
Facial Recognition Safe

Edward Etheridge IV
 Department of Computer Science

 Binghamton University

 Vestal, NY

 eetheri1@binghamton.edu

Baptiste Saliba
 Department of Computer Science

 Binghamton University

 Vestal, NY

 bsaliba1@binghamton.edu

Richard Zheng
 Department of Computer Science

 Binghamton University

 Vestal, NY

 rzheng14@binghamton.edu

ABSTRACT

The Internet of Things, IoT for short, describes the wireless

communication between multiple “things” in order to accomplish

a common goal. For this project, we attempted to create a locking

safe that could be opened via facial recognition. In order to

demonstrate the project, we created a prototype safe out of Legos

with an attached Logitech USB webcam. We used a 12V Solenoid

Lock controlled via a Raspberry Pi 3 A+ to open and close the

safe. Our facial recognition was done on a Heroku Server with

Django and OpenCV. We created an iOS application to send an

image to the web server and open the safe. While we were

unsuccessful in establishing communication between the iOS

application and the Heroku Server, we are able to take an image

using the webcam attached to the Raspberry Pi, verify the identity

of the individual in the photo, and open the lock.

KEYWORDS

Internet of Things, Raspberry Pi, Solenoid Lock, iPhone X, Facial

Recognition

1 Introduction
 The Internet of Things has recently seen a large increase in its

popularity due to its wide range of applications in the real world.

Most consumer products nowadays try to incorporate some sort of

IoT in order to provide more value to the user than ever before;

e.g. Smart Refrigerators, Alexa. This revolution, nicknamed the

Internet of Things, describes the communication between wireless

devices to fulfill a common goal.

2 Implementation
 In this section, we discuss the hardware and software we used for

the project, and how we combined them together to create our

final product.

2.1 Hardware

In this subsection, we specifically discuss the hardware

components of our project and show figures for visual aid.

2.1.1 Raspberry Pi 3 A+. The Raspberry Pi 3 A+ was the

microcontroller we chose in order to handle automating the

opening and closing of the lock. Our only requirement for the

microcontroller was that it could connect to WIFI and allowed

GPIO pins to be controlled, which most Raspberry Pi’s do,

therefore, we did not need to be picky in choosing a

microcontroller. Figure 1 below shows an image of the Raspberry

Pi 3 A+.

Figure 1: Raspberry Pi 3 A+

2.1.2 Solenoid Lock. In order to keep the safe locked, we

decided to attach a solenoid lock on the door. Figure 2 below

shows an image of the solenoid lock we chose for this project.

Figure 2: 12VDC Solenoid Lock

When 9-12 VDC is applied to the lock, the slug is pulled

inwards, essentially allowing the lock to pass by the door. To use

the lock in our project, we needed to rotate the slug 90° to align

with the door of the safe.

2.1.3 Logitech USB Webcam. To gain access to the safe, our

first method of entry is via a standard USB webcam attached to

the safe.

Figure 3: Logitech C270 HD Webcam

Shown above in Figure 3 is the Logitech C270 HD webcam we

used for this project. The webcam can capture images with a

resolution of 1280x720 and videos at 30fps, although for this

project we only cared about images. The webcam directly

connected to the Raspberry Pi 3 A+ via USB.

2.1.4 Lego Safe. Originally, we were going to build a safe out

of a more protective material but for the sake of time, we decided

to make this project more of a proof of concept. Therefore, we

constructed a simulation of a safe using Legos. On the right wall

of the safe there is a slight hole which is where the solenoid lock

slug sits inside when the safe is locked. The safe, shown in Figure

4 below, is 7.5”x5.5”x5”.

Figure 4: Lego Safe

2.1.5 iPhone X. The iPhone X was the first phone to contain

Apple’s TrueDepth Camera. The 7-megapixel front facing camera

is further supported by an infrared camera and several other

sensors. These sensors develop a system that allows the iPhone X

to take videos at 1080p and provide wide color capture. This

system is also used for Apple’s own Face ID –– their own facial

recognition technology. These sensors and cameras, along with

the phone being readily available to us, made it our best choice.

