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Abstract

Two different sorts of retrieval in analogical tasks,
novice-like and expert-like, have been demonstrated in
psychological experiments. With recent computational
work in object recognition as an inspiration, we pro-
pose the computation of intermediate features, and their
use as triggers for retrieval, as the relevant constraint
at the informational level of characterization of the re-
trieval process as seen in experts. We conduct computa-
tional experiments which show that, in conjunction with
a feature-matching retrieval mechanism, features of an
intermediate size and complexity give the strongest ana-
logical retrieval.

An Intriguing Difference in Retrieval

The retrieval of relevant precedents is commonly con-
sidered a critical first step in the analogical reason-
ing process (French, 2002). Psychologists have stud-
ied retrieval in detail, using a straightforward experi-
mental paradigm; in this paradigm, referred to by some
as the “And-now-for-something-completely-different ap-
proach” (Brown, 1989), subjects are given some set of
source tasks (such as memorizing a set of stories, or solv-
ing a problem), and then after some delay are given a
second set of target tasks that are related to the source
tasks in an analogical fashion. The experiments then
test if the subjects are able to perform the target tasks
by analogy with the source tasks.

Studies of this sort have characteristically provided
strong evidence that most people do not retrieve analog-
ically profitable items from memory, even when delays
between source and target tasks are short, or when ana-
logical relationships are especially strong. The seminal
demonstration of this was by Gick and Holyoak (1980,
1983) who reported that nearly two-thirds of their sub-
jects were unable to spontaneously retrieve analogous
source problems. Since then, a wide variety of stud-
ies have provided strong evidence for people’s inabil-
ity to spontaneously recall relevant analogs. Gentner
and Landers (1985) conducted a story recall experiment
from which they concluded that, rather than retrieving
on the basis of analogical relatedness, people retrieve
on the basis of surface similarity—i.e., the characteris-
tics or properties of actors and objects involved in the
description. Rattermann and Gentner (1987) went on
to show that object-descriptions and first-order relations
between objects promote retrieval, but higher-order re-
lations do not, and that preference of retrieval and rat-
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ings of stories for inferential soundness are negatively
correlated. Other problem solving and retrieval studies
showed that subjects needed to be explicitly informed of
the relation between two problems before they were able
to apply analogical inferences, and that recall is heavily
dependent on surface semantic or syntactic similarities
between representations (Reed, Ernst, & Banerji, 1974;
Reed, Dempster, & Ettinger, 1985; Ross, 1984, 1987).
The pattern of retrieval shown by these experiments is
clear: in uncontrolled populations, analogically related
items are not preferred in retrieval.

In contrast, evidence drawn from the literature on ex-
perts suggests that a high level of skill and training in
a particular domain can allow for the recall of analogi-
cally related knowledge. For example, in a classic study,
Chi and colleagues (1981) demonstrated that physics ex-
perts (advanced graduate students in the area) catego-
rize on the basis of abstract physics principles, whereas
novices categorize on the basis of literal features. Shafto
and Coley (2003) have shown similar effects with college
students versus commercial fisherman in the categoriza-
tion of marine creatures. Novick (1988) showed that
experts compared to novices are more likely to demon-
strate spontaneous analogical transfer when problems
share structural features. These categorization exper-
iments are not exactly parallel to the retrieval experi-
ments described above; the single study on expert re-
trieval we were able to locate is by Shneiderman (1977)
which showed that expert computer programmers re-
called computer programs primarily based on the pur-
pose of the code, but not on its specific form, while
novices were heavily influenced by trivial syntactic con-
structions. For the purposes of this paper, we will take
as a given the natural conjecture that experts are better
than novices at retrieving useful analogical precedents
within their domain of expertise, with the caveat that
this supposed difference may be upended by future sur-
prising experimental results.

Explanation at the Informational Level

This supposed difference in recall between experts and
novices is intriguing. How might it be explained? A
simple hypothesis is that immediate, visceral recall from
memory is a relatively automatic process, and the ac-
tual mechanism does not vary substantially from person
to person. Instead, the difference between expert-like
and novice-like retrieval would be in the parameters of



the process; in other words, the algorithm is the same,
but the constraints on algorithm are different. This so-
called informational or computational level treatment of
the problem, an approach outlined explicitly by Marr
(1982), has already been profitably applied in the study
of analogy, in particular to models of the construction
of an analogical mapping (Keane, Ledgeway, & Dulff,
1994; Palmer, 1989). With respect to retrieval, we ask
the question, ‘what are the information-level constraints
that allows experts to efficiently retrieve analogs?’ That
is, what is it that experts are doing (or computing) which
allows them to effect analogical retrieval? Our proposal
is that retrieval occurs by means of a feature-matching
process, and that when a person shows expert-like re-
trieval, what they are doing is calculating and using what
we will call intermediate features. What are intermedi-
ate features? They may be explained best, perhaps, by
an analogy with previous work.

