
Remote Desktop Voice-Control via Smartphone

IoT Voice Assistant

Miguel Gomez
 Department of Computer Science

 Binghamton University

 Binghamton, NY, USA

 mgomez4@binghamton.edu

Thomas Horowitz
 Department of Computer Science

 Binghamton University

 Binghamton, NY, USA

 thorowi1@binghamton.edu

ABSTRACT

Modern voice assistants are largely tied to their associated brand’s

ecosystem (Apple’s Siri, Microsoft’s Cortana, Amazon’s Alexa,

etc.). Cable-free communication and file transfer between devices

is not intuitive nor accessible enough for the general public to set

up and use in their day to day lives. This project, IoT Voice

Assistant, aims to make communication between smart phones

and home computers simple, fast, and adaptable. By having the

computer running a server that listens for new requests via the

internet, users can open up the application on their android device

and issue voice commands to be executed on the server, as long as

both devices are connected to the internet.

KEYWORDS

Internet of Things, Remote Desktop, Android, Voice Assistant,

Voice Recognition, TCP, Network

1 Introduction

IoT Voice Assistant is a project that consists of a mobile

application and a desktop server. The desktop server can be easily

run and kept as a background process either throughout the day

for home use or whenever one is about to step out of the house for

remote use. Whenever one wishes to interact with their home

desktop remotely, the app simply needs to be open, the network

information needs to be entered, and a command must then be

issued. The commands range from file retrieval to saving

reminders for later (and even viewing them within the app after

retrieving them).

2 Design

IoT Voice Assistant is the culmination of our work in exploring

the Internet of Things subject and putting together many modular

components to create a product that is both useful and modern.

The portion of the project that most users will interact with is the

Android application. The application was written in Java using

Android studio and features a sleek UI that is minimalistic and

relatively intuitive.

The ideal control flow for usage is as follows:

1. User initializes Desktop application on Port Number N. The

default port number is 12000.

2. User opens the Android application.

3. User adds a ‘new device’ via the floating action button on the

bottom right, and enters the IP and Port Number N.

4. User clicks on the newly added connection.

5. User clicks on the ‘Wi-Fi’ symbol to establish a connection

and prompt for voice input.

6. User says aloud a command with the correct parameters and

the application forwards the data to the server.

7. Server processes the data as a request and sends an

appropriate message after attempting to execute the request.

Balancing the UI constraints and the functionality proved to be

difficult yet possible by having the main desktop application

being the source of computational power. The server is made to be

a “set it and forget it” program that is always accessible and

reliable, provided an internet connection is established. The server

application is written in C++ and relies on scripts written in

Python and Julia for command execution.

2.1 Hardware

The hardware used and required consists of only two components:

and Android phone and a Windows 10 Desktop. The application

was made using a Coolpad Legacy running Android version 9.0

Pie and having 3.0 GB RAM. The computer used changed various

times throughout development, but Windows 10 is a must. Within

the project directory, both the source code as well as a pre-

compiled executable is present.

2.2 Development Tools Used

The majority of the Android application was written using

Jetbrains’ Android Studio. The language we opted for was Java,

rather than Kotlin, simply due to our familiarity with Java.

Despite starting off as Java novices, we both had a basic grasp on

Java code syntax, structure, and practices.

The Desktop application was written using a random assortment

of Visual Studio Code, Atom, and Notepad++. The Desktop

application itself is compiled using the program “Make” which

uses g++ to compile it with C++ version 17.

2.3 Network and Voice Libraries

IoT Voice Assistant Gomez and Horowitz

The network connections were chosen to use Transmission

Control Protocol (TCP) to establish brief but secure two-way

connection between the mobile Android application and the

server. TCP allows for sequential request and response messages,

as well as ordered delivery of bytes.

The windows API used for the network was Winsock, and the

Java package used was Java Socket. The necessary headers are

included within the package for Winsock.

The main library used for accessing the Android smartphone

microphone and processing the vocal data into a string was the

Google Voice Recognition Library.

3 Implementation

As stated earlier, the Android program was written in Java with

the assistance of Android Studio. Android Studio allows for the

correct folders and files to be created and ordered so that it can

build the final package. Sample images of the source code and

development in Android studio are shown in figures 1 and 2.

Figures 3-6 shows the built application running in the Android

Studio emulator.

Figure 1 (Above): Android Studio Layout and Application

Source Code.

Figure 2 (Above): Android Studio XML Designer for Layout

Files.

Figure 3 (Left): Android

Application Loading Splash

Screen shown on startup.

Figure 4 (Below): Android

Application Main Item List

Screen.

Figure 5 (Above): Item Options Menu. Left Button (RED)

edits the item fields. Right button (BLACK) establishes a

connection and prompts user for a command.