2.2 Software

In this subsection, we describe the software that made this project

possible and successful. The software is split into 3 categories:

Raspberry Pi code, web server code, and Swift code.

2.2.1 RPi.GPIO Library. To control the GPIO pins on the

Raspberry Pi, we utilized the RPi.GPIO library [2]. The library,

written in Python, allows for simple control of every GPIO pin.

For this project, we controlled pin 4 (BCM Numbering) to change

it from outputting 0v to 3.3v. The Raspberry Pi code can be

viewed online for free by visiting [10].

2.2.2 fswebcam. To take images using a standard USB webcam

on the Raspberry Pi, we utilized the fswebcam library [3]. This

library allowed us to capture a 1280x720 image which we would

eventually use to send to our web server for verification.

2.2.3 Django. This is the web python web framework that was

used for the web application. Django allowed for the handling of

HTTP requests and responses, as well as hosting the server on

specified ports. By using Django, we were able to create a web

application with a specific post route to upload images.

2.2.4 OpenCV. In order to identify the images of the user, we

utilized the facial recognition facial recognition library OpenCV.

We first used this library to train a facial recognition model by

using the Recognizer class which OpenCV provided. With this

trained model we can now identify faces from the images that are

uploaded to the server.

2.2.5 Heroku. Heroku is the cloud platform we used to host our

web application. One alternative platform could have been AWS,

but as a personal preference, we decided to use Heroku. Heroku

allows us to upload an image to our web server from anywhere by

providing our web application a designated domain as well as

server space for uploaded files.

2.2.6 Docker. In order to place the web application onto the

Heroku server, it was necessary to use docker to virtualize an

operating system and provide a docker container to the Heroku

server. This docker container will specify the prerequisites that

must be installed so that OpenCV will work. Additionally, it

allows us to specify the database to use, which our case is a

PostgreSQL database.

2.2.7 iPhone App/XCode. Shown below in Figure 5, our Facial

Recognition App runs on an iPhone X. This app opens to a

“snapchat”-esque interface. This app would then allow the user to

take a picture of themselves. This app would then save the picture

into the photo album. XCode provides easy ways to map buttons

to functions. It also allows us to create the app with a preview of

the interface before launching. This was supposed to be the

second method to access the safe.

Figure 5: Safe Recognition App

2.2.8 AVFoundation. AVFoundation is one of Apple’s featured

frameworks for working with audiovisual media for their device

operating systems. In our instance, we use this library to access

the iPhone X’s True Depth camera to capture images for facial

recognition. This framework provides us easy access to the

camera and the photo album that are already built in.

2.2 Circuit Design

Our circuit is based from the circuit shown here [1]. However, we

needed to make modifications due to complications with our

hardware. More specifically, the transistor that we purchased had

a gate threshold voltage of 4V, meaning it required 4V to drive

the transistor. Unfortunately, the GPIO pins on the Raspberry Pi

only output 3.3V so alone, the GPIO pins would not be enough to

drive the circuit. Therefore, we needed to take some of the voltage

from our 12V power supply to assist the Raspberry Pi in driving

the transistor. The full schematic for our circuit is shown below in

figure 6.

Figure 6: Circuit. The (s) in the circuit represents the solenoid

lock.

The circuit is very similar to the reference [1], except for the

addition of branching from the 12V power source. The circuit

operates as follows: 12V from a DC power source feeds the

solenoid lock and the source of the N-Channel Mosfet. This

voltage goes across a diode rectifier to ensure that voltage does

not travel in the opposite direction. The gate of the Mosfet is

connected to GPIO 4 (BCM) of the Raspberry Pi along with an

additional voltage from 12V. To be exact, measuring with a

multimeter, we found that when the GPIO pin was set to input

mode, the voltage from the gate to the drain of the Mosfet was

5.5V. When the GPIO pin was set to high, the voltage across the

gate to drain was 3.3V. This was exactly what was needed as then

we were able to control the transistor being open or closed via

switching the GPIO pin to input or output. The drain of the

Mosfet is connected to a 10k resistor to protect the Raspberry Pi.

