
Grid Service Composition in BPEL for
Scientific Applications

Onyeka Ezenwoye1, S. Masoud Sadjadi2, Ariel Cary2, and Michael Robinson2

1 Electrical Engineering and Computer Science Department
South Dakota State University, Brookings, SD 57007

onyeka.ezenwoye@sdstate.edu
2 School of Computing and Information Sciences

Florida International University, 11200 SW 8th Street, Miami, FL 33199
{sadjadi, acary001, mrobi002}@cs.fiu.edu

Abstract. Grid computing aims to create an accessible virtual super-
computer by integrating distributed computers to form a parallel in-
frastructure for processing applications. To enable service-oriented Grid
computing, the Grid computing architecture was aligned with the cur-
rent Web service technologies; thereby, making it possible for Grid appli-
cations to be exposed as Web services. The WSRF set of specifications
standardized the association of state information with Web services (WS-
Resource) while providing interfaces for the management of state data.
The Business Process Execution Language (BPEL) is the leading stan-
dard for integrating Web services and as such has a natural affinity to
the integration of Grid services. In this paper, we share our experience
on using BPEL to integrate, create, and manage WS-Resources that im-
plement the factory pattern. To the best of our knowledge, this work is
among the handful approaches that successfully use BPEL for orchestrat-
ing WSRF-based services and the only one that includes the discovery
and management of instances.

Keywords: BPEL, Grid Computing, WSRF, OGSA-DAI, Service
Composition.

1 Introduction

Grid computing promises to harness the resources available on disparate dis-
tributed computing environments to create a parallel infrastructure that allows
for applications to be processed in a distributed manner. The goal is to create
an accessible virtual supercomputer by integrating distributed computers with
the use of open standards [1]. To this end, the Open Grid Services Architecture
(OGSA), developed by Global Grid Forum (GGF), defines an architecture for
service-oriented Grid computing; GGF no longer exists, but the OGSA archi-
tecture is still current. This architecture utilizes Web services standards such as
XML, SOAP and WSDL [2].

Under the OGSA, computational and storage resources are exposed as an
extensible set of networked services that can be aggregated to create higher-
function applications. These Grid services, adhere to a set of OGSA-defined

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part II, LNCS 4804, pp. 1304–1312, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Grid Service Composition in BPEL for Scientific Applications 1305

conventions for creation, lifetime management, discovery and change manage-
ment [3]. Aligned with these conventions is the Web Services Resource Frame-
work (WSRF). WSRF is a set of specifications that are defined in terms of
existing Web services technologies, for modeling and management of stateful
resources. The specification defines a set of interfaces that Grid services may
implement. These interfaces which address issues like dynamic service creation,
lifetime management, notification, and manageability, allow applications to in-
teract with Grid services in standard and interoperable ways [4].

Key to the realization of the benefits of Grid computing is the ability to
integrate basic services to create higher-level applications. We argue these higher-
level applications will provide the right level of abstraction for the non-computer
scientists. Thus, allowing them to concentrate on their domain specific work
instead of the technical issues of integrating tools. Workflow languages permit
such aggregation of services. With such languages, higher-level application can
be modeled as graphs where the nodes represent tasks while the edges represent
inter-task dependencies, data flow or flow control. Tasks may be performed by
basic services. The Business Process Execution Language (BPEL) [5] has become
the leading language for the aggregation of Web services. In this paper, we
share our experience in using BPEL to compose WSRF-based Grid services to
create a bioinformatics application for protein sequence matching. We show how
BPEL can be used to interact with WSRF-based services that implement the
factory/instance pattern.

The rest of this paper is structured as follows. Section 2 covers WSRF and
some of its component specifications. Section 3 presents the bioinformatics ap-
plication and Section 4 shows how BPEL is used to integrate Grid services to
create the application. Sections 5 provide some conclusion.

2 Web Services Resource Framework

In 2003, the Global Grid Forum, a working group for the standardization of Grid
computing, released the specification for the Open Grid Services Infrastructure
(OGSI). OGSI is a set of conventions and extensions on the use of Web Service
Definition Language (WSDL) and XML Schema to enable the modeling and
management of stateful Web services. The OGSI specification addresses issues
concerning creation and management of the lifetime of instances of services,
declaration and inspection of service state data, notification of service state
change and standardization of service invocation faults.

In 2004, OGSI was refactored into the Web Services Resource Framework
(WSRF). This framework standardizes the concept of Web Services Resource
(WS-Resource) [6], which is, the association of a state component with a Web
service. This association permits, through standardized interfaces, the manipu-
lation of the named typed state component as part of the execution of the Web
service. This creates the impression of statefulness of that Web service.