Intermediate Features in Visual Recognition

Our inspiration for pursuing intermediate features for
analogical recall was recent work on visual image clas-
sification by Ullman, Vidal-Naquet, and Sali (Ullman,
Vidal-Naquet, & Sali, 2002). Ullman and coworkers
noted that the human visual system assembles complex
representations of images from simpler features, but that
it is still an open question how these complex represen-
tations are used in visual processing. With this in mind,
they showed that, from an information-theoretic point
of view, features of an intermediate size and complexity
are best for the basic visual task of classification; for ex-
ample, to identify a face in an image, looking for face
fragments of intermediate size (such as a pair of eyes) is
more useful than looking for small features (an eye) or
large features (a complete face).

In their experiment they searched a database of ap-
proximately 180 faces and automobiles for approxi-
mately 50 selected face fragments, and measured the
mutual information delivered by each fragment. In this
context, a feature that yields a great deal of mutual in-
formation was a feature which, if present, was a good
indicator that the class was present as well.

From this perspective, Ullman and coworkers found
that fragments of an intermediate size and complex-
ity maximized the mutual information. Leveraging
this knowledge, they designed a detection scheme that
weighted matches of intermediate features more heavily
than matches of either small or large features, and pro-
duced a 97% face detection rate in novel images, with
only a 2.1% false positive rate.

They intuitively account for their detection scheme’s
impressive results by noting that small, blurred fea-
tures produce many false positives (a blurred eye often
matches a random image feature by chance) and that
large, complex features produce many false negatives (a
detailed image of a face rarely matches anything in a
small collection of stored faces). It is rather the features
that are only somewhat blurred and of a intermediate
size that are most useful for identification.
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Intermediate Features in Symbolic
Representations

By analogy with visual recognition, we can think of fea-
tures in the symbolic domain as portions of a description.
Our proposal is thus that retrieval occurs by a feature-
matching process (Holyoak & Koh, 1987) and that it
is the size of the features which vary between experts
and novices. If we think, as is common in computa-
tional cognitive modelling, of the cognitive descriptions
as graph-like representational structures, a feature would
be a collection of nodes from that description, and an in-
termediate feature would be a collection of nodes which
was not too small or too large relative to the whole. This
notion is directly related to Gentner’s notion of zero-,
first- and higher-order nodes in a symbolic representa-
tion (Gentner, 1983). ‘Small’ features would have nodes
of low order in them; ‘intermediate’ features might con-
tain first- and second- order nodes plus their descendants
(i.e., they would be first- and second- order systematic
representations, as Gentner might say), and large fea-
tures would include high-order nodes plus descendants.
A few examples of fragments of various sizes are shown
in Figure 1, where the description of the orbit of a planet
around a sun is split into small fragments (such as sun
and planet), intermediate fragments (such as the greater-
than relation and its children nodes) and large fragments
(such as the whole description).

[run]  [otane]

Figure 1: Small, intermediate, and large-sized features
in a symbolic representation. Two features of small size,
drawn from the overall description, appear on the left. A
feature of intermediate size, shown in the middle, would
in this case consist not only of two objects but also a
relation between them. A feature of large size, shown on
the right, might be the whole description. We argue that
features of intermediate size are essential when modelling
precedent retrieval at the level of human experts.

Also by analogy with Ullman’s visual recognition
scheme, we can conceive of a feature-matching retrieval
scheme as one which takes a feature of a description
(i.e., a collection of nodes) and “looks” for this feature
in other description graphs in memory. Those sources



in memory which best match the set of input features
would be retrieved most strongly. We hypothesize that
to achieve either novice-like or expert-like retrieval, we
merely change the average size of the feature used for
retrieval. Novice-like retrieval would use small features,
and expert-like retrieval would use intermediate features.
In other words, novice-like and expert-like retrieval are
achieved with the same mechanism, but with different
constraints.