To get the correct voltage, we found that splitting some voltage

from the 12VDC power source and running that in series with a

10k and 1k ohm resistor allowed for 3.3V to be supplied to the

gate of transistor. Therefore, when the GPIO pin is set to output,

the transistor is closed preventing the lock from being in a full

circuit. When the GPIO pin is set to input, the transistor closes,

and the lock receives the 12V it needs to open.

2.4 Overall System Design

The system operates as follows: a user runs the python script on

the Raspberry Pi which sets the lock in place. The user then has

the option to either press ‘enter’ to take a photo via the USB

webcam or, use the iOS application to take a photo. In either case,

the photo is then sent to the Heroku web server to be checked

against the authorized faces. If the face is recognized, the web

server sends a valid string to the Pi which then opens the lock for

7 seconds. If the user is not verified, the lock remains shut and

they have 2 more attempts to verify their identity before the safe

remains locked indefinitely. For safety and first-time setup, the

user could just plug the safe in without running the python script,

which would leave the lock open for the time being.

3. Evaluation

This project sought to create a functioning safe which utilized

modern facial recognition algorithms as a means of identifying

users and providing access to the safe’s users. In order to

accomplish achieve its intended purpose it must be able to run

through the entire workflow without running into any errors. First,

the safe must be able to take a picture of the user. Second, the

Raspberry Pi must be able to send the image to the web server.

Third, the web server must be able to run the image through a

facial recognition algorithm and return, in an HTTP response

body, whether the recognized face is a whitelisted user or not.

Finally, the Raspberry Pi must be able to parse the HTTP response

body and, based on the return value, unlock the solenoid lock. As

we displayed with our in-class demo, we can accomplish this

entire workflow, and can say that our project accomplishes its

intended purpose. Despite the delayed response from the server to

the Raspberry Pi, this design achieved our goals.

4. Conclusion

As a team we wanted to explore the various project possibilities

which IoT offers. We thought it’d be interesting to explore: the

various facial recognition libraries that are offered, how IoT can

apply to personal security, and how sensors can interact with a

web server to post images and data. We decided on this project in

order to explore all these IoT functionalities. Despite the various

difficulties that we encountered while creating this project we

were able to create a fully functional safe which uses facial

recognition while simultaneously exploring various fields which

interested us.

ACKNOWLEDGMENTS

We would like to thank Dr. Mo Sha, Assistant Professor of

Computer Science at Binghamton University, and our teaching

assistants, Di Mu and Junyang Shi for their continuous support

throughout the Fall 2019 semester.

REFERENCES
[1] Circuit Design https://www.circuito.io/app?components=9443,200000,842876

[2] RPi.GPIO Library - https://sourceforge.net/p/raspberry-gpio-

python/wiki/BasicUsage/

[3] Webcam - https://www.raspberrypi.org/documentation/usage/webcams/

[4] Docker Tutorial - https://www.youtube.com/watch?v=pGYAg7TMmp0

[5] Django Docker w/ OpenCV - https://www.youtube.com/watch?v=1pZbuvbvYY8

[6] OpenCV Basics - https://www.youtube.com/watch?v=-ZrDjwXZGxI&t=992s

[7] Using OpenCV Recognizer -

https://www.youtube.com/watch?v=PmZ29Vta7Vc&t=1655s

[8] Swift camera: - https://medium.com/@rizwanm/https-medium-com-rizwanm-

swift-camera-part-1-c38b8b773b2

[9] https://medium.com/@VojacekJan/deploying-swift-application-to-heroku-with-

ease-2b81cdd07e6

[10] https://github.com/EetheridgeIV/FaceSafeRP

[11] https://developer.apple.com/av-foundation/

[12] https://github.com/rzheng14/FRSafe

