
Real Time Thermal Comfort Prediction
J. Dinal Herath, Zhihua Li

Department of Computer Science, SUNY Binghamton, USA
jherath1@binghamton.edu, zli191@binghamton.edu

1 INTRODUCTION
Wireless sensor network has wide application prospects in smart
home system. Among which Heating, Ventilation and Air Condi-
tioning (HVAC) systems that have the capability to automatically
adjust the thermal comfort level in a given indoor setting has great
real world potential. Current systems combine real time sensing with
actuation to create these systems. In our project, we aim to push this
boundary by investigating the possibility of stacking real time predic-
tion on top of an existing HVAC system, thereby improving overall
performance. To this end, our project is carried out in two phases. In
phase one we create a temperature acquisition system using wireless
sensor network based on TinyOS. Here wireless node module and
sensor module are used and TinyOS operating mechanism to build
a multi-hop network that we use to collect temperature datasets. In
the second phase, we experiment with potential predictive models
spanning both deep learning and machine learning approaches and fi-
nally identify that linear regression, the machine learning model has
the best fit in terms of both predictive accuracy and computational
overheard in this scenario.

2 IMPLEMENTATION
In this section, we present the implementation details pertaining
to building a sensor network for temperature data collection, de-
tails regarding the datasets used and preprocessing steps and our
experimentation with different predictive models.

2.1 Data Collection
Due to the limit transmission distance of single TelosB mote, we
build a prototype of indoor and outdoor sensing network with 3
TelosB nodes: Sender 1 is used to sense environment temperature
and humidity and send the data packages to Sender 2, Sender 2
receives them and relay to Basestation. The Basestation takes all the
packages and send them to computer via serial, then the computer
can display and save the data. Under this sensing network, we can
collect temperature and humidity of different locations and the Base
station can successfully communicate with the Senders from a longer
distance. Which can be wildly used in real sensing situations. Figure
1 shows the data collection structure.

Figure 1: Multi-hop Data Collection Network

All the TemosB motes are based on TinyOS, and the TelosB motes
are integrated with Sensirion SHT11 module used for temperature
and humidity sensing. In TinyOS, the Read interface is used for
data reading. As for the wireless communication, we need interfaces
like SplitControl, Packet, AMsend. SplitControl is responsible for
starting the wireless communication module, Packet is used for data
package processing, AMSend is for data transmission, Timer is
used to trigger interrupts therefore we can read the data in a certain
frequency. In order to avoid data conflicts, we need to determine the
mote address before compiling, and use AMSend to send the data to
a certain address instead of broadcasting all the masseges. Figure 2
shows the control flow of the relay node.

Figure 2: Control Flow of Relay Node

As for the Mote-PC serial communication, BaseStation acts as a
bridge between the serial port and radio network. When it receives
a packet from the serial port, it transmits it on the radio; when it
receives a packets over the radio, it transmits it to the serial port.
Because TinyOS has a toolchain for generating and sending packets
to a mote over a serial port, using a BaseStation allows PC tools to
communicate directly with mote networks. For the upper computer
side, we use Java-based infrastructure for communicating with motes,
read the package into a text file and print them in real time. Figure 3
shows the upper computer system display.

Figure 3: Upper Computer System Screen Shot



2.2 Datasets and Data preprocessing
For the purpose of our experimentation, we collect indoor tempera-
ture samples across two categories, namely based on location and
sampling rate. Initially, we recorded temperature variations within
the computer science department building complex and within an
apartment setting. Since our objective is to investigate a predictive
model that works with little strain on an existing HVAC system,
all datasets shown here are collected while some HVAC system or
heating system is functional. Figure 4 shows the datasets collected
in this fashion, with Figures 4(a) and 4(b) depicting temperature
variations in the computer science department and apartment set-
ting respectively. Each sample shows temperature variations with
a time-step of 250 msec for a total durations of approximately 30
minutes.

