
SafeCabinet
Automated Locking Storage System

Devin Quinn
 Electrical and Computer

Engineering
 SUNY Binghamton

 dquinn6@binghamton.edu

ABSTRACT

In recent years, the field of deep learning has exploded
and it is quickly changing today’s technology. As a tool
for solving various types of problems, deep learning
influences many different disciplines and fields. Some
example problems deep learning models can solve are
image classification, facial recognition, natural
language processing, and recommendation systems, to
name a few. Deep learning is being applied to homes
to create “smart” appliances for everyday items. For
example, a smart oven may use deep learning to predict
what kind of food you are cooking, and automatically
set a cooking time based on the predicted food.

1 INTRODUCTION

Safety is the number one priority when having children
present in the house. It is good practice to keep
dangerous tools and substances out of children’s reach
by storing them in locked cabinets or hard to reach
places. However, this provides an inconvenience, and
may not even be possible in some households. This is
the motivation behind SafeCabinet, an automated
locking storage system for households designed to be
used in kitchens, bathrooms, or any other household
room where dangerous items need to be secured.

SafeCabinet’s camera tracks who is trying to access the
cabinet and uses deep learning to predict the age of the
individual. If it predicts the individual to be a child, or
if the room is empty, the cabinet remains locked. If the
prediction is an adult, the cabinet unlocks.

SafeCabinet is designed to be lightweight for
embedded system integration and hands-free for user
convenience. Deep learning inference occurs on the
device for quick response times.

2 DESIGN

The system consists of three main components: a
camera used for sensing, a central processing board
that performs all of the system’s data computations and
device communication, and a solenoid lock used for
locking the cabinet. A data-flow diagram of the system
is shown in Figure 1.

Figure 1: System Data-flow Diagram

2.1 HARDWARE

The system’s main component is TI’s AM574x
Industrial Development Kit (IDK) [1]. This
development board can be used for a wide range of

applications in industrial control and communication,
automation, robotics, etc. The board not only serves as
the central processing unit for all of the system’s
peripheral devices, but also hosts the deep learning
model. It contains 2GB of DDR3L SDRAM, a 70MB
microSD card, 16GB of eMMC NAND Flash and
32MB of SPI NOR Flash. In addition to the AM5748
processor that contains dual ARM Cortex-A15 and
C66X DSP cores, the board also has two embedded
vision engines (EVEs) that provide acceleration of
deep learning algorithms. Since the deep learning
inference occurs on-device, the large amount of
memory, powerful processing cores and additional
EVEs make the AM574x IDK an ideal development
board for this project. A top view of the AM574x IDK
is shown in Figure 2.

Figure 2: TI AM574x Industrial Development Kit

The OmniVision OV2659 SoC camera [2] is used as
the system’s sensing device and connects directly to
the development board. It supports 720p HD video
recording at 30 fps and low-light sensitivity, making it
a good sensor for general use in any room.

Lastly, a 6V electromagnetic solenoid lock [3] is used
as the system’s locking mechanism. The lock connects
to the board through one of the GPIO pins. When the
line is low, the circuit is off and remains unlocked.
When the line goes high, the circuit is on and locks.
The lock is small and lightweight, making it easy to be
mounted on a cabinet door.

2.2 SOFTWARE

The system runs a Linux ARM OS on a microSD card.
The entire OS filesystem can be accessed by mounting
the microSD card on a Linux virtual machine, and all
programming for the project is done in the virtual
machine and put directly onto the card. When the SD
card is on the board and the system is live, the OS can
be accessed through its Matrix GUI by connecting an
HDMI cable from the board to a display monitor.

To perform age classification, a TensorFlow deep
learning model is developed using a Google Colab
Notebook connected to a local runtime. Transfer
learning techniques are used during development; an
open-source model pretrained on ImageNet serves as
the base to increase optimization convergence and
decrease training time. MobileNetV1 [4] is chosen as
the base model as it is designed to be lightweight and
computationally efficient, making it ideal for
embedded systems. The first 30% of the model’s inner
layers are frozen to preserve initial low-level weights,
while the rest of the model is trainable. The head of the
model includes a 2D convolution layer, a 2D global
average pooling layer and a dropout layer for
regularization, and a dense layer for prediction outputs.
For each input image, the model outputs a two-element
array where the value at index 0 corresponds to the
predicted probability of the image belonging to class 0
(LOCK) and index 1 corresponds to the predicted
probability it belongs to class 1 (UNLOCK). A
summary of the model is shown in Figure 3.

