
VALET

Smart Parking System
Mobile Application

Project

ABSTRACT
VALET is a smart parking system that allows drivers to find
available parking spots faster and easier. The main objective of
developing an application like VALET is to propose a more
convenient parking experience to it’s users. We think that the
presence of smart parking system applications like VALET is
crucial for the majority of locations. Especially, metropolitan cities
like New York and Istanbul tend to have parking problems due to
their crowd level and number of active vehicles.

KEYWORDS
Smartphone, IOT , parking, lot, sensors , application, Smart
Parking.

1 Introduction
In the last decade, there have been tremendous changes happening
in Information Technologies. Most of IT developments affect
people’s lives directly. That is why, IoT is a significant area for
both tech companies and nations all around the world. Time is very
crucial for companies and also for the people. Most of those
developments in the IoT area focus efficiency improvement for
everything about people in their work hours and their spare times.

There are various extreme situations caused by the metropol life’s
necessities. High life standards in a high scaled and complex settled
city depending on a functional transportation axis, side of a proper
organized environment. Because the transportation network is the
main base for a metropol,several solutions have been improved by
the automotive industry since the very beginning of civilization.
The point, vehicle and the road notions interacted, the ‘traffic’ issue
came up as a civil life problem in the history. Traffic is a variable
organic flow defined accordingly a density rate based on datas like
population,the adjustment quality of the roads or the efficiency of
the network etc. Of course, there are important attempts with the
improvement of civilization; like public transportation,underground
transportation variations, railway systems to prevent traffic
problems. Unfortunately, there is still a huge personal car ratio on
the roads in crowded cities.

The determination of the project establishes another important point
in that case because one density caused another. So, in parallel to
the described case a problem by lack of parking spots came up to

the table. Again, solutions like underground car parks,private
parking spots are used to correct this deficiency but in a living city,
there is a critical circulation between spots and vehicles. The wrong
parking incidents or instant park overs caused by lack of proper
parking spots is an important factor that paralyzes the road network
and causes more traffic or car accidents. That makes the stable
status of a car as important as active status to provide a balance in
traffic. Beside it, there is a serious amount of driving time for
drivers to find an available parking spot. This is a huge waste of
energy,fuel and also from a psychological perspective, It increases
the stress level of metropol people which is already beholding in
high levels.

Aim of the project is to head off that wasted energy and density by
adjusting a plain and right parking spot network in a city.
Documenting the proper parking spots and making their availability
status accessible for drivers on the road is an attempt to direct
drivers straight to their arrival point by avoiding the wasted energy
caused by effort on finding a parking spot in a world consumed
away by humans.

2. Hardware
To provide a service to find available parking spots easier, we had
to build a hardware circuit to transfer data which includes the
status of a specific parking spot to the users, who are drivers in this
case. Our circuit consists of five different components:(i)Arduino
Uno R3, (ii) NodeMCU ESP8266 WiFi Module, (iii) FC-51
Infrared Sensors, (iv) Jumper Cables and (v) Breadboard.

3. System Design
In the Valet project, the system was designed on multiple IR
sensors for different parking spots and these spots’ availability can
be seen from the Blynk app. The IR Sensors detect the presence of
any obstacle. After that, these sensors send the data to Arduino
UNO. Ardunino is the microcontroller board which shares the data
with other devices. In this project, NodeMCU ESP 8266
communicates with Arduino. NodeMCU takes the data which is
coming from IR sensors and provides the connection with the
Blynk app. Blynk app is the final destination for the data. Main aim
in the Blynk app is demonstrating the data intelligibly for the users.

Goktug SELCUK
 Department of Computer Science

 Binghamton University
 Binghamton, NY

gselcuk1@binghamton.edu

 Gungor YOLAC
 Department of Computer Science

 Binghamton University
Binghamton, NY

gyolac1@binghamton.edu

Figure 1: Arduino UNO and NodeMCU ESP8266 Serial
Communication

In order to maintain the system, the connection between the
Arduino UNO and Nodemcu ESP8266 is really important. The RX
pin is used for receiving the data and the TX is used for sending the
data between devices. The GND pins are connected to each other
between devices and this connection is used to ground the circuit.

 Figure 2: Arduino UNO and IR Sensors Serial Communication

In this project, there are five FC 51 InfraRed proximity sensors to
check the availability of parking spots. Breadboard is a tool for
designing and testing circuits [1]. Connecting multiple sensors is
impossible without a breadboard. In this project, breadboard is used
for connecting ground and digital out pins of the IR sensors. VCC
pins are directly connected to different digital pins of the Arduino.