Experimental Results

To lend support to our hypothesis we have con-
structed an implementation of a feature-matching re-
trieval scheme in which the feature size can be varied,
and ran computational experiments that have shown
that analogical retrieval occurs preferentially when in-
termediate features are used. Our expected result is
to show that, with a generalized feature-matching algo-
rithm, if one retrieves with small features, one achieves a
novice-like pattern of retrieval, and if one retrieves with
intermediate-sized features, one achieves an expert-like
pattern of retrieval.

Outline of a Test Algorithm

The algorithm that was run is outlined in Figure 2. Each
feature is a subtree of the description graph, that is, a
node plus descendants. Match scores for feature pairs
are produced by a simple tree alignment, which starts
by matching the head nodes, measuring their seman-
tic similarity, and then proceeding recursively down the
tree, stopping when two nodes are incompatible (e.g.,
have different numbers of arguments) or the features are
exhausted. The threshold in the algorithm is used to
vary the average size of the features that are involved
in matching. It does not control the size of the features
directly but rather eliminates feature pairings based on
the pair’s match score. When two features match well,
their match score is proportional to their size, so the
threshold loosely controls the size of the features which
participate in matching. This technique was used so as to
eliminate highly-uninformative features from the match
pool at low thresholds.

This algorithm is intended to be a generalized feature-
matching algorithm. We do not claim that this is the
algorithm used for the process, but rather it is our aim
to demonstrate that by using a feature-matching algo-
rithm and concentrating on intermediate features, one
can move from novice-like to expert-like retrieval.

Producing a Test Dataset

Like previous work from our laboratory on analogical
reasoning, our implementation takes near-natural
English paraphrases of situations and automatically
produces a description graph on which all subsequent
algorithms are run (Winston, 1980, 1982). In these
graphs, nodes represent objects or concepts, and edges
represent a simple “argument-of” relation. The stories
averaged 16 sentences (deviation of 5.3) and contained
on average 65 nodes (deviation 20.2). Our representation
incorporates a rough model of semantics called thread
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Basic Feature-matching Retrieval Test Algorithm

1. Break the target p and source ¢ into all possible
features {Fp} and {F}}.

2. Vf, € Fp, from largest to smallest

(a) Measure the pairwise match score V(fp, fi) : fi €
Ft.

(b) Take the best feature match and, if it is above
the threshold, add its score to the total for ¢, and
remove the corresponding f; from Frp.

3. Return the total score for .

Figure 2: Description of the algorithm which is used
to demonstrate the utility of intermediate features for
retrieving analogical sources from memory. The algo-
rithm takes as input a target and source description and
a threshold, and returns a retrieval score. To judge what
is retrieved from a source set given a target description,
the algorithm is run on each source in the set and the
scores are compared.

memory (Vaina & Greenblatt, 1979), where to each
node is attached a collection of ordered lists (threads)
of hierarchy terms to which the object or concept repre-
sented by the node belongs. In other words, every node,
whether it represents an object, a relation, or something
else, maintains one or more sequences of class member-
ship strings, and each such sequence is called a thread.
For example, a person might be described with the
thread ambassador--diplomat--politician--human
--primate--animal--thing which indicates that the
most specific class of which they are member is the
ambassador class, and the most general class the thing
class. Thus, comparing with another person, say a
fireman: fireman--rescue-worker--human--primate
--animal--thing we find that they match on the
last four classes, but not the others. By counting the
number of elements in common between two threads we
can get a rough measure of their semantic similarity. !
As can be seen, our representation is highly similar to
others used in research on analogy that it encompasses
both episodic memory implemented as a graph (here,
nodes and their graph structure), and a type of semantic
memory implemented as frames attached to nodes in
that graph (here, thread memory) (Thagard, Holyoak,
Nelson, & Gochfeld, 1990).