WSRF addresses some of the criticisms [7] of OGSI such as; the specifica-
tion was too monolithic and did not allow for flexible incremental adoption and

1306 O. Ezenwoye et al.

DescriptionSpecification

Defines the representation ofthe properties ofa statefulresourceW S-ResourceProperties

Defines prim itives form anaging collections ofservicesW S-ServiceG roup

Defines m echanism s foreventsubscription and notificationW S-Notification

Defines m eans forresource creation and destructionW S-ResourceLifeCycle

Defines m eans forrenewalofinvalid referencesW S-RenewableReferences

Defines a setoffaulttypesW S-BaseFaults

Fig. 1. WSRF component specifications

extensions to WSDL 1.1. OGSI was also seen as too object-oriented by coupling
the service and the stateful resource it acts upon as one entity. WSRF maintains
all the functions of OGSI but incorporates some existing Web services technolo-
gies. WSRF partitions its functionality into distinct component specifications (as
shown in Figure 1). With this separation, developers can now choose which of
the specifications to use. WSRF now supercedes the initial OGSI specification,
thereby rendering it obsolete.

An instance of a stateful resource may be created by the use of a WS-Resource
factory. This factory is any Web service capable of instantiating the stateful com-
ponent. To instantiate a stateful resource, the Web service has to create a new
stateful resource, assign an identity to that resource and create the association
between the resource and its Web service. The factory returns an endpoint ref-
erence, which contains the identifier that refers to the new stateful resource.

3 WSRF Services for Bioinformatics

In this sections, we use a Grid application that we developed for computational
biology as the case study to demonstrate the use of BPEL in the orchestra-
tion of WSRF-based Grid services. This application attempts to match pro-
tein sequences [8]. This matching of sequences can be computationally intensive

BPEL OGSA-DAI Core

Data Service Relational

Database

Relational

Database

GYM

Workflow

WSRF

GUSQuery

Service

GYM

Service

Fig. 2. The high-level architecture of the application

Grid Service Composition in BPEL for Scientific Applications 1307

depending on the size of the sequences processed. Figure 2 shows the high-level
architecture of the application. Below, we explain some of the components of
this architecture.

OGSA-DAI. There is a need to seamlessly access disparate sources of biologi-
cal data and integrate them into the Grid for further processing. OGSA-DAI [9]
is middleware that facilitates the access and integration of data from separate
sources in a Grid computing environment. OGSA-DAI makes data sources ac-
cessible via Web services (Data services).

GYM. GYM is a biological application for processing protein data sequences.
Here, GYM is used to detect Helix-Turn-Helix (HTH) Motifs [8] in protein se-
quences. The GYM program is a legacy application written in C. It takes as
input, a sequence of protein data. GYM instances are run on Grid nodes to
process the sequences available from the sources.

GUSQuery Service. This is a WS-Resource. The resource in this case is the
protein sequence data obtained from an OGSA-DAI data service. This service
contains a search method which takes as input a range of sequences and the
location of the data service through which to get those sequences. This service is
accompanied by a factory service called GUSQueryFactory. The factory contains
a create method which creates an instance of the GUSQuery Service.

GYM Service. This is also a WS-Resource. It contains a method which takes
as input a range of protein sequence data. This data is then processed locally
using a GYM application. The result from the GYM application is stored in a
database. This service also has a factory service called GymFactory.

Workflow. This BPEL process weaves together the interaction between the
GUSQuery service and the GYM service. This executable workflow, which is
exposed as a Web service, is also responsible for creating the instances of those
services through their respective factory services. It uses the endpoint references
returned by those factories to identify the specific service instances. It passes the
protein sequence data from the GUSQuery service to the GYM service. The first
step is to use the GUSQueryFactory to create an instance of GUSQueryService,
this operation returns the endpoint reference identifier for the instance. The
GUSQueryService instance is then invoked to retrieve a set of protein sequences.
These sequences are then sent to the GymService for processing , just after
an instance of that service is create. The last step retrieves the result of that
sequence processing.

4 WSRF with BPEL

In this section, we show how the interaction with the WSRF-based services is
achieved in BPEL. The details about the definition of the services themselves,
is outside the scope of this paper. Due to page limitations, some code have been
simplified or detail eliminated. For a more detailed version of the content in this
paper, please refer to our technical report [10].

1308 O. Ezenwoye et al.

4.1 Creating a Web Service Instance

Creating a new Web service resource instance involves making a call to the cre-
ateResource operation of designated factory service. This is achieved by using
BPEL’s service invocation mechanism. The <invoke> construct allows a BPEL
process to invoke a one-way or request-response operation on a portType (inter-
face) offered by a partner service [11]. Using this construct, an invocation to the
createResource operation of the GUSQuery factory service is made.

The invoke activity which makes a synchronous call to the factory service,
contains the portType of the operation as well as the inputVariable and output-

Variable variables. If the invocation is successful, the outputVariable will contain
the endpoint reference of the created instance.