4. Software
Basically, VALET needs software for two main reasons.First of all,
the code we implemented serves like a guide for our hardware
components. Arduino Uno R3 needs to be guided to manage the
data transmissions with both of the IR sensors and ESP8266 WiFi
module. Without any failure, Arduino Uno R3 needs to receive the
data which consists of the availability of parking spots . Otherwise,
our main objective to develop this application will not be satisfied
at all. In addition, after receiving the data correctly from sensors,
Arduino is required to transmit these data to ESP8266 WiFi
module without any errors. Therefore, the program implemented
by us helps Arduino for taking the care of these responsibilities. In
upcoming sections(4.2), this program is going to be examined in a
detailed way.

Similar to Arduino Uno R3, the NodeMCU ESP8266 WiFi Module
needs help from a program which manages the two-sided data
transfer. First, the ESP8266 WiFi module must receive data
regarding the status of parking spots without any failure. In the
next step, it must read and categorize the data correctly before
sending it to the mobile application. In section 4.3 the program of
NodeMCU ESP8266 WiFi Module is going to be analyzed and
described to the readers of this report.

In VALET, The second use of software is for showing free
parking spots to users. We use Blynk IoT tool to establish an
application which will show the status of a whole parking lot. The
code of the Blynk tool was integrated in our program for ESP8266
WiFi module. In section 4.4, Blynk and the user interface of
VALET is going to be examined elaborately.

4.1 Programming Language, Tools and Libraries
In this section, the programming language, tools and
software-related libraries we used in VALET will be described.
First of all the programming language is C for VALET since C is
the most popular language for projects that include Arduino. Also
the majority of documentations and examples are written in C so
we wanted to take advantage of that.

Arduino IDE, Blynk Application, Blynk Arduino Library and
SoftwareSerial.h header file are all of the tools and libraries that
are used while developing VALET. Arduino IDE is the
development environment we implemented the programs of
Arduino Uno and ESP8266 WiFi Module. In addition to that, there
are several drivers we downloaded for both Arduino and
NodeMCU ESP 8266. These drivers allowed us to program these
devices through Arduino IDE. These two devices connected
directly to the PC.

Blynk is an application which allows developers to create a basic
user interface for their IoT project. Blynk is reported elaborately in
section 4.4. Blynk Arduino Library is required to use Blynk
functions and definitions in our program, which is essential to
transfer the data to the user interface. Finally, the SoftwareSerial.h
is needed to expand the assets for the serial communication
between hardware components. Normally, the Arduino hardware
has built-in support for serial communication only on pins 0 and 1.
With the aid of this header file, we were able to use other digital
pins as well for serial communication. This is very crucial since we
have 5 IR sensors and ESP8266 to connect with Arduino.

4.2 Arduino Program
The Arduino program is very important for VALET to operate
correctly. As it is stated in previous sections, Arduino is
responsible for receiving the data of parking spots from the IR
sensors and transmitting those data to the NodeMCU. In this
section we will go through the program.

In the beginning of the code, we included the SoftwareSerial.h
header file to enable all of the pins of Arduino to communicate
with other hardware components via serial communication. Then,
we created a SoftwareSerial object which is a NodeMCU object.
We assigned the values 2 and 3 as parameters of our object to
declare that pin 2 and pin 3 are used to connect the NodeMCU to
the Arduino. After those, there are some variable declarations.
Five of them are strings and five of them are integers. The string

variables are required to store the status of a specific parking spot
and since we have five sensors, there are five string variables.
Similarly, the five integer variables are used to assign the pin
number which we used to connect that sensor to Arduino. After
these declarations, there are two arrays, sensorPins and
sensorOutputs to store these declared variables for further use.
Finally, there is a string variable to serve as our “message
packet”. “lotStatus” variable will be used to store all data of a
parking lot to send it to the NodeMCU.

In our setup function, we make two calls, Serial.begin() and
nodemcu.begin(). These calls are going to start the serial
communication and boot the NodeMCU. Then, with the help of
pinMode() function, we declare that all of the sensor
variables(integer ones) will serve as input pins. The setup block
has come to an end with those lines. Normally, in this code, we
need to define functions to detect the occupancy status of each
parking spot. Since we have 5 sensors, we need to define 5
functions for each sensor. However, to make it simpler we
merged those five functions into one function. The
get_Occupancy() [3] function will use the previously created
arrays to iterate through them to detect the status of all five
parking spots.

