
DIY Mirror
Xiaozhou Liang, Hongwei Wu
Department of Computer Science

SUNY Binghamton
Binghamton, NY, USA

{xliang24,hwu71}@binghamton.edu

ABSTRACT
MagicMirror2 is a smart mirror that supports abundant third-party
modules and provides users with convenient services. However,
it has not supported the use scenario of multiple users with dif-
ferent service demands. To amend this deficiency, we introduce
face recognition and user interface customization to enable our
users to customize their mirrors. We build this DIY Mirror project,
design a system composed of three main components, and imple-
ment the functionality. To evaluate our DIY Mirror, we carry out a
demonstration and prove the successful operations of our system.

KEYWORDS
MagicMirror2, Face Recognition, Raspberry Pi, Android Applica-
tion, Google Cloud Platform, Google Assistant

1 INTRODUCTION
In this hi-tech era, time is money and people look for an efficient
way to save their time. We have always wanted to try to condense
people’s daily routines into concurrent operations to help people
save more time, until we found that a GitHub open source project
MagicMirror21 can help achieve this purpose, by displaying some
helpful information on the screen behind the mirror. However,
the existing Magic Mirror does not support multi-user customized
display. Therefore, we would like to focus on making further im-
provements on the existing MagicMirror2 project, by introducing
face recognition, voice control and an Android application, to meet
the needs of user customization. Therefore, we call our project DIY
Mirror.

2 BACKGROUND
In this section, we first discuss the software for this project, followed
by a brief introduction of the hardware components.

2.1 Software
2.1.1 MagicMirror2. MagicMirror2[7] is an open-source modular
smart mirror platform on GitHub. Built by the same author, Micheal
Teeuw,MagicMirror2 is a upgraded version of the originalMagicMir-
ror that support modularization. Developed by the MagicMirror2

community, modules are third-party services that can be added to
MagicMirror2, with examples including weather forecasting and
news broadcasting. With the help ofMagicMirror2 and abundant in-
stallable modules, users are able to combine a mirror with a screen
monitor, and turn them into a helpful personal assistant. By default,
there is only one config.js file in the project, and it does not sup-
port multi-user customized module configuration. In our project,
MagicMirror2 serves as a foundation project. And our goal is to
1https://github.com/MichMich/MagicMirror

enable multiple users to customize their module configuration, and
use voice command as well as face recognition to adjust the dis-
play content corresponding to the users. We forked2 the original
MagicMirror2 project and added our extended implementation in-
cluding face recognition, voice control, configuration generation,
etc.

2.1.2 OpenCV. OpenCV[1] (Open Source Computer Vision Li-
brary) is an open-source BSD-licensed library that includes several
hundreds of computer vision algorithms. In our project, we use
OpenCV to facilitate face recognition process, which is executed
on the Raspberry Pi in Python.

2.1.3 Google Assistant. Google Assistant is a virtual assistant that
supports two-way conversions developed by Google. Compared to
its competitor Amazon Alexa, Google Assistant can handle free-
formed, web-based queries better[6]. Supporting various operating
systems including Raspberry Pi and Android, it provides develop-
ers with a software development kit (SDK) that supports features
such as setting customized actions. In our project, we register the
Raspberry Pi as a hardware device of a Google Assistant project
and utilize its voice control to trigger the Pi Camera.

2.1.4 Google Compute Engine. Google Compute Engine is an In-
frastructure as a Service (IaaS) component of Google Cloud Platform.
Preferable for a lower price, Google Compute Engine has attracted
companies including Spotify, Snapchat, etc[4]. Users can launch
general-purpose virtual machines on it, and by setting a static IP
address, it becomes accessible from the Internet. To serve our DIY
Mirror project, We deploy a server on Google Compute Engine,
which is referred to as Cloud Server in this paper.