IoT Voice Assistant Gomez and Horowitz

In Figure 4, the ‘+’ button on the bottom right allows the user to

add a new connection. The ‘Note’ Symbol at the top right allows

the user to view the memo’s saved locally (see commands

section). The ‘Save’ Button allows the user to save the local data

of the application so it does not lose the memo data or item list on

exit. The red ‘garbage can’ located on the item is the delete button

to remove that specific item from the list.

In regard to the Desktop application, the C++ program acts as a

server for the mobile app to connect to. Once started, the server

runs indefinitely, listening for new connections (figure 6). Once a

connection request is encountered, it binds it to a socket and waits

for a command to be sent. The vocal data in string form is

received from the Android app via a socket. It then parses the

command by using white space as a delimiter and cross

referencing each token with the list of eligible commands. If no

matching command is found, an error message is sent back to the

Android phone over the network to let the user know that an

invalid command was given. It should be noted that each

command has its own connection request sent before, and the

connection is terminated once the command result is received.

This allows for more network stability due to fewer temporal

points of failure.

Figure 6: Desktop Application Source Code. Main loop that

listens for connections.

4 Commands

Listed below are the baseline supported commands

4.1.1 File Transfer. Command = “file <filename>”. Looks for a

file in the windows app directory named <filename> and sends it

to the phone. If <filename> is equal to “memo”, then the memo

file is sent to the app (see 4.1.4 and 4.1.5). If no file is found, then

sends back an error message. The user is prompted to enter a file

name and extension in the format <filename>.<extension> on file

reception.

4.1.2 Ping. Command = “ping”. Runs the “ping.py” Python script.

Requires Python to be installed and in the PATH. Pings

google.com 10 times and sends the results to the Android phone,

where it is stored as a text file in the storage.

4.1.3 Clipboard transfer. Command = “clipboard”. Runs the

“clipboard.jl” Julia script. Requires Julia to be installed and in the

PATH. Sends the contents of the desktop’s clipboard to the

Android phone, where it is stored as a text file in the storage.

4.1.4 Open Application. Command = Opens any application

provided in the windows system PATH and returns a

success/failure message.

4.1.5 New Memo. Command = “new memo <voice memo>”.

Creates/Overwrites memo file located in the “windowsApp”

directory. The message given by <voice memo> is then written to

the first line of the folder. The user can retrieve this file and have

it displayed in the notes section via the command “file memo”.

4.1.6 Add to Memo. Command = “memo <voice memo>”.

Appends the contents of <voice memo> to a new line in the memo

file located in the “windowsApp” directory. Creates a new memo

file if one does not exist. The user can retrieve this file and have it

displayed in the notes section via the command “file memo”.

4.1.7 Run Script. Command = “run <script name>”. Runs a script

located in the “windowsApp/commands” directory. Script name

should not include file extension. Returns a success/failure

message.

5 Limitations and Requirements

The hardware requirements are currently firm and unchangeable.

The mobile application is designed only for Android and the

desktop application uses Windows Native libraries and API.

Conversions in the desktop application to support Linux and

MAC, however, are relatively simple and could be quickly done

in further pursuit of expanding this work.

The network limitations are also unavoidable. Network failures

are unavoidable and could potentially cause the system to crash

and need to be restarted, but the design choices made and

mentioned in section 3 aim to minimize this risk. Additionally,

due to the nature of the TCP connections, there is another major

limitation. In order for the mobile application and desktop

application to communicate when connected on different

networks, the port that is used for the server must be port

forwarded on the desktop machine beforehand. Otherwise, the

application only works when the two systems are on the same

network.

IoT Voice Assistant Gomez and Horowitz

CONCLUSION AND ACKNOWLEDGMENTS

IoT Voice Assistant started off as a simple idea that would solve

the small inconveniences in our day to day lives and quickly

became a practical tool that people may make use of on a routine

basis. The ability to communicate and essentially control a

desktop computer via voice commands without needing to be at

home could prove priceless in a technologically centered and

driven society.

Since our group was new to both Windows-based Network

Programming and Android Programming, we sought out public

resources for learning the basics and fundamentals of these two

topics. Open source projects and tutorials helped us build our

knowledge foundation so that we could implement our project

successfully. Additionally, we would like to thank Professor Mo

Sha and course T.A. Junyang Shi for being reliable resources over

the course of the semester.

REFERENCES
[1] https://developer.android.com/guide

[2] https://docs.oracle.com/en/java/

[3] https://docs.microsoft.com/en-us/windows/win32/winsock/windows-sockets-

start-page-2

[4] https://docs.julialang.org/en/v1/

[5] https://developer.android.com/studio

[6] https://code.visualstudio.com/

[7] https://atom.io/

https://developer.android.com/guide
https://docs.oracle.com/en/java/
https://docs.microsoft.com/en-us/windows/win32/winsock/windows-sockets-start-page-2
https://docs.microsoft.com/en-us/windows/win32/winsock/windows-sockets-start-page-2
https://docs.julialang.org/en/v1/
https://developer.android.com/studio
https://code.visualstudio.com/
https://atom.io/

