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ABSTRACT 

In recent years, the field of deep learning has exploded 
and it is quickly changing today’s technology. As a tool 
for solving various types of problems, deep learning 
influences many different disciplines and fields. Some 
example problems deep learning models can solve are 
image classification, facial recognition, natural 
language processing, and recommendation systems, to 
name a few. Deep learning is being applied to homes 
to create “smart” appliances for everyday items. For 
example, a smart oven may use deep learning to predict 
what kind of food you are cooking, and automatically 
set a cooking time based on the predicted food. 

 

1    INTRODUCTION 

Safety is the number one priority when having children 
present in the house. It is good practice to keep 
dangerous tools and substances out of children’s reach 
by storing them in locked cabinets or hard to reach 
places. However, this provides an inconvenience, and 
may not even be possible in some households. This is 
the motivation behind SafeCabinet, an automated 
locking storage system for households designed to be 
used in kitchens, bathrooms, or any other household 
room where dangerous items need to be secured.  

SafeCabinet’s camera tracks who is trying to access the 
cabinet and uses deep learning to predict the age of the 
individual. If it predicts the individual to be a child, or 
if the room is empty, the cabinet remains locked. If the 
prediction is an adult, the cabinet unlocks.  

SafeCabinet is designed to be lightweight for 
embedded system integration and hands-free for user 
convenience. Deep learning inference occurs on the 
device for quick response times. 

2 DESIGN 
 
The system consists of three main components: a 
camera used for sensing, a central processing board 
that performs all of the system’s data computations and 
device communication, and a solenoid lock used for 
locking the cabinet. A data-flow diagram of the system 
is shown in Figure 1. 

 
Figure 1: System Data-flow Diagram 

2.1    HARDWARE 
 
The system’s main component is TI’s AM574x 
Industrial Development Kit (IDK) [1]. This 
development board can be used for a wide range of 



 
 

 

 

applications in industrial control and communication, 
automation, robotics, etc. The board not only serves as 
the central processing unit for all of the system’s 
peripheral devices, but also hosts the deep learning 
model. It contains 2GB of DDR3L SDRAM, a 70MB 
microSD card, 16GB of eMMC NAND Flash and 
32MB of SPI NOR Flash. In addition to the AM5748 
processor that contains dual ARM Cortex-A15 and 
C66X DSP cores, the board also has two embedded 
vision engines (EVEs) that provide acceleration of 
deep learning algorithms. Since the deep learning 
inference occurs on-device, the large amount of 
memory, powerful processing cores and additional 
EVEs make the AM574x IDK an ideal development 
board for this project. A top view of the AM574x IDK 
is shown in Figure 2. 

 
Figure 2: TI AM574x Industrial Development Kit 

The OmniVision OV2659 SoC camera [2] is used as 
the system’s sensing device and connects directly to 
the development board. It supports 720p HD video 
recording at 30 fps and low-light sensitivity, making it 
a good sensor for general use in any room.  

Lastly, a 6V electromagnetic solenoid lock [3] is used 
as the system’s locking mechanism. The lock connects 
to the board through one of the GPIO pins. When the 
line is low, the circuit is off and remains unlocked. 
When the line goes high, the circuit is on and locks. 
The lock is small and lightweight, making it easy to be 
mounted on a cabinet door. 

2.2    SOFTWARE 

The system runs a Linux ARM OS on a microSD card. 
The entire OS filesystem can be accessed by mounting 
the microSD card on a Linux virtual machine, and all 
programming for the project is done in the virtual 
machine and put directly onto the card. When the SD 
card is on the board and the system is live, the OS can 
be accessed through its Matrix GUI by connecting an 
HDMI cable from the board to a display monitor. 