2.1.5 Google Cloud SQL Database. As another service provided by
Google Cloud Platform, Google Cloud SQL supports relational data-
base creation and management. Similar to Google Compute Engine,
by setting up a publicly accessible IP address, it can be constructed
as a database service supporting transactions via this address. To
store structured data involved in our DIY Mirror project, we set up
a MySQL database on Google Cloud SQL, which is referenced as
Cloud Database below.

2.1.6 Android Studio. As the official integrated development en-
vironment (IDE) for Android operating system, Android Studio
is a popular tool for Android Application development. It pro-
vides user-friendly features including real-time preview and emula-
tors, which boost developers’ productivity and relieve the effort of
development[3]. Following the principle of separation of concerns,
the Android Application development is split into the front-end

2https://github.com/hwu71/MagicMirror



XML-based layout implementation and the back-end implemen-
tation in Java or Kotlin. In this project, we use Android Studio to
develop an Android Application with Java back-end implementa-
tion that supports UI customization for our DIY Mirror.

2.2 Hardware
We utilize and install the following hardware components in this
project (as shown in Figure 1):

• Raspberry Pi 3B+: Raspbian Buster
• Pi Camera: Raspberry Pi Camera Module V2-8 Megapixel,
1080p

• Pi Speaker and Microphone: Raspiaudio MIC+
• Monitor: Lenovo LT1913pA 19” 1280x1024 Flat Panel LCD
Monitor Grade B

• HDMI to VGA Adapter
• Android Phone: Samsung Galaxy Note 5

(a) Raspberry Pi 3B+ (b) Pi Camera

(c) Pi Speaker and Micro-
phone

(d) Monitor

(e) HDMI to VGA Adapter (f) Android Phone

Figure 1: Hardware Components

3 DESIGN
As shown on figure 2, there are 3 main components in our archi-
tecture design: Google Cloud Platform, Raspberry Pi and affiliated
hardware components and the Android Application.Wewill discuss
each of them separately in this section.

3.1 Google Cloud Platform
There’re several services deployed on the Google Cloud Platform.
They are the Cloud Server, the Cloud Database and the Google
Assistant project.

1. Cloud Server. On the Cloud Server, we run the server-side
code of MagicMirror2, as well as a TCP server to handle requests
of reloading the configuration file for a user so that the DIY Mirror
could display customized UI.

2. Cloud Database. We also host a MySQL database on the
Google Cloud SQL. The Android Application establish a connection
to the CloudDatabase to read andwrite user account information, as
well as the module configuration information. Besides, the database
is read to generate the user customized configuration file of the DIY
Mirror on the Cloud Server.

3. GoogleAssistant Project.Webuild a Google Assistant project
managed by the Actions Console, which utilizes the Google Assis-
tant API to fulfill the voice control functionality. We register the
Raspberry Pi as a hardware device of the Google Assistant project,
so that Pi is able to interact with this Google Assistant project. Thus,
when user says a "Face recognition" command to the Raspberry
Pi, our Google Assistant project is able to recognize the voice com-
mand and execute the corresponding shell script to trigger the face
recognition program.

3.2 Raspberry Pi and Affiliated Hardware
Components

This part consists of the Raspberry Pi, the Pi Microphone and
Speaker, the Pi Camera, and the Monitor. It carries the following
functionalities:

1. Face Recognition. We run the OpenCV-based Face Recogni-
tion program on Raspberry Pi with Pi Camera. The Face Register
program will be triggered by the Android Application at the time
when user registration. At the time of common using, the Face
Recognition Program will be triggered by voice command through
the Google Assistant, and send the user identity (in this case, the
registered username) to the Cloud Server after recognizing the user.

2. VoiceControl.Weadded the Voice Control function using the
Pi Microphone and Speaker, with the help of the Google Assistant
project. Users are able to use the on-board Pi Microphone and
Speaker to interact with Google Assistant, to help trigger the Face
Recognition program. This function can be further extended to
other needs such as playing some music, etc.