4.2 Invoking the Web Service Instance

Since the identifier of a WS-Resource instance is obtained at runtime, any mes-
sage to this instance must contain the resource identifier in its SOAP header.
The BPEL specification allows for the actual service endpoint of a partner to
be dynamically defined within the process. The specification however, does not
make provisions for how dynamically obtained information such as resource iden-
tifiers can be define for those endpoints. This type of information needs to be
mapped to the headers of the SOAP messages for the target endpoint. Because
the BPEL specification is deficient in this regard, the method mapping desired
information to SOAP headers depends on the specific implementation of the
BPEL execution engine. The method me describe below is suited for the Ac-
tiveBPEL Engine.

To dynamically associate an endpoint reference to a service, the WS-Add-
ressing endpoint reference [12] is used to represent the dynamic data required to
describe a partner service endpoint [11]. To achieve the association of a partner
with its service endpoint, an endpoint reference has to be assigned to the declared
partner link within the process. As shown below, we use the copy operation
of an assignment activity to copy literally an endpoint reference to a variable
(DynamicEndpointRef).

<copy>
<from>

<wsa:EndpointReference xmlns:s="...">
<wsa:Address/>
<wsa:ServiceName PortName="GUSQueryPortType">

s:GUSQueryService
</wsa:ServiceName>
<wsa:ReferenceProperties>

<!--Elements to be mapped to the SOAP Header-->
<wsa:Action/>
<wsa:To/>
<wsa:From/>
<ns2:GUSQueryResourceKey/>

</wsa:ReferenceProperties>
</wsa:EndpointReference>

</from>
<to variable="DynamicEndpointRef"/>

</copy>

Grid Service Composition in BPEL for Scientific Applications 1309

This endpoint reference contains an Address element that will hold the service
endpoint address. The ReferenceProperties of the endpoint reference contains
some WS-Addressing message information header elements and a GUSQuery-

ResourceKey element. The GUSQueryResourceKey element will hold the resource
identifier for the WS-Resource. Values for the endpoint reference will be as-
signed at run time. The message information header elements and the GUSQuery-

ResourceKey will be mapped, by the BPEL engine to the invocation SOAP mes-
sage for the partner Web service, which in this case is GUSQueryService.

The WS-Resource identifier information required for the endpoint reference is
copied from the reply message of their respective factory services. The copy oper-
ation below copies the service endpoint address from the factory response mes-
sage (CreateResourceResponse) to the endpoint variable (DynamicEndpointRef).
The query attribute of the <from> and <to> clauses are XPath [13] queries. XPath
queries are used to select a field within a source or target variable part.

<copy>
<from variable="CreateResourceResponse"

part="response"
query="/ns4:createResourceResponse

/wsa:EndpointReference/wsa:Address"/>
<to variable="DynamicEndpointRef"

query="/wsa:EndpointReference
/wsa:ReferenceProperties/wsa:To"/>

</copy>

A similar mechanism is used to assign the service endpoint address to the
<wsa:Address> property of the endpoint reference variable. The BPEL engine
needs this address to determine the destination of the invocation message for
the service. The <wsa:To> component of the message information header is used
by the service to determine the endpoint of the required service instance. We
use the same address returned by the factory because for this application, the
address of a service and its instance are the same.

The name of the operation to be invoked on the WS-Resource instance needs
to be assigned to the Action part of the SOAP header. To achieve this, an XPath
expression to write the name as a string to the endpoint reference variable. An
XPath expression, which is specified in an expression attribute in the <from>

clause, is used to indicate a value to be stored in a variable. The string that
represents the operation, is in the for of a URI that includes the target names-
pace of the WSDL document for the WS-Resource and the associated portType.
Thus in the listing below, http://GUSQueryService instance is the namespace,
GUSQueryPortType is the portType and searchSequence is the operation.

<copy>
<from expression="string(’

http://GUSQueryService_instance
/GUSQueryPortType/searchSequence’)"/>

<to variable="DynamicEndpointRef"
query="/wsa:EndpointReference
/wsa:ReferenceProperties/wsa:Action" />

</copy>

1310 O. Ezenwoye et al.

The listing below shows how we use the copy operation and XPath queries to
copy the resource instance key (GUSQueryResourceKey) from the factory response
message to the endpoint reference variable.
<copy>

<from variable="CreateResourceResponse" part="response"
query="/ns4:createResourceResponse
/wsa:EndpointReference/wsa:ReferenceProperties
/ns2:GUSQueryResourceKey"/>

<to variable="DynamicEndpointRef"
query="/wsa:EndpointReference/wsa:ReferenceProperties
/ns2:GUSQueryResourceKey"/>

</copy>

The <wsa:From> property of the message information header identifies the
source of the meassage, this property can be set with the WS-Addressing ”anony-
mous” endpoint URI [12].