0 500 1000 1500

Time (s)

28

29

30

31

T
em

p
er

at
u
re

 (
°
C

)

(a) CS Building

0 500 1000 1500 2000

Time (s)

30

35

40

45

T
em

p
er

at
u
re

 (
°
C

)

(b) Apartment

Figure 4: Datasets based on Location

Additionally, as shown in Figure 5 we collected datasets based on
different sampling rates. Figures 5(a) and 5(b) shows temperature
variations in the computer science building for sampling rates of 100
msec and 1 sec respectively. Overall, the dataset contains temperature
samples for time duration of approximately 30 minutes. We note
that there is limited erratic behavior in temperature variations shown
in these samples, and attribute it to the functionality of the heating
system or HVAC in play.

(a) 100 msec

0 500 1000 1500 2000

Time (s)

31

32

33

34

35

T
em

p
er

at
u
re

 (
°
C

)

(b) 1 sec

Figure 5: Datasets based on Sampling Rate

2.3 Predictive Models
In this section, we present the predictive models we designed for
the purpose of predicting future temperature variations. Identifying
the most suitable predictive model for our purpose proved to be the
biggest challenge in the entire project. Therefore, we approached

the temperature prediction problem utilizing two types of predic-
tive models–i) a machine learning approach and ii) a deep learning
approach respectively.

For our machine learning approach we build a predictive model
based on linear regression. Linear Regression is an online model
that is capable of dynamically predicting temperature variations on
the go, however with the possible limitation of not being able to
infer complex variations in the time series. In contrast, we employ
an offline deep learning model based on Recurrent Neural Networks
(RNNs) which are capable of inferring complex variations, however
these models require extensive computational resource thus might
incur additional stress to an existing HVAC system when deployed.
Since we did not know how temperature would vary in an indoor
setting given some thermal management system, we experimented
with these two contrasting approaches as predictive models.

2.3.1 Machine Learning Approach. For our machine learning
approach, we utilize a model named linear regression which is about
mapping a series of inputs xT to a series of outputs yT with a pre-
defined linear relationship as shown in equation 1 below. Since the
mapping is linear, the relationship between xT and yT can be given
using the coefficients β0 and β1. With reference to this problem, a
sliding window of one time-step is used to obtain a sequence of
inputs of length 50 for xT which is used to obtain predictions for
20 time-steps into the future. With this model we make an implicit
assumption that near future variations in temperature will follow a
linear fashion.

yT = β0 + β1xT (1)

The purpose of the learning algorithm is to determine the best fit
for β0 and β1 that maps xT to yT . Though simplistic in nature, this
model is extremely fast in convergence compared to deep learning
and requires less computational resources as well. The gradient de-
scent algorithm is used to optimize the coefficient mapping between
inputs and outputs, we refer the reader to Raschka et al [2] for more
information regrading the inner workings of the algorithm used.

2.3.2 Deep Learning Approach. For our deep learning approach,
we utilized an architecture named Recurrent Neural Networks (RNNs)
which are a type of deep neural network with a sequence based pro-
cessing specialization, which in our case turns out to be a sequence
of temperature variations. RNNs achieve this by having internal
memory which remembers state through parameter sharing. The
architecture of the RNNs shown in figure 6, which functions as the
building block of our proposed model. Let Xt = [xt−2,xt−1,xt ]
be the input vector and Yt = [yt−2,yt−1,yt ] be the corresponding
output vector to the illustrated model.

As per figure 6 the unfolded structure of the RNN shows the
calculation done at each time step t . The hidden state ht which
serves as memory is calculated using the hidden state maintained
ht−1 and the input xt using the following equation:

ht = σh (Wxhxt +Whhht−1 + bh ) (2)

WhereWxh denotes the weight matrix from the input layer to the
hidden layer,Whh the weight matrix between the hidden states of
two consecutive time steps t and t−1, bh the bias vector of the hidden

2



h

x
t-2 t-1x x

t-2 t-1

t

tyyy ^^ ^

h h
t-1t-2 t

Wxh

Whh

Why

Wxh Wxh

Whh

Why Why

Figure 6: RNN architecture

layer and σh the activation function for the hidden state. Using the
hidden state at instance t the network output can be obtained by:

yt = σy
(
Whyht + by

)
(3)

WhereWhy is the weight matrix from the hidden layer to the out-
put layer, by its corresponding bias vector and σy the activation func-
tion. The parameters of the above equations are trained iteratively
using the back propagation algorithm. While RNNs are versatile in
sequence prediction, they suffer from two major drawbacks–namely
vanishing gradient and the exploding gradient. This hinders its ability
to learn long-term dependencies. To handle this problem, long short-
term memory (LSTM) and gated recurrent unit (GRU) architectures
have been proposed which are RNNs that create paths through time
with derivatives that doesn’t vanish or explode. We refer the reader
to Benjio et al [1] for more in depth information about LSTMs and
GRUs. Given all these possibilities, we test three types of deep learn-
ing models, namely i) a basic RNN model, ii) RNN-LSTM and iii)
RNN-GRU as further shown in sections below.