3. TCP Server. We run a TCP server on Raspberry Pi to han-
dle incoming requests. It classifies the type of message according
to its header. There are two types of headers: PHOTO_COLLECTION
and REFRESH. Messages with the former header would trigger the
Python script for photo collection and consequent dataset train-
ing. Messages with the latter would trigger the Python script for
refreshing the DIY Mirror so as to update the UI.

4.Monitor display.Our Raspberry Pi is connected to the Screen
Monitor via an HDMI cable. The Monitor will display the web page
rendered by the server-side code of the MagicMirror2 running on
the Cloud Server.

3.3 Android Application
The Android Application will interact with the other two parts as
well. When user login the Application for the first time, he or she
will need to create a new account and press the camera button on
the phone screen to trigger the Face Registration process on the
Raspberry Pi. At the time of common using, users can customize

2



Figure 2: Architecture Design

the User Interface of the DIY mirror, and to set the positions and
properties of the modules that they want.

4 IMPLEMENTATION
In this section, we will describe the implementation in details from
four perspectives. They are Face Recognition, Voice Control, Cloud
Database and Android Application.

4.1 Face Recognition
In order to provide the user customization functionality in our
DIY Mirror project, we introduced the Face Recognition based on
OpenCV[5]. The Face Recognition operation is consist of three
components.

Part 1: Collect the face dataset.When a user registers him/her-
self on the Android Application and presses the camera button, a
message containing the username will be sent from the Android
App to the Raspberry Pi . After the Raspberry Pi receives this mes-
sage, it will start a Python script to start the Pi Camera and take 30
pictures of the user, and store them under the dataset folder with
the username as the name of the sub-folder.

Part 2: Train the dataset. Each time after a new user’s face
photos are added to the dataset, we will need to re-compute the
face embedding, which will be used as a known-database in later
face recognition in Part 3.

Part 3: Recognize faces in video streams. When the user
says the “face recognition” voice command to the Pi Microphone,
a Python script that executes the actual face recognition program
will be triggered. After activating the Pi Camera, this program gets
the video stream from it, captures images of the user’s face, and
matches it with the known-database(face embedding) generated

in Part 2. Each comparison returns the most similar user’s name.
Since the accuracy of the face recognition based on OpenCV is
not yet 100%, we take the strategy to perform multiple (10 times)
comparisons and return the results with the highest frequency to
improve accuracy. After recognizing the user’s identity, a trigger
message containing the recognized username will be sent from
the Raspberry Pi to the TCP server running on the Cloud Server,
triggering generation of a new config.js file according to the user’s
module configuration information stored on the Cloud Database.
On success, a refresh message will be sent from the Cloud Server
to the TCP server running on the Raspberry Pi and consequently
refresh the DIY Mirror. Finally, the DIY Mirror would get updated
and reflect the identity of the user.

4.2 Voice Control
To trigger the Face Recognition process, we utilized the on-board
Pi Speaker and Microphone, with the help of the Google Assistant
Service[2] from Google Cloud Platform. Following shows 4 steps
of our implementation.

Step 1: Configure a developer project and account settings.
As the first step, we created a Google Cloud Platform project man-
aged by the Actions Console, which will have access to the Google
Assistant API. In the Actions Console, we can fill in the register
information about the hardware devices, edit the invocation key
word, build the actions of this project, and test the built actions, etc.

Step 2: Register device. First, we filled in the device informa-
tion in the actions console using the registration UI. Then we down-
loaded the OAuth credentials (a JSON file), and sent it to the hard-
ware device, the Raspberry Pi in our case, for later registration. Then
on the Raspberry Pi, after downloading the prerequisite packages

3



and setting the virtual environment, we used the authorization tool
google-oauthlib-tool with the credential files to complete the
registration process of our Raspberry Pi. This hardware registration
process will require visiting a website and returning a given code
to the authorization tool.

