
Temperature Excursion Tracker
IoT Ambient Sensing and Data Collection

Joseph D Ramli
 Computer Science Masters

 SUNY at Binghamton
 Binghamton, NY USA

jramli1@binghamton.edu

ABSTRACT
The Internet of Things (IoT) generally refers to the presence
of physical objects with embedded sensors which are in
some way linked to software. While this is not the official
definition, the field continues to evolve and be redefined as
more advances in implementations and designs of this
nature emerge. It is in this spirit that this project was
created. The core focus of this project is to explore and
implement a method that could take ambiently sensed
environmental data and transmit it to a common data
analysis software (in usable form for that respective
software). Performing such a task can show the potential
availability for these IoT devices for personal use. This may
expand the perception of IoT beyond what some may
assume is a ‘commercially-oriented’ field of study. The
Temperature Excursion Tracker is an example of a simple
home-based application that may be of interest.

1​ Introduction
Monitoring and tracking temperature can be a very critical
part of many processes or quality assurance protocols.
This is not only true for things in the commercial world, but
is even important for consumers as well. One example is
that a consumer may have a medication that must be stored
at a certain temperature in order for that medication to
remain potent and effective. In this case, it may be useful
for a consumer to have a device with an embedded sensor
that can transmit temperature readings to data analysis
software over a network.

There are many ways to transmit data from
ambient sensors to high-powered computing machines, but
this report aims to show a specific implementation using an
Arduino Uno and a laptop computer.

2​ Design
The design of this project includes both the
hardware/software of the ambient-sensing hardware, and
the subsequent receiving hardware/software that will have
the data analysis tool. In this case, the design includes the
Arduino UNO WiFi REV002 hardware, the Arduino IDE, and

a Windows 10 laptop that has Microsoft Excel and Python
3.7 installed.

2.1​ ​Arduino
The hardware that was used for acquiring ambient sensor
readings was the Arduino Uno WiFi REV002 and the
Arduino IDE for Windows 10. Using these systems alone,
the data can be read/sensed from the environment and read
through a USB serial-monitor directly to the screen, once
programmed and set up properly. Additional components
and cables are listed here:

1) A-Male to B-Male USB connector for Arduino Serial
Monitor readings
2) Breadboard
3) 9V AC/DC power adapter for Arduino power supply
4) Red LED-light
5) Resistors (100k ohm)
6) Gikfun NTC 10K ohm 5% Thermistor Temperature
sensor for Arduino
7) Connector cables from Arduino to Breadboard

A major advantage that this particular Arduino

board has over many older boards, is that it has built-in WiFi
capability. The WiFi component allows the Arduino to send
data over a local network to any computer linked to the
same network as the Arduino (properly set up with server
software) without being USB-connected.

Figure 1: Full Arduino hardware setup. Disconnected
USB and power supply to show all components in this
photo

Figure 2: Angled to show LED setup and connections

Figure 3: Angled to show thermistor setup

2.1.1 Arduino sensing - ​The software to program
the Arduino setup is the Arduino IDE version 1.8.13 for
Windows 10. Using the appropriate resistor, thermistor, and
LED setups, various calls to the “analogRead()” function
were made to read the sensors. There is an onboard
temperature sensor that was read as well using the
SparkFunLSM6DS3 module reference guide.

2.1.2 Arduino alert LED – ​There is a red LED that
is lit up if the temperature exceeds a certain limit. This is
not required for radio-transmission of the data. That
LED-alert is an added feature for the user to be able to see
when a temperature may be exceeding the set threshold.

2.1.3 Arduino transmission of results - ​Following
the examples from Arduino.cc and the WIFI NINA library,
code was generated and adapted to Send/Receive UDP
strings that are populated with the current temperature
reading along with a time-stamp. The Arduino side is
programmed to wait for a signal from a server, and reply
with a string of its own (attached to the received string)
when that UDP signal is received. In this case, when it
receives the time-stamp from the server, it attaches the
current sensor reading and returns the UDP message to the
sending server IP address.

2.1.4 Sensor Calibration - Unfortunately, this
particular setup does not demonstrate consistent accuracy
and precision. Attempts were made using the
Steinhart-Hart equation alone, but this was not sufficient by
itself without the ability to read/calibrate the hardware.
Additional calibration and troubleshooting with voltage
equipment is likely necessary to get a fully accurate
auxiliary thermistor reading. The existing setup was used to
get close to room temperature readings without the use of
the Steinhart-Hart equation, to at least demonstrate the
data-flow with values within about a 10% margin of error.

SUNY at Binghamton, New York 2020 Joseph D Ramli

2.2​ ​Windows 10 laptop

2.2.1 ​Python storage of data - The first critical
software piece is the Python 3.7 server code. This code is
what broadcasts the initial timestamp message to the
Arduino board’s IP address, allowing for the receipt of the
sensed-data response. This particular implementation is
set to ping the waiting-Arduino a user-specified number of
times, with a user-specified number of seconds of delay
between each ping. e.g. The user can enter at each
prompt “100” and “5”, and this will give 100 temperature
readings at 5-second delays apart from each other. To get
a reading of the temperature every 10 seconds over a
1-hour span, the user could simply enter “360” and then
“10” at the first 2 prompts respectively. The data is stored
progressively into a list data-structure. The final
user-prompt will accept a temperature value that will be
used to print a ‘HIGH’ string next to the reading, if the
reading exceeds that user-input value.