3 EVALUATION
In this section, we present the evaluation of the predictive models
used. For the purpose of evaluating the predictive performance of
the models described in the section above, we use the root-mean
squared error (RMSE) given in equation 4 below.

RMSEj =

√∑h
i=1

(
ŷi j − yi j

)2
h

(4)

Here, Letyi j be the ith test sample for the jth prediction step, and
ŷi j be the predicted value of yi j and h the number of test samples.
Overall, from our evaluation we note that the linear regression model
is the best fit for our purpose of predicting temperature variations
in real time. Figures 7-8 show the RMSE results for all datasets
considering both the deep learning models and the machine learning
approach. From the results here we note that the machine learning
solution consistently outperforms the deep learning models. We note
that the overall lower complexity in the datasets to be a possible
reason behind this performance variation. A more important factor
to note is that while the performance of all models show a predictive
error < 1 in most cases, linear regression provides predictions at a
speed of 0.2 msec per prediction where as the deep learning models
take approximately 3-4 hours for training. Therefore, for the purpose

of this project we determine linear regression to be a suitable model
with high accuracy and low overhead to be stacked upon an existing
HVAC system.

2 4 6 8 10 12 14 16 18 20

Timesteps

0.5

1

1.5

2

2.5

3

R
M

S
E

 (
°
C

)

DeepRNN-basic

DeepRNN-LSTM

DeepRNN-GRU

Linear Regression

(a) Computer Science Building

2 4 6 8 10 12 14 16 18 20

Timesteps

0.5

1

1.5

2

2.5

3

R
M

S
E

 (
°
C

)

DeepRNN-basic

DeepRNN-LSTM

DeepRNN-GRU

Linear Regression

(b) Apartment

Figure 7: RMSE results based on location

2 4 6 8 10 12 14 16 18 20

Timesteps

0.5

1

1.5

2

2.5

3

R
M

S
E

 (
°
C

)

DeepRNN-basic

DeepRNN-LSTM

DeepRNN-GRU

Linear Regression

(a) 100 msec

2 4 6 8 10 12 14 16 18 20

Timesteps

0.5

1

1.5

2

2.5

3

R
M

S
E

 (
°
C

)

DeepRNN-basic

DeepRNN-LSTM

DeepRNN-GRU

Linear Regression

(b) 1 sec

Figure 8: RMSE results based on sampling rate

4 CONCLUSION
In this project we aimed to identify a predictive model that can be
utilized in tandem with current HVAC systems in order to incorporate
prediction as part of HVAC functionality. To this end, we created
a sensor network system based on TelosB motes and collected our
own datasets across different dimensions. Afterwards, we tested the
applicability of both deep learning and machine learning for this
prediction task and conclude that the lightweight linear regression
model is the best fit for our situation based on predictive error and
potential incurred overhead in computation and thus is presented as
our final contribution. (Figure 9 shows the final predictions vs actual
temperature variations for the machine learning model in green)

0 100 200 300 400

Time (s)

40

42

44

46

48

T
em

p
er

at
u
re

 (
°
C

)

Actual

Predicted-DeepRNN (GRU)

Predicted-LR

Figure 9: Actual vs Predicted

3



REFERENCES
[1] Yoshua Bengio, Ian J Goodfellow, and Aaron Courville. 2015. Deep learning.

Nature 521, 7553 (2015), 436–444.
[2] Sebastian Raschka and Vahid Mirjalili. 2017. Python machine learning. Packt

Publishing Ltd.

4


	1 Introduction
	2 Implementation
	2.1 Data Collection
	2.2 Datasets and Data preprocessing
	2.3 Predictive Models

	3 Evaluation
	4 Conclusion
	References