Step 3: Design the voice actions.In the Actions Console, we
added a new action named Face Recognition, which will recognize
the voice command like "Do face recognition, please" or just "Face
recognition", and tell the user that it is performing the face recog-
nition operation. Besides, we also modified the original welcome
action to explicitly tell the user that it is a greeting from the DIY
Mirror project.

Step 4: Implement functionality.After cloning the sample
GitHub project for Google Assistant API3, we modified the push-
totalk.py file by adding a string matching with the returned text
output from the Face Recognition action. If it contains the phrase
“face recognition”, we will trigger a Python script to execute the
face recognition process in the Raspberry Pi.

4.3 Cloud Database

(a) User-Module Table

(b) Stock Module Configuration Table

(c) Covid Module Configuration Table

(d) YouTube Module Configuration Table

(e) Range Table

Figure 3: Cloud Database Tables

The Cloud Database is a “bridge” between the Cloud Server and
the Android Application, considering that it stores the user infor-
mation and module configuration data provided by the Android
Application and consumed by the Cloud Database. Figure 3 shows

3https://github.com/googlesamples/assistant-sdk-python

multiple tables created in the database for various purposes. The
user-module table in figure 3a stores usernames, encrypted pass-
words, and enabling statuses of each module, where 0 represents
status “disabled”, and 1 represents status “enabled”. It is noteworthy
that by encrypting the passwords when storing and decrypting
when matching, we are able to prevent privacy theft even in the
extreme case that the database information is exposed. Figure 3b,
3c, and 3d are examples of module configuration tables, where
configuration properties and the positions on the DIY Mirror are
stored as separate fields. By separating module information into
different tables, we make it extensible to support new modules by
merely creating new module tables for them. The range table in
Figure 3e stores the ranges of integer-type field from other tables.
On our Android Application, we provide seek bars where users
should choose integer values within the given range read from this
table.

4.4 Android Application
To support users’ customization of the user interface (UI) of the DIY
Mirror, we created a GitHub project4 and developed an Android
Application targeted for Android 7.0 (Nougat) using Android Studio
version 3.6. As shown in Figure 4, the main functions of this applica-
tion include user registration, user login, UI overview, and module
configuration update. More specifically, at the time of registration,
users create a new account and take photos of their faces. At the
time of common using, users can customize UI of the DIY Mirror
including which modules to display, as well as the positions and
properties of modules.

As a component in our system, the Android Application com-
municates with other components to provide all-around services
to our users. The Cloud Database is the component that shares the
most frequent communication with the Android Application. At
the time of registration and user login, users’ username and pass-
word information are stored into and read from the User-Module
table. Besides, to display the UI overview of all positions on the DIY
Mirror, we also need information from various tables of module
configuration tables. Last but not least, as the key services, the
adding and removing operations on modules, as well as updating
operations on module configurations, require reading and updating
multiple tables in the database.

TheAndroidApplication also communicateswith the TCP servers
running on the Raspberry Pi and on the Cloud Server. Triggered by
pressing the camera button during registration, a message is sent to
the Raspberry Pi which then activates the Pi Camera to take photos
of the user’s face. Besides, when adding, removing, or updating
modules, it also send a message to the Raspberry Pi and the Cloud
Server respectively. If the user is using the DIY Mirror, then the
messages would trigger the page refresh script on the Raspberry Pi
and the configuration file generation script on the Cloud Server.

5 EVALUATION
A walk through of our DIY Mirror project can be seen in our demo
video. We will describe the demo process step by step in this section.

Step 1. At the beginning when no user is logged in, the DIY
Mirror should show "Hello, stranger!".
4https://github.com/joezie/SmartMirrorModuleCustomizationApp

4



(a) Login Page (b) Register Page

(c) Photo Collection Page (d) UI Overview Page

(e) Module Update Page

Figure 4: Android Application Graphical User Interface De-
sign

Step 2.When a new user registers himself at the Android Appli-
cation, this operation should trigger the Pi Camera to take several
pictures of the user, serving as the training set for consequent face
recognition purposes. After the photo collection is completed and
the photos data is successfully trained, the user should receive a
notification on the Android Application.