To perform age classification, a TensorFlow deep 
learning model is developed using a Google Colab 
Notebook connected to a local runtime. Transfer 
learning techniques are used during development; an 
open-source model pretrained on ImageNet serves as 
the base to increase optimization convergence and 
decrease training time. MobileNetV1 [4] is chosen as 
the base model as it is designed to be lightweight and 
computationally efficient, making it ideal for 
embedded systems. The first 30% of the model’s inner 
layers are frozen to preserve initial low-level weights, 
while the rest of the model is trainable. The head of the 
model includes a 2D convolution layer, a 2D global 
average pooling layer and a dropout layer for 
regularization, and a dense layer for prediction outputs. 
For each input image, the model outputs a two-element 
array where the value at index 0 corresponds to the 
predicted probability of the image belonging to class 0 
(LOCK) and index 1 corresponds to the predicted 
probability it belongs to class 1 (UNLOCK). A 
summary of the model is shown in Figure 3.  

 
Figure 3: Deep Learning Model Summary 

  

 



 

3 IMPLEMENTATION 

For model training, a dataset with 28,958 total images 
consisting of two open-source labeled datasets is used, 
the UTKFace dataset [5] and the House Rooms Image 
Dataset [6]. The images are sorted into two classes: 
LOCK and UNLOCK. The age threshold is set at 11; 
images of individuals under the age threshold and 
images of house rooms are classified as LOCK while 
images of individuals over the age threshold are 
classified as UNLOCK. With this labeling, the trained 
system will unlock for individuals over 11 and lock for 
children under 11 and empty rooms. After sorting the 
images, there are 20,425 images of older individuals, 
3,283 images of younger individuals, and 5,250 images 
of rooms. Since this is an imbalanced dataset biased 
towards older individuals, image augmentation 
techniques are used via the Albumentations library [7]. 
In the image augmentation pipeline, images are 
replicated and minor random adjustments such as 
shifts, rotates, and crops are performed to augment the 
dataset with more images. The images are also resized 
to 224x224 and split into three sets: training, 
evaluation, and test.  

The deep learning model is compiled with categorical 
cross entropy loss and the Adam optimizer. After 
training on the augmented training and evaluation sets 
for 20 epochs, the model is evaluated on the test dataset 
and results in 97.57% accuracy. The prediction results 
on a batch from the test set are shown in Figure 4. 

 
Figure 4: Model Prediction Test Results 

The model is now ready for on-device inference, but 
first it is converted to a TensorFlow Lite model [8]. The 
TensorFlow Lite format optimizes for on-device 

machine learning in terms of size, power consumption, 
and performance, making it ideal for embedded 
systems. After conversion, the model is put onto the SD 
card. 

To run the model on the system, the tflite_classification 
executable [9] is used. It takes a TensorFlow Lite 
model, label list, and image file/camera video stream 
as inputs, and runs the model on the device.  

Unfortunately, the GPIO pins could not be accessed 
and therefore the solenoid lock could not be used 
during implementation. Therefore, the system was 
modified to have the output driven through the HDMI 
and displayed on a monitor rather than through a GPIO 
line. Several scripts were developed to have this model 
run as a camera application on the Matrix GUI.  

 

4 RESULTS 

When presented with images from each of the three 
classes (adult, child, room), the model is able to 
correctly predict whether the system should lock or 
unlock. Figures 5, 6, and 7 show the results of the 
model with the camera fixed on a transitioning slide 
show. First, a child’s face is shown, and the model 
correctly outputs LOCK with high probability. Then, 
the model is shown an adult’s face, and the output 
changes to UNLOCK. This output has lower 
probability, but it has still made the correct prediction. 
Finally, an image of a kitchen is shown, and the model 
correctly outputs LOCK again. 

 
Figure 5: Model Prediction for Child Image 



 
 

 

 

 
Figure 6: Model Prediction for Adult Image 

 
Figure 7: Model Prediction for Room Image 

5    CONCLUSION 

Although the lock had to be removed from the final 
implementation, the results were promising and show 
that the system works correctly when presented with 
various images in real-time. If the outputs of this 
system were to be connected to a solenoid lock as 
originally intended, the cabinet would successfully 
lock and unlock based on the camera input. The next 
steps are to apply this design to a physical storage 
system, making SmartCabinet another smart device for 
your home.  
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