
ArdAlarm

Tyler Wellington

Computer Science

SUNY Binghamton

Binghamton, NY

twellin1@binghamton.edu

Abstract

The ArdAlarm is a smart home security system that is

controlled by an Android device. The feeling of

safety and security is one of great value, and this

product seeks to provide that with the use of an

Arduino and an Android device. The ArdAlarm

system itself is composed of an Arduino and several

modules to detect motion, retrieve data over

Bluetooth, and alert the user. The application to

control the system was developed in Android Studio,

and allows the user to activate, deactivate, turn off

the alarm after it has been triggered, and set the

desired password to turn the alarm off. This

implementation provides a straightforward, and

effective system for all potential users.

Keywords

ArdAlarm, Arduino, Motion Detection, Android

Application, Android Studio, Bluetooth

1 Introduction

Over the past decade, there has been a surge in the

development and use of IoT technology on a

domestic level. It is becoming increasingly common

for people to have a number of “smart devices”

throughout their homes, such as smart speakers or

TV’s, that are integrated with the user’s phone for

added convenience and functionality. The ArdAlarm

is a smart security system designed to be added to the

growing list of household smart devices. Using an

Arduino equipped with several modules, and any

Android device, this product provides a security

system that can be controlled entirely through an

Android application via Bluetooth.

2 Design and Implementation

This section will go into detail about the hardware

elements of this project, including a breakdown of all

necessary Arduino modules and their purposes, as

well as the software elements, including a brief

discussion of the code that was written and the

libraries used.

2.1 Hardware

2.1.1 Arduino Mega 2560. The primary component of

the alarm system itself is an Arduino Mega 2560

(shown in Figure 1 above). This is a microcontroller

board equipped with several input and output pins

that allow for expansion of functionality through

various modules. This board stores and runs all of the

necessary code in order to function as the alarm.

Once the code is written and deployed to the

Arduino, any time the Arduino is powered on, it will

automatically run the deployed code. Thus, there is

no further setup on the user’s end. Since the Arduino

is preprogrammed, all it needs is power, and it will

function as an alarm system. However, while the

Arduino stores and runs the alarm program, it cannot

serve as an alarm system on its own. It requires the

following modules to work as intended (shown in

Figure 2 below):

Figure 2: Arduino Modules

Figure 1: Arduino Mega 2560

(1) Piezo Buzzer (2) Bluetooth Module

(3) Ultrasonic Sensor (4) I2C Display

1. Piezo Buzzer

2. HC-05 Bluetooth Module

3. HC-SR04 Ultrasonic Sensor

4. I2C LCD Display

The HC-05 Bluetooth module is one of the most

crucial modules for this system. It allows for

communication between the Arduino and an external

device via a Bluetooth connection. This module is

responsible for the establishing the connection

between the Arduino and the Android application in

order for it to receive information from the user.

The ultrasonic sensor is what acts as the trigger for

the alarm. It uses sonar in order to detect distance by

sending out an inaudible ultrasonic sound and

converting the time it takes for that sound to bounce

back into a unit of distance. Thus, by being able to

calculate distance, and can detect a change in

distance. This change in distance is treated as motion

and will trigger the alarm.

The I2C module is an 16x2 LCD display that allows

the Arduino to display custom messages. This

module is used to provide information to the user in

the form of various messages displayed based the

status of the alarm. For example, when the system

has been activated, the Arduino will display a

message saying “Alarm Activated” to inform the

user.

Lastly, the Piezo buzzer module serves as the actual

alarm for the system. When the ultrasonic sensor

detects motion the Arduino will trigger the buzzer to

emit a loud sound so that anybody who passes

through the sensor knows that the alarm has been set

off.

2.1.2 Motorola Moto G6. This Android device used

for development testing of the ArdAlarm was a

Motorola Moto G6. This was used to test and run the

application that works in conjunction with the

Arduino itself. While this was the device used for

development, any Bluetooth capable Android device

with the ArdAlarm app will work with the alarm

system.

