
Drowsiness Detection for Safe Driving
Madhumita Ghosal

mghosal1@binghamton.edu
Department of Computer Science

Binghamton University

Atsuko Shimizu
ashimiz1@binghamton.edu

Department of Computer Science
Binghamton University

Gregory Wint
gwint1@binghamton.edu

Department of Computer Science
Binghamton University

ABSTRACT
Driving while sleep-deprived is dangerous. Drowsy drivers have
significantly lower reaction times and worsened abilities to sustain
attention, which increases the chance of getting into vehicle acci-
dents. One of the challenges of preventing drowsy driving is that
the drivers themselves may not be aware of the fatigue because the
signs of fatigue can be difficult to identify. To solve this problem,
we developed an Android application that detects whether a dri-
ver is drowsy. Our application uses facial recognition methods to
analyze video of the driver at the wheel, and can alert the driver if
drowsiness is detected. To encourage habitual safe driving, we in-
corporated a streak feature, which, over frequent uses, keeps track
of how long the driver has driven without detected drowsiness.
The goal of our project is to remove the burden on the driver of
identifying their fatigue, allowing safer driving.

KEYWORDS
facial recognition, driving, drowsiness detection

1 INTRODUCTION
According to the National Security Council, there are approximately
100,000-300,000 accidents per year due to drowsy driving [14]. Fa-
tigued drivers have significantly slower reactions times and are
three times more likely to get into a vehicle accident [14]. Not only
does this place the driver in a dangerous situation, but drowsy
driving can also increase the risk of accidents of other drivers and
passengers. Preventing drowsy driving is difficult because the dri-
vers themselves may not know that they are fatigued. Drivers may
also be unaware of experiencing micro-sleep, which are brief, invol-
untary periods of inattention. Only 4 to 5 seconds of micro-sleep at
highway speeds can lead to detrimental vehicle accidents [14].

To solve this problem, we developed an Android application
that can detect whether the driver is drowsy at the wheel. The
app continuously captures video of the driver and analyzes the
video to detect whether the driver is drowsy. Having an app to
detect drowsiness removes the burden on the driver to identify
their fatigue themselves, which can be difficult to do while the
driver operates a vehicle. In addition to detecting drowsiness, our
app also encourages habitual safe driving by keeping track of the
driver’s streak of driving without drowsiness. Our application is a
starting point to provide a simple, easy to use, and accessible tool
for safer driving.

This project report is organized as follows. In Section 2, we
discuss the overall design of our Android application and the details
of our implementation. In Section 3, we evaluate the accuracy and

Figure 1: Control-flow diagram of our drowsiness detector

performance of our drowsiness detector. Then finally in Section 4,
we conclude.

2 DESIGN AND IMPLEMENTATION
In this section, we first describe the overall design of our drowsiness
detection app. Then we describe the tools that we used and the
details of our implementation. Our GitHub repository of this project
can be found here: https://git.io/JeMKb.

2.1 Control-Flow Diagram
Figure 1 shows the control-flow diagram of our drowsiness detector.
First, the user open the drowsiness detection app and log into
their account (1). To implement the app, we used Android [10]; we
discuss the implementation details of using Android in Section 2.3.
To perform account registration and login, we used Firebase [11],
which we describe in Section 2.2. The user then starts the camera (2),
which starts a background task in the Android app. This background
task periodically sends the recorded video to the Amazon Web
Services (AWS) [1] server (2). Recorded video is continuously sent as
long as the user keeps the camera screen in the Android application
open on their phone. AWS runs the detection algorithm (3) on the
video that the server receives, and returns the result of the video
(whether the driver is drowsy or not) back to the Android app (4).
We describe the detection algorithm in Section 2.4. If the driver is
drowsy, the app notifies the user (5). The streak value of the user
is reset if drowsiness is detected. Else, if the driver drove safely in
that session, the streak value is incremented. The streak value is
updated when the user logs out and logs back into the application.

2.2 Firebase Database
To store user credentials and user data, we used Firebase database
[11]. The Firebase database is a cloud-hosted NoSQL database that

https://git.io/JeMKb


Figure 2: Authentication tab in Firebase

stores and syncs data between users in real time. The Android ap-
plication has a login and registration page where any new user
would have to register first before using the application by provid-
ing a username and password. Once the user clicks the REGISTER
button, a record is created in the Firebase database. After the regis-
tration, the user would have to login by providing the username
and password that was registered.

Another feature that was added to the application was the streak
functionality. For each time the driver drove non-drowsy, the streak
counter is incremented by 1. If at any point of time the driver drove
drowsy, the streak is reset to 0.