To guarantee that our source memory contains
matches to our targets of the proper character, that is,
those that resemble the sorts of sources used in psy-
chological experiments, we synthesized sources by sys-
tematic transformation of nodes and threads in the tar-

'In particular, our algorithm takes the number of thread
elements in common over the number of distinct thread ele-
ments between two nodes as the semantic similarity between
two nodes, a number that runs between 0 and 1.




get. For each target, we made four sources from its de-
scription: an analogically related match (AN), a less-
analogically related match (LAN), a mere-appearance
match (MA), and a literally-similar match (LS).2 For
example, suppose we began with a target description
“The boy ran away to the rock and hid because the
girl threatened him.” To make a literally-similar match
to this target, we replace the objects in the situation
with nearly similar or identical objects, while leaving
the structure unchanged. In our implementation we re-
placed each object with another object which matches
on all but the last thread element. Thus we might
replace boy with man and girl with woman and rock
with boulder to produce “The man ran to the boulder
and hid because the woman threatened him.” To ob-
tain a merely-apparently similar source, we leave the
objects unchanged, but scramble the higher-order struc-
ture. This means that we take higher-order nodes of
the same order and randomly switch their subjects and
objects. This might produce “The girl threatened the
boy because he ran to the rock and hid.” An analogical
match involves different objects, but the same sorts of re-
lations. To effect this we replaced all the objects in the
target with objects which matched on only highest mem-
bership classes, while leaving the higher-order structure
unchanged. Thus a generated analogical source might
be “The army retreated to the castle and dug in because
the enemy army approached.” To make what we call
a less-analogically similar match, we transform as if to
make an analogy, but we mix up the subjects and objects
of some fraction of higher-order relations as is done for
a mere-appearance match.> This might produce “The
army returned to their castle, but the enemy only ap-
proached when they dug in.” Table 1 summarizes the
different sorts of source types and their examples.

Following on Gentner’s retrieval results (Rattermann
& Gentner, 1987), we expect that novice-like retrieval
will result in LS probes being most preferred, followed by
MA, AN and LAN in that order. Thus the novices prefer
superficially-similar stories (MA) to analogically-related
stories (AN and LAN). Expert-like retrieval would also
place LS probes first, but would prefer AN and LAN
probes before MA probes.

Experiment 1

Experiment 1 demonstrates that both novice-like and
expert-like retrieval can be achieved with variation of
the feature-size parameter of a feature-matching mech-
anism. In this experiment we run our demonstration
algorithm and vary its single parameter, the threshold,
which loosely controls the size of the features used in
matching.

Our dataset consisted of fourteen story descriptions
provided in near-natural simple English. The fourteen
story descriptions were first parsed from simple English

2Note that the AN, MA, and LS match types are not
unique to our work, but follow on source types established in
the analogy and retrieval literature (Gentner, 1983; Gentner
& Landers, 1985).

3For the experiments presented in this paper, the fraction
was approximately one-third.
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Type | Example
Probe | The boy ran away to the rock and hid
because the girl threatened him.

LS source | The man ran to the boulder and hid
because the woman threatened him.

MA source | The girl threatened the boy because he
ran to the rock and hid.

AN source | The army retreated to the castle and
dug in because the enemy army ap-
proached.

LAN source | The army returned to their castle, but
the enemy only approached when they
dug in.

Table 1: Examples of systematic derivations of literally
similar (LS), merely-apparently similar (MA), analogical
(AN), and less-analogical (LAN) source matches to a
target.

into our graph representations. These descriptions were
used as the targets. Each description was used to gener-
ate the four related descriptions (literally-similar, mere-
appearance, analogical, and less-analogical), and these
56 descriptions were used as sources. The retrieval algo-
rithm was run with each target, and the retrieval score
was measured between the target and its related sources.
The results of each source type was averaged across all
the targets for each threshold and normalized, and the
order of retrieval was compared to the predicted order
for novice-like (LS > MA > AN > LAN) and expert-
like (LS > AN > LAN > MA) retrieval, resulting in two
confidence curves shown in Figure 3.

The curves are calculated as follows: the novice or ex-
pert retrieval patterns differ in the position of the mere-
appearance source. Each source score which was in the
correct order relative to its associated mere-appearance
source score was given a confidence of 1 (i.e., a correct
prediction). If in the incorrect order, it was given a con-
fidence of 0. If the scores were equal, they were given
a confidence of 0.5 (fifty percent chance of choosing the
correct order). These three confidence values were then
averaged to obtain the probability of making a correct
order prediction given the retrieval scores assigned by
the algorithm.

These curves show the probability of predicting the
correct human retrieval order given the retrieval scores
provided by the algorithm. As can be seen, the novice
order is well predicted by the scores produced at a low
threshold, that is, at a low feature size. The expert order
is well predicted at intermediate feature sizes. We see the
effect anticipated, namely a novice-like retrieval pattern
at low feature sizes, and an expert-like retrieval pattern
at intermediate features sizes.