2.2 Software

2.2.1 Arduino Sketch. The program deployed onto the

Arduino was written and tested entirely in the

Arduino IDE. It uses the following libraries that

correspond to the various modules:

1. SoftwareSerial.h [2]

2. NewPing.h [3]

3. LiquidCrystal_I2C.h [4]

4. Wire.h [5]

These libraries allow the Arduino to take full

advantage of the HC-05, ultrasonic sensor, and I2C

display modules, respectively. They are necessary in

order to implement the features of the system.

As for how the Arduino code functions, it first

initializes all global variables and sets all modules to

their default statuses, as they pertain to the

ArdAlarm. The Arduino then begins to run its loop()

function. This function is constantly looped through

as long as the Arduino is powered on and contains all

of the methods calls and other code needed the

operate the security system. It works by continuously

scrubbing the Bluetooth serial monitor for incoming

data, interpreting said data, and responding

appropriately through the program. Depending on the

data that was sent, the Arduino can enter one of three

states: armed, disarmed, or triggered.

In the disarmed state the Arduino simply displays a

message the alarm is not activated and waits for a

signal to change that. This is also the default state of

the system. Once in the armed stated the ultrasonic

sensor first calibrates itself by finding the current

distance to the nearest object it is facing (within its

maximum range of 400cm). It then continues to

monitor the distance and upon seeing a significant

change, will trigger the alarm. When in the triggered

state, the Arduino sounds the buzzer, displays a

message to the user, and starts a 30 second timer (the

time frame for the user to send the password). If the

user sends the correct password within the given time

frame, it will put the system back into a disarmed

state. Otherwise, it will alert the user through the app

that they have failed to disable the alarm, and it will

return the armed state.

2.2.2 Android Studio Application. The partnering

ArdAlarm Android app was written and tested in the

Android Studio IDE. The app takes advantage of

various tools such as Buttons to trigger certain

functions, EditText objects to allow the user to input

text for sending or setting a password, Bluetooth

sockets, and others [1]. Upon opening the app, the

device will automatically pair with the HC-05

module (assuming the device has been previously

paired to the HC-05 in through the devices Bluetooth

settings). It will then display the application menu as

shown in Figure 3 below:

The Arm and Disarm buttons simply send a message

to the Arduino signaling it to respectively activate or

deactivate the alarm. The Send Code takes whatever

text is in the input field next to it, puts it in a

Bluetooth message, and sends it to the Arduino as an

attempt to disable the alarm after it has been

triggered. Lastly, the Set Code button takes the text in

the input field next to it and sends it to the Arduino in

order to change the current password on the Arduino

to this new one. For both the Send Code and Set Code

buttons, if their corresponding input field is empty,

the app sends no message and displays a pop-up

informing the user to input something. The interface

was made to be simplistic, in order to provide the

user with an easy experience while also providing

them with the information and feedback that they

need to work the app.

3 Evaluation

In its current state, this product is a simple to use

security system using motion detection and Bluetooth

as its backbone. It has the necessary functionality to

serve as a working alarm system and demonstrates

the potential of Bluetooth security devices. Over

time, this system could improve to provide more

features to the user such as managing multiple alarm

systems or changing certain default settings on the

Arduino such as the buzzer frequency or display

messages. Features like these and others could

provide the user with a more positive experience.

4 Conclusion

Developing this system gave me with a broader view

of the IoT world. There are thousands of applications

for it, and security is only one of them. The

ArdAlarm is meant to act as an entry into the world

of smart home security using IoT. The

straightforward user experience of the app, along

with the plug and play nature of the Arduino allows

the user an easy way to get a glimpse into smart

security by providing a user friendly, fully

functioning system. This is exactly what I set out to

accomplish with this project, and thus I am satisfied

with the final product.

References
[1] https://developer.android.com/docs

[2] https://www.arduino.cc/en/Reference/softwareSerial

[3] https://playground.arduino.cc/Code/NewPing/

[4] https://www.arduino.cc/en/Reference/LiquidCrystal

[5] https://www.arduino.cc/en/reference/wire

Figure 3: ArdAlarm Application