2.2.2 ​Python export to Excel - Once the Python
code finishes its loop iterations to get the data, the list is
used to export the data to an Excel file using the xlwt
Python package from the PyPI (Python Package Index).
This file is then named/created and the results are exported
and printed via loop through the data-structure. The
resulting file is now ready for traditional use by the individual
or professional that may be familiar with Excel. Sample
output is shown below.

Figure 4: Sample output of timestamp and readings

There is exception handling to create a backup file with the
word ‘Alternate’ at the end, to indicate that there was an
issue in saving the first file (i.e. if the other file was left open
or not accessible for some reason).

3​ ​Discussion/Design Rationale

3.0.1 Arduino Choice Rationale​: The Arduino
hardware/software is a highly accessible and growing
project-base, that is user-friendly for individuals doing
small-scale IoT projects. Being able to handle and
experiment with such compact and succinct hardware can
be very beneficial for understanding the flow and

appreciating the design of IoT applications. Most anyone
can create and implement a design using an Arduino at very
low cost, therefore using this design seemed most pertinent
for a non-commercial project.

3.0.2 Python Choice Rationale - ​Python is a very
flexible and succinctly written programming language, that
allows for very powerful interfacing with other file
applications. Having the data in a python data structure is
very effective for making a simple export of that data to a
Microsoft Excel file. In addition, the versatility of storing the
data in a python data structure allows access to PyPI
packages that can rapidly aid in exporting the data to other
programs besides Microsoft Excel.

3.0.3 Excel Choice Rationale - The Excel software
was chosen because it still seems to be a widely-used and
familiar software for collecting and analyzing data sets
among businesses and professionals. Despite the rise of
so many new data collection and analysis systems/tools,
this has been a popular and familiar software that almost
any individual will have some experience using.

3.0.4 Synergy of sensor and server - The Arduino
is programmed in a way that it can wait and take UDP cues
from a server that is coded in a common language such as
Python, C++, or Java. Python was chosen for this
assignment because of its notorious ability to perform
complex tasks with brief and often easy-to-read lines of
code. The flexibility provided to the user when running the
Python program synergizes with the ‘wait and reply’ format
of the Arduino’s sensing/sending design.

4 ​Conclusion
The Temperature Excursion Tracker built here is a good
example of how much can be accomplished with commonly
accessible hardware. This particular design is somewhat
limited in practicality due to the sensors being attached to
and powered by a breadboard. However, any
long-durable-cord or cordless sensors can change the
practical applicability of this general design. By example, a
remotely powered and compact sensor that can transmit its
readings wirelessly (perhaps via Bluetooth) to a receiver
may have a connector on the receiving end to plug into an
Arduino pin for analog-reading. If something like this is
developed, then the temperature sensor could be placed in
more remote or extreme conditions that would otherwise
damage the Arduino, breadboard, or connector cables.
While this is not hardware that I found for this project, it
seems like something worth exploring for anyone using this
sort of template, as it would open up a myriad of
possibilities for remote sensor placement and
data-transmission. The practical applications and usability
of remote sensors of this nature would likely be greatly
augmented.

SUNY at Binghamton, New York 2020 Joseph D Ramli

REFERENCES
[1] https://www.arduino.cc/
[2] https://www.arduino.cc/en/Reference/WiFiNINA
[3] https://www.python.org/
[4] https://www.geeksforgeeks.org/socket-programming-python/
[5] https://www.geeksforgeeks.org/sockets-python/
[6] https://www.geeksforgeeks.org/datagram-in-python/
[7]

https://create.arduino.cc/projecthub/iasonas-christoulakis/make-an
-arduino-temperature-sensor-thermistor-tutorial-b26ed3

[8] https://www.geeksforgeeks.org/writing-excel-sheet-using-python/
[9] https://forum.arduino.cc/index.php?topic=87329.0
[10] https://wiki.python.org/moin/UdpCommunication

SUNY at Binghamton, New York 2020 Joseph D Ramli

https://www.arduino.cc/
https://www.arduino.cc/en/Reference/WiFiNINA
https://www.python.org/
https://www.geeksforgeeks.org/socket-programming-python/
https://www.geeksforgeeks.org/sockets-python/
https://www.geeksforgeeks.org/datagram-in-python/
https://create.arduino.cc/projecthub/iasonas-christoulakis/make-an-arduino-temperature-sensor-thermistor-tutorial-b26ed3
https://create.arduino.cc/projecthub/iasonas-christoulakis/make-an-arduino-temperature-sensor-thermistor-tutorial-b26ed3
https://www.geeksforgeeks.org/writing-excel-sheet-using-python/
https://forum.arduino.cc/index.php?topic=87329.0
https://wiki.python.org/moin/UdpCommunication