Figure 3: get_Occupancy() function

Finally, in the loop block, we call the get_Occupancy function to
take data of the parking spots. After adding all of the outputs to
the lotStatus variable, we call println functions of both Serial and
nodemcu. In the end, we erase all the data in lotStatus for future
iterations of the loop.

4.3 NodeMCU Program
In the first part of our NodeMCU Program, there are four header
files to include. ESP8266WiFi.h , BlynkSimpleEsp8266.h,
SoftwareSerial.h and SimpleTimer.h. Then we have three different
character arrays for authorization token of Blynk, local ID of WiFi
and the WiFi password. Then we create a SimpleTimer object to
use timer functions in our program. After that string variable “msg”
and char variable “character” is created. “Character” will store the
status of a single parking spot while “msg” stores the status of a

group of parking spots(parking lot). Also, we create integer
variables to store the final data to send to virtual pins of Blynk.

In the setup block, we start the serial communication with
Serial.begin() then we also start Blynk with Blynk.begin function
and we pass three parameters into that function. Those parameters
are authorization token, wifi ID and wifi password. After these
calls, we used timer.setInterval to make all 5 of our functions[4]
that send data to each virtual pin in every second.

In the loop block, we control that if there is a serial
communication. If there is, read the message coming from Arduino
character by character using Serial.read(). Those characters will
add up in each iteration to produce the complete data. When we
come to the end of the data sent by Arduino, we split 5 values(0 or
255) from the whole data with an user defined function. After
splitting, we convert these splitted strings to integers to send them
to virtual pins.

Figure 4: Example function to send data to virtual pins(1 of 5)

4.4 UI with Blynk
All programs and applications need an user interface. We created a
user interface using Blynk. Blynk is an application that allows
developers to create basic and convenient user interfaces for IoT
projects. Blynk connects with a device and receives the desired
data. After that, with the help of various widgets, you are able to
categorize and display those data easily and in a nice looking way.
Developers also need to install the Arduino library for Blink to take
help from Blynk in their Arduino projects.

In VALET, the device we connected with Blynk is our NodeMCU
WiFi module. As it highlighted in the previous section, the
NodeMCU program sends the data to the virtual pins. Each widget
has a virtual pin. In our user interface, we used tabs and LED as
our widgets. Tabs is to separate the parking spots in different
locations and LED is used to represent a parking spot. In other
words, each LED widget represents a specific parking spot. We
assigned virtual pins (Ex: V10) to the LEDS and sent data to those
virtual pins. If the received data says that a parking spot is
occupied, the LED widget that represents that parking spot is
turned on[5].

Figure 5: UI of VALET

Is it also possible to publish the application via Blynk but that
operation is not free. Since we are students and this is a course
project we are not able to publish VALET unfortunately.

5. Possible Improvements
As we experienced while using VALET, a navigation page is
required to change between parking lots which are registered to the
VALET system. Let’s say, when an user goes to the Walmart, they
should use a navigation method, like a menu, to choose that
specific Walmart from it. Otherwise, the user needs to browse the
location in the tabs and that can be frustrating. We gave our best to
add that feature but we could not manage it before the deadline.
Maybe removing Blynk usage from VALET and designing and
implementing our own application can help on this issue.

Also, another feature that can be added to VALET is the payment
system. There are some parking lots that require drivers to pay an
amount that depends on the parking time. VALET can be updated
to track the parking time, calculate the fee depending on that and
offer a payment portal to easily make payments via the application.

6. Conclusion
In today's world, technologic improvements are affecting people’s
lives significantly. IoT has the most human interaction when we
compare the other areas of Information Technologies. Not only
there are various different types of IoT applications that people are
using in their daily lives but also there are a lot of different projects
that the companies are still working on. As most people realise,

using these technologies can bring them not only a useful
environment to make their work but also a lot of extra time.

Companies are still finding extraordinary ideas to bring our lives
and people start to use countless different technologies day by day.
That is why, giving the best user experience for users is so
important for companies.

VALET is an example IoT project that helps significantly to people
who use their car in crowded areas because sometimes, these
people lose lots of time to searching for an available parking spot.

ACKNOWLEDGEMENTS
We would like to thank our professor Mo Sha in and our TA
Junyang Shi for their endless help and support. We are grateful for
leading and motivating us to create an IOT project as a solution to
one of the real life problems we faced during our daily life.

