comparison, we also implement existing coding schemes for the batch matrix multiplication, including LCC [9],
CSA [18], entangled polynomial (EP) [17], and GCSA [19] codes. LCC and CSA codes are designed for the coding across
matrix multiplications, and EP? and GCSA codes are designed to also support matrix partitioning. To make the comparisons
fair, we also apply RPC without or with matrix partitioning correspondingly in the experiments below.

We first run jobs of batch matrix multiplication without matrix partitioning on virtual machines hosted in Amazon EC2. The
master runs on the virtual machine of type c4.4xlarge and all workers run on the virtual machine of type c4.2xlarge. We run
a job of n matrix multiplications where the sizes of input matrices for each multiplication are 2000 x 30000 and 30000 x 2000.
We run the job with 12, 14, 22, and 26 workers when n is 3, 4, 5, and 6, respectively. We measure its performance in terms of
the time of encoding and the completion time of the whole job. Each job is repeated 20 times and we report each data point
below as the average.

From Fig. 13, we can see that RPC outperforms LCC and CSA codes significantly. Due to its simple polynomials, RPC
saves the encoding time by up to 31.1% compared to LCC codes, and by up to 39.9% compared to CSA codes. Because of the

3EP codes are originally proposed for a single matrix multiplication [9] which is used in Sec. VIIL In [17], Yu and Avestimehr extend EP codes (without
changing its name) for batch matrix multiplication, which we will compare with RPC in this section.
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Fig. 13. Time of encoding and the whole job of n matrix multiplications without matrix partitioning.

low encoding time, even if RPC can tolerate fewer stragglers than LCC and CSA codes (due to its higher recovery threshold
which we will elaborate on in Fig. 16), it still achieves lower completion time of the whole job when n = 3 (by 26.7%) and
n = 4 (by 19.4%). Even with higher values of n, RPC still achieves completion time at the same level as LCC and CSA
codes.

We also illustrate the encoding time and the completion time of the whole job for batch matrix multiplication with matrix
partitioning in Fig. 14. We now run a job of n matrix multiplications with matrix partitioning where f = h =2 and g = 1.
The sizes of input matrices in each multiplication are 2000 x 45000 and 45000 x 1500. As the input matrices can be split in
half, we now run the job on less powerful workers of type t2.xlarge in Amazon EC2. When n = 3 and n = 4, we run the

job on 34 and 42 workers, respectively.
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Fig. 14. Time of encoding and the whole job of n matrix multiplication with matrix partitioning.

In Fig. 14, we also see lower encoding time is achieved by RPC than EP codes and GCSA codes. RPC saves encoding

time by up to 13.1% compared to EP codes, and by up to 38.3% compared to GCSA codes. As for the completion time of
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the whole job, RPC achieves very similar performance as LCC codes, while the difference between RPC and LCC codes is

limited within 1.4%. They are both faster than GCSA codes by up to 16.1%, mainly because of their low encoding time.
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Fig. 15. The time of centralized encoding of LCC, CSA, EP, and GCSA codes.

As a comparison, we also run centralized version of the encoding algorithms in all the jobs above, where the master will
encode all coded tasks and distribute such tasks to workers. Surprisingly, we find that the fast encoding algorithms for LCC,
CSA, EP, and GCSA codes actually consume more time than the naive algorithm based on matrix multiplication for small
numbers of n. To achieve lower encoding time, fast algorithms typically require more than 1000 matrix multiplications (i.e.,
n > 1000) in our implementation. Even so, the encoding time is still significantly higher than the time of the whole job
with decentralized encoding, because of the large number of matrices to encode. Hence, we use the naive algorithm in the
centralized encoding in Fig. 15, which achieves even lower encoding time than the fast encoding algorithms when n is small.

We run centralized encoding for all the jobs with the same configurations. In Fig. 15a, we show the encoding time for
LCC and CSA codes. Compared to the job completion time in Fig. 14, we can see that the time of centralized encoding is
significantly higher, making it impractical for batch matrix multiplication. We can also observe similar results from the encoding
time of EP and GCSA codes in Fig. 15b. Moreover, with the naive encoding algorithm, RPC achieves lower encoding time
again thanks to its simpler polynomials.

We finally take a look at the recovery thresholds of the coding schemes we used in the experiments above and present
the data in Fig. 16. In exchange for lower time in decentralized encoding, RPC requires higher recovery thresholds than all
the other coding schemes. With the same number of workers, a higher recovery threshold reduces the number of stragglers
tolerable in the experiments above, and thus may consume more time to complete the job. However, as we can see in Fig. 13
and Fig. 14, the time to complete the whole job with RPC is not compromised by the higher recovery threshold. Instead, its
low time of encoding compensates any additional time of computation. The completion time of the whole job with RPC is at

least at the same level as other coding schemes, and even better in many cases.
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16. Recovery thresholds for coding schemes used in Fig. 13 and Fig. 14.

X. CONCLUSION

Coded computing has been demonstrated to tolerate stragglers efficiently for distributed matrix multiplication. However,

most existing coding schemes can only create coded tasks to tolerate stragglers within only one matrix multiplication. In this

paper, we propose rook polynomial coding (RPC), a coding framework for batch matrix multiplication, constructed towards

saving the time of decentralized encoding. We demonstrate that compared to existing schemes, RPC can save the time of

encoding and achieve lower completion time of the job.
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