
Posture Detector
Kao-Feng Hsieh

Department of Computer Science

Binghamton University

khsieh3@binghamton.edu

1 Introduction

Wenzhe Leng
Department of Computer Science

Binghamton University

wleng1@binghamton.edu

Being Computer Science students, we always

suffer from using computers everyday.

Moreover, if we use computers with poor

sitting postures, it’ll bring several negative

impacts to our bodies. Including rounded

shoulders, headache, bodily pain and so on. So

we decide to build a device to monitor the

postures when we are using computers. This

device can help us not only adjust our postures

while we are using computers but also remind

us to take a rest after using it for a period of

time. It also has face recognition functionality

to protect your computer from the users other

than you.

2 Design
2-1 Idea
We measure the distance between the user’s

face and the computer to determine if the user

has a poor sitting posture or not. In general, if

the distance is too short, it means the user is

too close to the computer. At this point, the

user may slouch in front of the computer. We

simply utilize a Raspberry Pi 3B+ and a camera

module to achieve our goal. First of all,

Raspberry Pi with camera is installed on the

monitor of the computer. It uses camera to

recognize whether there is a user or not. When

there is a user, it then start measuring the

distance and recognizing the face of the user. If

others are trying to use the computer, our

device will take a picture and send it to the user.

We also have a AWS based Database to collect

the data and display it on a website or a mobile

device.

2-2 Hardware components

Raspberry Pi 3B+ Camera Module

2-3 Software
For the Raspberry Pi, we use python3.7 and

OpenCV4 for distance measurement and face

recognition.

2-4 Flow
First of all, the Raspberry Pi will collect the data

from the user, including distance, face

recognition and screen time. After processing

the data, it’ll upload them to the database in

every 5 seconds. Next, our end-user app will

read the data from the data base and process

them. Finally, the app will show the information

for the user on the device.

This figure shows why we can tell the sitting posture by measuring the distance between the user and the computer

3 Implementation
3-1 Distance Measuring
The idea of measuring distance is very easy to
implement. After we study the theory of how
does camera get the image from real object, we
found out it works just like projection in Pinhole
theory.

We used trigonometry to calculate the distance
between the camera and user. Since we knew all
parameters we need, we can get the distance by
this formula.

f(focal length)= 35(mm)
real_height = 240(mm) => average head size
image_height = 240(pixels)
object_height = h(pixels) => in faces object
sensor_height = 40(mm)

By using this method, we can get the distance
from a 2D image. We used a measuring tape to
measure the real distance to evaluate the result,
the distance we got is significantly accurate.
Although it is restricted by the fixed sensor
height, it still perform well on our project.
3-2 Face Recognition
We used Python and OpenCV for our face
recognition implementation. Due to we only have
one user for a device to recognize, so we choose
not to use other machine learning methods for
face recognition implementation. Additionally,
using OpenCV for face recognition can save some
CPU usage of the Raspberry Pi. First of all, we
used Haar Cascade classifier for face detection.
Secondly, gathering the photo and process them
for training the OpenCV recognizer model. Finally,
implemented the model we trained for the face
recognition.

3-3 SMS and Email
We used smtplib library in Python to implement
the functionality of sending messages to end-
user device. The library can not only send emails
but also SMS. Every carrier has their own sms-
gateways. You can send an SMS through these
gateways by internet as long as you know which
gateway you are going to send. There are three
scenarios that the Raspberry Pi will send the
messages. First of all, when the screen time is
more than 30 minutes, it’ll send a message to the
user and remind her is time to take a rest.
Secondly, when the user is too close to the
computer, it’ll alert the user to keep the distance
to the computer. Finally, when someone is trying
to use the computer that the Raspberry Pi can’t
recognize him/she. It’ll take a picture and send it
through the email, also send an SMS to alert the
user.
3-4 Data Collection
We used the Springboot framework to complete
the Web pages design and write an API for
ourselves to call. The API is the interface between
the Raspberry Pi and the database. The
Raspberry Pi requests a post to the interface in
the API, it then stores the data and picture in the
database.
3-5 End-User Interaction
We read the data from the database to the web
pages and processed the data, such as calculating
the average distance everyday. Our web pages
also provide functions for users to retrieve
information based on the time. It demonstrate
the chart of the distance changing at different
times of a day. Additionally, the percentage of
days that user in the adequate distance of the
month is visible in pie chart.

4 Evaluation
In this project, we’ve implemented several
functionalities and successfully evaluated the
project. The Raspberry Pi works brilliant most of
the time. But they are still problems we need to
solve in the future. First of all, it seems a little bit
overload for the Raspberry Pi 3B+ to do so many
tasks at the same time. For example, when you
watch the demo video, you’ll probably notice
that there are lags in the window. Especially
when the Raspberry Pi detects there is other
person in front of the computer, the screen will
stuck when it takes a picture and send it through
the email .The Raspberry Pi uses almost 100% of
CPU every time when running the project. I had

tried to use the thread to solve this scenario. But
the problem is that the Raspberry Pi does not
have enough power to do these tasks at the same
time. It still cost almost 100% of CPU usage.
Additionally, messages sometimes disappear
after sending SMS. I think it’s the gateways on the
carrier miss the messages. Overall, in my opinion,
the project still has room to improve in the future.
But it’ll be a useful product for people who use
computer frequently.

