
Flag Identification

Joseph Raskind
 Computer Science

 Binghamton University
 jraskin3@binghamton.edu

Sheriff Samateh
 Computer Science

 Binghamton University
 ssamate1@binghamton.edu

ABSTRACT

The Internet of Things (IoT) allows for
computationally weak devices to offload difficult-to-
run tasks onto servers far away from the device’s
physical location. This core idea of the IoT
framework is absolutely crucial to the application of
image identification which is why it pairs so well with
the task of flag identification. Since device’s do not
need to be powerful to use IoT applications and are
rather affordable it becomes easy to see how such
devices can be used for educational purposes. One
such purpose presented in this paper takes the form
of flag identification. The aim of the flag
identification application is to help users learn more
about vexillology and the world around them.

CONCEPTS
•Internet of Things •Deep Learning •Cloud
Computing

KEYWORDS
IoT, Flags, Image Recognition, Deep Learning

1 INTRODUCTION

Flags provide an interesting challenge to
those ignorant of them because when a person sees
one that they do not know the origin of it can prove
to be rather difficult to accurately find out exactly
what information is tied to a particular flag in the
moment. For example, an individual (possibly a
child) may look at the French flag and not recognize
that the flag signifies the country of France.
Furthermore, in trying to look up the flag they may
try to search for a flag with red, white, and blue
stripes and, in doing so, quickly find that there are
many flags who fit that description. The purpose of
the flag identification application is to rid people of
that issue through the use of a convolutional neural
network (CNN) algorithm performed on the cloud.

2 DESIGN

2.1 Hardware

2.1.1 Android Nokia One

Figure 1: Android Nokia One

The only piece of hardware necessary for this
project is an android phone capable of running
Android SDK 6.0 or higher.

2.2 Software

2.2.1 Amazon Web Server

Figure 2: Amazon Web Service EC2 instance
visualization

The Keras library is used to implement a CNN that
can predict flags of various origins. At first, due to
limited number of images available to us, we
couldn’t get an accuracy above fifty percent;
however, after some research, we decided to use a
ResNet50 pre-trained model. Additionally, we added
a single dense layer to the network with a
normalized exponential function which, in turn,
increased our accuracy drastically. We them
deployed this pre-trained model on an Amazon Web
Service ec2 instance. We then used a python flask
web server on the instance to handle user requests.
In order to open the ec2 instance to the outside
network we used nginx, while having all requests are
proxied to the flask server. The flask server
processes the image, forwards it to the pre-trained
model, and sends back a response to the requester
in a JSON format.

2.2.2 Android Application

Figure 3: Flag Identification application home screen

The flag identification application was written in
kotlin using the Android Studio IDE because of its
user-friendly design and how simple it is to test
changes to applications.

2.3 Overall design

Figure 4: Design flow schema for flag identification

The design of the overall system is rather simple.
The application and the server run independently of
each other. The only interaction they have is when a
user takes a picture and sends that picture in a post
request to the server.

3. IMPLEMENTATION

Upon starting up the application the user will be
asked for three separate permissions: camera
permissions, write to external memory permissions,
and read from external memory permissions. It is
essential to the application that these permissions
are given as the application must be able to take a
picture, save that picture, and send that picture to
the server. Once permissions are given, the user is
free to take a picture of whatever they want. Once
that image is taken, the user is then asked to
confirm the picture they have taken is what they
want to sent to the server for flag identification. The
image is then sent to the server in a multipart/form-
data request which is grabbed by the server and
runs the CNN algortithm on the picture with the pre-
trained flag model. The algorithm will then provide a
confidence rating of all of the flag labels present in
the model. If the highest confidence rating is below
fifty percent an error message will be returned back
to the application indicating that the image provided
could not be used to identify the country; otherwise,
trivia of the identified country will be sent.

4. EVALUATION

Once the model was properly trained with
upwards of seventy images per flag we were able to
maintain a confidence rating of over ninety percent
meaning that when taking a clear picture of a
recognized flag the algorithm managed to produce
the correct output almost every time it was called.

5. CONCLUSION

The flag identification managed to perform to
expectations by providing the correct label
information almost every time the algorithm was
run. Of course, it is difficult to tell if the application
would prove effective in a case of wide adoption
since the flags tested on were, of course, the flags
used for training the model, therefore further testing
and study would be required to dig deeper into that
issue. It is undeniable that such an application could
prove to be a rather engaging learning tool for those
who are curious about flags and the different and
interesting patterns that make them up.

REFERENCES
[1] https://aws.amazon.com/

[2] https://developer.android.com/

https://developer.android.com/
https://aws.amazon.com/