Experiment 2

Experiment 2 shows that higher-order features do not
contribute significantly to novice-like retrieval, and fur-
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Figure 3: Probability of predicting the correct order-
ing (either Novice or Expert) averaged over the dataset,
against threshold. The behavior of our test program be-
comes more like that of human experts when features of
small drop out allowing features of intermediate size to
dominate matching, at a threshold of about eight, but
then the behavior degrades when intermediate features
drop and only larger features participate, at a threshold
of about 18. On the other hand, the behavior of our
test program is most like that of a human novice when
features of only small size participate in matching. The
abscissa runs until the threshold is larger than the score
of any feature pair.

thermore that intermediate-features are alone respon-
sible for expert-like retrieval. In the previous experi-
ment, all feature pairs which have score above a certain
threshold are allowed to count toward a source’s total
retrieval score. Thus, as the threshold is raised, so too
is the average score, and the average feature size. How-
ever, when the threshold is low, higher scoring matches
also contribute to the retrieval scores. According to
our conception of the intermediate features constraint,
novices are characterized by their inability to access, in-
dex, form, or use these higher-order feature pairs. Thus
this experiment investigates whether higher-order fea-
tures effect the novice-like retrieval pattern. This ex-
periment used the same dataset and procedure as the
previous two experiments, with the exception that the
algorithm was changed slightly to reject matches with a
score higher than the threshold, so that the threshold
could be dropped from above and we could investigate
the retrieval pattern as participating feature matches
were restricted to smaller and smaller features.

As can be seen, the retrieval pattern of the algorithm
is novice-like until features of small size no longer par-
ticipate in matching, allowing intermediate features to
dominate. As the threshold drops from above, the novice
retrieval pattern is maintained until features with small
scores begin to be discarded, at which point the pattern
becomes degraded and extremely noisy. This confirms
that higher-order features do not significantly contribute
to the novice-like retrieval pattern. Furthermore, be-
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Figure 4: Probability of predicting the correct ordering
averaged over the dataset, as the threshold is dropped
from above. Note that the abscissa is reversed so that
the left side of the figure indicates the same condition
as the left side of Figure 3, i.e., no features excluded.
As expected, the behavior of our test program mirrors
human novices until features of small size no longer par-
ticipate in matching, at which point the results fluctuate
widely because relatively few features participate in the
match.

cause intermediate-features and small-features together
do not produce expert-like retrieval (Experiment 2), and
neither large-features (Experiment 1) nor small features
(Experiment 2) alone do not produce expert-like re-
trieval, we conclude that intermediate features alone are
responsible for expert-like retrieval.

Discussion

Our work speaks to a computational-level account of the
retrieval phenomenon and does not commit us to a par-
ticular implementation at the algorithmic level. For ex-
ample, we can readily imagine efficient processes that
select appropriate intermediate-level features and com-
press them into single nodes; this would bring our model
into alignment with fast algorithms based on feature-
vector comparisons (Forbus, Gentner, & Law, 1994).
Such an approach would explain why novices cannot
simple tell themselves to retrieve on intermediate size
chunks; they lack the apparatus for selecting and com-
pressing intermediate features.

Alternatively, in an implementation based on a
constraint-satisfaction network (Thagard et al., 1990),
intermediate-sized representation pieces could be imple-
mented by applying a feature-size filter to the construc-
tion of the nodes in the constraint network. Then, when
the network is run, intermediate features would domi-
nate the retrieval of sources, and the system would ac-
complish expert-like retrieval.

For a hybrid system such as Kokinov’s (Kokinov,
1994), our results might indicate the proper balance be-
tween the amount of structure and amount of semantics
used in the construction of a representation intended



for expert-like retrieval. For a system based on dy-
namic binding of representational structures (Hummel
& Holyoak, 1997), intermediate features might indicate
the level at which representational elements should first
be synchronized.

Contributions

First, at the information-level, we supported the view
that both novice-like and expert-like retrieval are man-
ifestations of a single, parameterized feature-matching
mechanism.

Second, we implemented a representative algorithm
that embodied, in a transparent fashion, the basic
informational-level principles at the root of the hypoth-
esis.

Finally, we conducted experiments with that algo-
rithm that showed that it can achieve both novice-like
retrieval via small features and expert-like retrieval via
intermediate-sized features.
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