
Distributed Home Environment Monitoring System
KEYANG YU, Florida International University, United States

As a widely applied smart home management device, Raspberry Pi has been
deployed in various smart facilities. Most smart thermometers or motion
sensors have limit capabilities for customization, and most of them are close
sourced, which make it difficult for users to add additional functions. This
work proposed a simple, low-cost, and highly user-tunable home environ-
ment monitoring platform based on Raspberry Pi and 2 digital sensors -
DHT11 and HC-SR501. The system comes with distributed data collection,
storage and visualization, which is easily expandable.

Additional Key Words and Phrases: IoT, Smart Home, Data Visualization

ACM Reference Format:
Keyang Yu. 2018. Distributed Home Environment Monitoring System. 1, 1
(December 2018), 4 pages. https://doi.org/10.1145/1122445.1122456

1 OVERALL DESIGNING
The designing can be devided into three main phases:

• Connect temperature humidity sensor and infrared motion
sensor to the GPIO slots on Raspberry Pi, and collect the
real-time data. Prepare for sending the data though Socket to
an Windows platform.

• Build aMySQL database to save the temperature and humidity
data. The server side application receives data from Socket
and decode them for MySQL.

• Visualize the data from MySQL through HTML5 webpage,
supports auto refreshing for showing the latest data change.

The Socket communication on the client side (Pi) is pretty much
similar as our assignment 2. Each message contains the temperature,
humidity and timestamp on the Pi (which actually is the UTC time),
arranged in a fixed format, and encoded into bitstream to send to
our Windows device in local area network.

On our Windows device, we struggled pretty much on importing
a proper Python driver for accessing our MySQL database and in
vain. So We considered using Maven, which is able to automatically
fetch required packages for a Java application. Thus, we designed a
Java server to receive message from our Pi client.
The server application will first decode the bitstream, and read

the temperature, humidity, and timestamp data into memory by con-
ventional format. Then it will insert the data into MySQL database
for further processing.
To visualize our data, we considered an open-source project

named Chart.js. Which is able to plot several types of diagrams
according to data from databases or even txt files. We made several

Author’s address: Keyang Yu, kyu009@fiu.edu, Florida International University, 11200
SW 8th Street, Miami, Florida, United States.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2018/12-ART $15.00
https://doi.org/10.1145/1122445.1122456

Fig. 1. Hardware Overview

modifications to the original project to fit our project. Which in-
cludes webpage auto refreshing, plotting multiple lines in one chart
and so on.

2 DESIGN BREAKDOWN

2.1 Raspberry Pi
2.1.1 Hardware. We first connected the DHT11 (temperature hu-
midity sensor) and HC-SR501 (infrared motion sensor) onto a bread
board. The blue component on the bottom left part of Figure 1 is
DHT11, and the white hemi-sphere on the top left part of Figure 1
is HC-SR501.
Figure 2 and Figure 3 showed the connection details for both

sensor modules to the Pi. The DHT11 uses 3.3V as Vcc, and HC-
SR501 uses 5V as Vcc, so we connect pin 1 (black wire) and pin 2 (red
wire) separately to the breadboard as two different power source
for our sensors. And we use pin 6 (gray wire) as ground for both
sensor. Then, we connected GPIO4 (pin 7, white wire) to DHT11,
and GPIO5 (pin 29, brown wire) to HC-SR501 for data exchanging.

2.1.2 Software. In the datasheet of both sensor module, the manu-
facturer provided the rule for handshake and serial data format. We
can easily control the GPIO slots in Python applications.

We take DHT11, the temperature sensor for example. The GPIO
object in the code provides several operations to the assigned slot
as described in the comments (Figure 4). Since the temperature and
humidity data was sent through 40 bit serial data, we need to decode
them into integers for easier processing.