Figure 3: Deep Learning Model Summary

3 IMPLEMENTATION

For model training, a dataset with 28,958 total images
consisting of two open-source labeled datasets is used,
the UTKFace dataset [5] and the House Rooms Image
Dataset [6]. The images are sorted into two classes:
LOCK and UNLOCK. The age threshold is set at 11;
images of individuals under the age threshold and
images of house rooms are classified as LOCK while
images of individuals over the age threshold are
classified as UNLOCK. With this labeling, the trained
system will unlock for individuals over 11 and lock for
children under 11 and empty rooms. After sorting the
images, there are 20,425 images of older individuals,
3,283 images of younger individuals, and 5,250 images
of rooms. Since this is an imbalanced dataset biased
towards older individuals, image augmentation
techniques are used via the Albumentations library [7].
In the image augmentation pipeline, images are
replicated and minor random adjustments such as
shifts, rotates, and crops are performed to augment the
dataset with more images. The images are also resized
to 224x224 and split into three sets: training,
evaluation, and test.

The deep learning model is compiled with categorical
cross entropy loss and the Adam optimizer. After
training on the augmented training and evaluation sets
for 20 epochs, the model is evaluated on the test dataset
and results in 97.57% accuracy. The prediction results
on a batch from the test set are shown in Figure 4.

Figure 4: Model Prediction Test Results

The model is now ready for on-device inference, but
first it is converted to a TensorFlow Lite model [8]. The
TensorFlow Lite format optimizes for on-device

machine learning in terms of size, power consumption,
and performance, making it ideal for embedded
systems. After conversion, the model is put onto the SD
card.

To run the model on the system, the tflite_classification
executable [9] is used. It takes a TensorFlow Lite
model, label list, and image file/camera video stream
as inputs, and runs the model on the device.

Unfortunately, the GPIO pins could not be accessed
and therefore the solenoid lock could not be used
during implementation. Therefore, the system was
modified to have the output driven through the HDMI
and displayed on a monitor rather than through a GPIO
line. Several scripts were developed to have this model
run as a camera application on the Matrix GUI.

4 RESULTS

When presented with images from each of the three
classes (adult, child, room), the model is able to
correctly predict whether the system should lock or
unlock. Figures 5, 6, and 7 show the results of the
model with the camera fixed on a transitioning slide
show. First, a child’s face is shown, and the model
correctly outputs LOCK with high probability. Then,
the model is shown an adult’s face, and the output
changes to UNLOCK. This output has lower
probability, but it has still made the correct prediction.
Finally, an image of a kitchen is shown, and the model
correctly outputs LOCK again.

Figure 5: Model Prediction for Child Image

Figure 6: Model Prediction for Adult Image

Figure 7: Model Prediction for Room Image

5 CONCLUSION

Although the lock had to be removed from the final
implementation, the results were promising and show
that the system works correctly when presented with
various images in real-time. If the outputs of this
system were to be connected to a solenoid lock as
originally intended, the cabinet would successfully
lock and unlock based on the camera input. The next
steps are to apply this design to a physical storage
system, making SmartCabinet another smart device for
your home.

REFERENCES

[1] AM574x Industrial Development Kit
https://www.ti.com/tool/TMDSIDK574

[2] OmniVision OV2659 Camera Sensor
https://www.digchip.com/datasheets/3262771-ov2659-color-cmos-uxga-2-
megapixel.html

[3] Uxcell DC 6V 1.5A Electromagnetic Solenoid Lock
https://www.amazon.com/uxcell-Electromagnetic-Solenoid-Assembly-
Electirc/dp/B07TKR7KLH/ref=sr_1_8?dchild=1&keywords=solenoid+lock&qid=16
20654711&sr=8-8

[4] MobileNet
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.
md

[5] UTKFace Dataset
https://www.kaggle.com/jangedoo/utkface-new

[6] House Rooms Image Dataset
https://www.kaggle.com/robinreni/house-rooms-image-dataset

[7] Albumentations
https://albumentations.ai/

[8] TensorFlow Lite
https://www.tensorflow.org/lite

[9] TI TensorFlow Lite Demo
https://git.ti.com/cgit/apps/tensorflow-lite-examples/tree/