After assigning values to all the necessary parts of the endpoint reference
variable, an association is now made with this variable and the desired partner
link. As shown below, a copy operation is used to copy the endpoint reference
variable (DynamicEndpointRef) to the predefined partner link. An invocation can
now be made to the Web service (WS-Resource) partner (GUSQuery service).
The information carried in the SOAP message header of the invocation is used
to identify the appropriate instance of this service.
<copy>

<from variable="DynamicEndpointRef"/>
<to partnerLink="gus"/>

</copy>

4.3 Accessing Resource Properties

The WS-ResourceProperties specification includes a set of port types for query-
ing and modifying the state of a WS-Resource. The Gym service (Section 3)
implements the GetResourceProperty port type of this specification. We use this
port type and its operation (also called GetResourceProperty) to access the result
from the Gym application (Section 3). Prior to invoking the GetResourceProp-
erty operation, some initialization needs to be made to the variable of its input
message. This initialization includes the name of the resource property to which
we want to retrieve the value. In our case, this resource property is called result.
The listing below shows how we initialize the GetResourcePropertyRequest in the
BPEL process. The <from> clause includes (as attributes) the target namespace
of the WSDL documents that contain the definitions for the GetResourceProp-
erty port type and the result resource property.
<copy>

<from>
<GetResourceProperty
xmlns="http://docs.oasis-open.org/wsrf/2004/06
/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"
xmlns:ns3="http://GymService_instance">

ns3:result
</GetResourceProperty>

</from>
<to variable="GetResourcePropertyRequest"

part="GetResourcePropertyRequest"/>
</copy>

Grid Service Composition in BPEL for Scientific Applications 1311

Because we are trying to access the resource properties of a WS-Resource in-
stance, assignments need to be made to all parts of the message header necessary
for identifying the instance. The way to do this is described in Section 4.2,
the only difference now is in the URI that specifies the verb of the invocation
message.

5 Conclusion

In this paper, we discussed and explained how BPEL can be used as a language
for integrating WSRF-based Grid services. In a case study, we demonstrated how
some WSRF-based Grid services can be integrated to create a Bioinformatics
application. The integrated WSRF services implement the factory pattern. We
showed how BPEL can be used to create, discover and manage WS-Resource
instances. The centralized nature of data movement in BPEL presents a problem
for high-performance computing, however, this limitation can be remedied by
using techniques that enable the direct transfer of data between partner services.
Also, the BPEL specification does not make provisions for how dynamically
obtained information such as resource identifiers, usernames and passwords can
be specified within SOAP message headers. The method of achieving this is left
open to the implementation of the various BPEL engines. Therefore, there is a
need for standardization in this regards for BPEL process to remain portable
and assume its place as the language for orchestrating Grid services.

Further Information. A number of related papers and technical reports of the
Autonomic Computing Reserach Laboratory can be found at the following URL:
http://www.cs.fiu.edu/∼sadjadi/Publications/.

Acknowledgements. This work was supported in part by IBM, the National
Science Foundation (grants OCI-0636031, REU-0552555, and HRD-0317692).

References

1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable
virtual organizations. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L.
(eds.) Euro-Par 2001. LNCS, vol. 2150, Springer, Heidelberg (2001)

2. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1. W3C. 1.1 edn. (2001)

3. Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: Grid services for distributed
system integration. Computer 35(6), 37–46 (2002)

4. Web Services Resource Framework, http://www.globus.org/wsrf/
5. Ezenwoye, O., Sadjadi, S.M.: Composing aggregate web services in BPEL. In: Pro-

ceedings of The 44th ACM Southeast Conference, Melbourne, Florida (2006)
6. Foster, I., et al.: Modeling stateful resources with Web services (2004)
7. Czajkowski, K., et al.: From OGSI to WS-Resource framework: Refactoring and

evolution (2004)
8. Narasimhan, G., et al.: Mining for motifs in protein sequences. Journal of Compu-

tational Biology 9(5), 707–720 (2002)

http://www.cs.fiu.edu/~sadjadi/Publications/
http://www.globus.org/wsrf/

1312 O. Ezenwoye et al.

9. The OGSA-DAI Project, http://www.ogsadai.org.uk/
10. Ezenwoye, O., Sadjadi, M., Carey, A., Robinson, M.: Orchestrating wsrf-based grid

services. Technical report, School of Computing and Information Sciences, Florida
International University (2007)

11. Andrews, T., et al.: Business process execution language for web services version
1.1 (2003)

12. Web Services Addressing (WS-Addressing),
http://www.w3.org/Submission/ws-addressing/

13. XML Path Language (XPath), http://www.w3.org/TR/xpath

http://www.ogsadai.org.uk/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/xpath

	Introduction
	Web Services Resource Framework
	WSRF Services for Bioinformatics
	WSRF with BPEL
	Creating a Web Service Instance
	Invoking the Web Service Instance
	Accessing Resource Properties

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