2.2.1 Implementation. Once the user provides their email ID and
password and clicks on register, we call the createUserWithEmail
AndPassword method, which creates an entry in the Firebase data-
base under the tab Authentication, as shown in Figure 2.Whenwe
would have to login, the email id and password gets authenticated
in the Firebase database using the signInWithEmailAndPassword
method, which is defined under the Firebase library. We integrate
the Firebase database account to our code using the generated
google-services.json file that was created while creating the
database instance in the Firebase console. We needed to copy the
google-services.json file in our project under the app/ direc-
tory in our Android code.

In the Firebase database, we created a Realtime Database in-
stance called the drowsinessdetection-764f1 with a document
called the streak, shown in Figure 3. Each entry created in the
document corresponds to each user; username and streak value is
stored under every entry. If the driver drives drowsy, the streak is
updated in the database to 0. Else, if the driver drives non-drowsy,
the streak value is incremented by 1 and updated in the database.

2.3 Android Application
To prototype our application, we used a Motorola moto G6 phone
[13] running Android version 8.0 [10]. The moto G6 phone has a
2160x1080 display, with an 8MP front-facing camera. To develop
the Android application, we used Android Studio [8].

2.3.1 Activities. The Android app is organized into three Activity
classes [2], which are focused tasks that the user can perform on the
app. Each Activity typically has its own screen. The MainActivity

Figure 3: Database tab in Firebase

Figure 4: The login and home screen of the detection app

class is the screen that the user sees when the app is first open.
MainActivity is responsible for interacting with Firebase [11] for
user registration and login, which we describe further in Section 2.2.
Once the user logs in, MainActivity opens HomeActivity, which
displays the current streak of the user and a button to start the
drowsiness detection camera. The login and home screen is shown
in Figure 4. To incorporate the camera functionality, we followed
the Android Camera API [3] into the Activities. HomeActivity is
responsible for obtaining the camera permissions from the user
before preceding to the detector camera. The CameraActivity ob-
tains a Camera object [4] and displays the camera preview to the
user. When the user taps RECORD, CameraActivity creates a back-
ground task that records video and periodically sends the video file
to the AWS server.

2.3.2 Classes. There are two main Java classes: CameraPreview
and VideoSender. CameraPreview allows the user to see what the
video is currently recording. There is a CameraPreview frame on
the CameraActivity screen. When the user starts recording, the

2



CameraActivity class creates a VideoSender, which is a back-
ground task that inherits from AsyncTask [5]. VideoSender pre-
pares a MediaRecorder [6] and an HttpURLConnection [7] for ev-
ery video that it sends. The MediaRecorder configures the camera,
video format, and output file path (the app uses temporary cache
storage, as opposed to permanent storage). The HttpURLConnection
is used to send the video to the AWS server and retreive the detec-
tion algorithm output (drowsy or not drowsy). When drowsiness is
detected, the user interface (UI) must be manipulated to alert the
user. Since the background task cannot manipulate the UI, the back-
ground task must contact the UI thread to create a Toast message
and play an alert sound when drowsiness is detected.

2.4 Drowsiness Detection Algorithm
The Android app continuously sends segments of recorded video
to the AWS server [1], which performs the following drowsiness
detection algorithm. Given a video, a determination is made as
to the drowsiness of the driver by first breaking the video into a
series of image frames. Since consecutive frames are unlikely to
capture any differences in driver position, only every fifth frame
is analyzed. The openCV library [9] was used to handle extracting
frames from the video provided to the backend. A pre-trained facial
feature detector provided by the dlib image processing library [12]
was used to identify the eye regions of the face contained within
each frame. The eye aspect ratio, which measures the ratio of eye
height to eye width, was used to determine if the person’s eyes are
open or closed. Any value below a specified threshold signalled
that the person’s eyes were closed, while any value above that
mark signalled that the person’s eyes were open. The number of
consecutive frames in which a person’s eyes are closed is tracked
and used to determine whether or not a person is drowsy. After a
specified number of consecutive frames is reached, it is determined
that the person depicted in the frames is drowsy. When the person
depicted has their eyes open, the counter tracking the number of
consecutive frames is reset. The results of the drowsiness detection
is sent back to the Android application to notify the user.

3 EVALUATION
A walk through of our app can be seen in our demo video: https://
youtu.be/OUERfBvFglA. The detection algorithm determines drowsi-
ness when consecutive frames in the video contain a face with their
eyes closed. In our demo video, our application is able to do this, but
with a considerable delay. This is because the drowsiness detector
needs to analyze the video frames sequentially before processing
the next video. We reduce this delay by skipping frames, as de-
scribed in Section 2.4, however, this is still too slow for instant
drowsiness detection. As a future improvement, we can reduce the
video processing time by merging frames (by taking the average of
consecutive frames), or using a Graphics Processing Unit to process
each video frame in parallel.