Step 3. After the new user has registered on the Android Ap-
plication, he/she should be able to use voice command to trigger
Face Recognition to show a default DIY Mirror display with his/her
username on it.

Step 4. The user is able to log in on the Android Application and
update the module configuration. The DIY Mirror display should
be automatically refreshed after the update operation, with the
newly-updated modules’ configuration.

Step 5. In a multi-user scenario, when an already-registered user
uses the voice command to trigger the Face Recognition, the DIY
Mirror should be able to display the UI corresponding to the user’s
customized module configuration information.

Through our demonstration, all five requirements are met, prov-
ing the correctness of the DIY Mirror project.

6 CONCLUSION
DIY Mirror solves the problem of MagicMirror2, that is, only one
module configuration file is supported, thus multiple users cannot
customize their own module display. We solve the problem by im-
plementing an Android Application for the user to set the personal
module configuration, as well as by introducing Face Recognition
and Voice control. In this case, multiple users only need to register
their faces and fill in their personal module preferences in the Ap-
plication, then by saying “Face Recognition” to the Mirror and wait
for a while for the face recognition, each user can easily request
the Mirror to display their customized Module content.

REFERENCES
[1] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000).
[2] Google. 2020. Introduction to the Google Assistant Service. https://developers.

google.com/assistant/sdk/guides/service/python [Online; accessed 3-May-2020].
[3] Zach Honig. 2013. Google intros Android Studio, an IDE for building apps. https:

//www.engadget.com/2013-05-15-google-android-studio.html [Online; accessed
2-May-2020].

[4] Brian Jackson. 2020. Top 7 Advantages of Choosing Google Cloud Hosting. https:
//kinsta.com/blog/google-cloud-hosting/ [Online; accessed 2-May-2020].

[5] Adrian Rosebrock. 2018. Raspberry Pi Face Recognition. https://www.
pyimagesearch.com/2018/06/25/raspberry-pi-face-recognition/ [Online; accessed
3-May-2020].

[6] Sascha Segan. 2019. Amazon Echo vs. Google Home: Which Smart Speaker Is
Best? https://www.pcmag.com/news/amazon-echo-vs-google-home-which-
smart-speaker-is-best [Online; accessed 2-May-2020].

[7] Michael Teeuw. 2020. MagicMirror2 Documentation. https://docs.magicmirror.
builders/ [Online; accessed 3-May-2020].

5

https://developers.google.com/assistant/sdk/guides/service/python
https://developers.google.com/assistant/sdk/guides/service/python
https://www.engadget.com/2013-05-15-google-android-studio.html
https://www.engadget.com/2013-05-15-google-android-studio.html
https://kinsta.com/blog/google-cloud-hosting/
https://kinsta.com/blog/google-cloud-hosting/
https://www.pyimagesearch.com/2018/06/25/raspberry-pi-face-recognition/
https://www.pyimagesearch.com/2018/06/25/raspberry-pi-face-recognition/
https://www.pcmag.com/news/amazon-echo-vs-google-home-which-smart-speaker-is-best
https://www.pcmag.com/news/amazon-echo-vs-google-home-which-smart-speaker-is-best
https://docs.magicmirror.builders/
https://docs.magicmirror.builders/

	Abstract
	1 Introduction
	2 Background
	2.1 Software
	2.2 Hardware

	3 Design
	3.1 Google Cloud Platform
	3.2 Raspberry Pi and Affiliated Hardware Components
	3.3 Android Application

	4 Implementation
	4.1 Face Recognition
	4.2 Voice Control
	4.3 Cloud Database
	4.4 Android Application

	5 Evaluation
	6 Conclusion
	References