4 CONCLUSION
In this project, we developed an Android application that detects
the drowsiness of a driver while they operate a vehicle. The app con-
tinuously records video of the driver and sends the video segments
to an AWS server, which performs facial recognition techniques to
detect whether the driver is drowsy. When drowsiness is detected,
the app alerts the user with a notification message and sound, then
suggests the driver to pull over for their safety.

Operating a vehicle while fatigued is dangerous, however signs
of sleepiness can be difficult to identify. Our application approaches
this challenge by providing a non-intrusive way to detect drowsi-
ness. Although the speed of the video processing is too slow to be
used in real-time, our app is a starting point to providing a simple
and accessible tool to assist in safer driving.

REFERENCES
[1] Amazon. 2006. Amazon Web Services (AWS) - Cloud Computing Services. https:

//aws.amazon.com/.
[2] Android. 2007. Activity. https://developer.android.com/reference/android/app/

Activity.
[3] Android. 2007. Activity. https://developer.android.com/guide/topics/media/

camera.
[4] Android. 2007. Activity. https://developer.android.com/reference/android/

hardware/Camera.
[5] Android. 2007. Activity. https://developer.android.com/reference/android/os/

AsyncTask.
[6] Android. 2007. Activity. https://developer.android.com/reference/android/media/

MediaRecorder.
[7] Android. 2007. Activity. https://developer.android.com/reference/java/net/

HttpURLConnection.
[8] Android. 2013. Download Android Studio. https://developer.android.com/studio.
[9] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools

(2000).
[10] Google. 2007. Build Anything with Android. https://developer.android.com/.
[11] Google. 2011. Firebase. https://firebase.google.com/.
[12] Davis E. King. 2009. Dlib-ml: A Machine Learning Toolkit. Journal of Machine

Learning Research 10 (2009), 1755–1758.
[13] Motorola. 2018. moto g6. https://www.motorola.com/us/products/moto-g-gen-6?

ds_rl=1242196&ds_rl=1242193&ds_rl=1260444&ds_rl=1260444&gclid=
EAIaIQobChMIydvTrO-P5gIVTV8NCh3JugTiEAAYASAAEgI7dvD_BwE&
gclsrc=aw.ds.

[14] National Safety Council. 2019. Drivers are Falling Asleep Behind the Wheel.
https://www.nsc.org/road-safety/safety-topics/fatigued-driving.

3

https://youtu.be/OUERfBvFglA
https://youtu.be/OUERfBvFglA
https://aws.amazon.com/
https://aws.amazon.com/
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/guide/topics/media/camera
https://developer.android.com/guide/topics/media/camera
https://developer.android.com/reference/android/hardware/Camera
https://developer.android.com/reference/android/hardware/Camera
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/media/MediaRecorder
https://developer.android.com/reference/android/media/MediaRecorder
https://developer.android.com/reference/java/net/HttpURLConnection
https://developer.android.com/reference/java/net/HttpURLConnection
https://developer.android.com/studio
https://developer.android.com/
https://firebase.google.com/
https://www.motorola.com/us/products/moto-g-gen-6?ds_rl=1242196&ds_rl=1242193&ds_rl=1260444&ds_rl=1260444&gclid=EAIaIQobChMIydvTrO-P5gIVTV8NCh3JugTiEAAYASAAEgI7dvD_BwE&gclsrc=aw.ds
https://www.motorola.com/us/products/moto-g-gen-6?ds_rl=1242196&ds_rl=1242193&ds_rl=1260444&ds_rl=1260444&gclid=EAIaIQobChMIydvTrO-P5gIVTV8NCh3JugTiEAAYASAAEgI7dvD_BwE&gclsrc=aw.ds
https://www.motorola.com/us/products/moto-g-gen-6?ds_rl=1242196&ds_rl=1242193&ds_rl=1260444&ds_rl=1260444&gclid=EAIaIQobChMIydvTrO-P5gIVTV8NCh3JugTiEAAYASAAEgI7dvD_BwE&gclsrc=aw.ds
https://www.motorola.com/us/products/moto-g-gen-6?ds_rl=1242196&ds_rl=1242193&ds_rl=1260444&ds_rl=1260444&gclid=EAIaIQobChMIydvTrO-P5gIVTV8NCh3JugTiEAAYASAAEgI7dvD_BwE&gclsrc=aw.ds
https://www.nsc.org/road-safety/safety-topics/fatigued-driving

	Abstract
	1 Introduction
	2 Design and Implementation
	2.1 Control-Flow Diagram
	2.2 Firebase Database
	2.3 Android Application
	2.4 Drowsiness Detection Algorithm

	3 Evaluation
	4 Conclusion
	References