In Figure 5, the serial data was first segmented (line 43 to 54), and
then decoded (line 56 to 68). The first 8 digit of the serial data is
the integer part of humidity, 9th to 16th digit is the decimal part of
humidity. The 17th to 24th digit is the integer part of temperature,
and 25th to 32nd digit is the decimal part of temperature. Since the
serial data is possibly contains errors in some digits due to level
interference, the 33rd to 40th digit is checksum for previous digits. If

, Vol. 1, No. 1, Article . Publication date: December 2018.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

2 • Keyang Yu

Fig. 2. GPIO Connections

Fig. 3. GPIO Pins for Raspberry Pi

the checksum is not corresponding to the previous data, this whole
serial data will be discarded (line 66). The serial message is showed
in Figure 6.

Fig. 4. Handshake and data reading for DHT11

Fig. 5. Data decoding for DHT11

Fig. 6. Data sample of DHT11

2.2 Database
As introduced in Section 1, we developed a Java application acts as
server to receive the data from Socket and insert data into MySQL
database. To import correct driver packages for accessing MySQL,
we first need to create a pom file for Maven. Then the required
packages will be automatically imported.

When inserting into MySQL, we need to decode the message into
three different data by using comma as separator (Figure 10 line 21).
The format of MySQL table is shown in Figure 12. The first row is
an auto incrementing ID for just identifying. The second and third
row are the integer part of temperature and humidity. The reason
why we didn’t consider the decimal part will be demonstrated in
next section, design tradeoffs. And the fourth row is the timestamp

, Vol. 1, No. 1, Article . Publication date: December 2018.

Distributed Home Environment Monitoring System • 3

Fig. 7. Maven pom

Fig. 8. Package List

Fig. 9. Package List

Fig. 10. Data Decoding

Fig. 11. Data Inserting

created on the Pi, which is actually the UTC time, in YYYY-MM-
DD HH-MM-SS format. As shown in Figure 10 and Figure 11, we
packed write method into writeDbContent method, mainly in order
to follow the encapsulation.

Fig. 12. Table Overview

Fig. 13. Data Fetching

Fig. 14. Page Refreshing

2.3 Chart Rendering
In chart rendering part, we designed a PHP method to fetch data
from assigned MySQL table.

Since the Pi client keeps sending messages and the database keeps
adding data into the table, the timeliness of our chart is essential.
So we refresh the web page every 3 seconds.
Since we want to show the temperature and humidity in one

chart, which is easier to see the data in one particular time point.
We decided to use timestamp as a common X-axis, and plot two
separate lines. The implementation is shown in Figure 15.

3 DESIGN TRADE-OFFS
There are several sacrifices in this project. Most of them are due to
the complexity of the whole system, and the lack of knowledge in
several particular disciplines like distributed system managing and
database managing.
In the Raspberry Pi section, most of our tentative plan has been

achieved. The DHT11 and HC-SR501 sensor works correctly, and
Socket communication is stable. However, we failed to connect the
motion sensor to Homeassisstant, which means the Wemo switch
cannot be triggered by the motion sensor.
In the MySQL section, as we introduced before, we waived on

using Python to access the database, mainly due to the lack of
knowledge on Python packages. However, the Mavon and Java

, Vol. 1, No. 1, Article . Publication date: December 2018.

4 • Keyang Yu

Fig. 15. Chart Plotting

Fig. 16. Visualization Results

application runs pretty well, the connection between Java server
and Python client is stable.

We discarded the decimal part of our temperature and humidity
data since the digit of decimal is usually different among differ-
ent readings. However, we changed our method by using info.split
method, which we can use comma for separator instead of read some
digit. Thus this problem was eliminated, and we will add decimals
into our data in future version.

Since we applied several custom setting on our router, Raspberry
Pi, and MySQL database, our project is difficult to reproduce in other
network environments, such as in the classroom. We will try to
improve the universality of our system. The Raspberry Pi has some
unknown problems which cause the failure on accessing it from
Internet. The problem may be due to the unexpected modification
to critical files by some services.
On the hardware side, we found that the readings from DHT11

sensor have a high error rate, as shown in Figure 17. The DHT11
sensor was connected directly to the GPIO slot on the Raspberry Pi,
and the VCC, GND may drifted from the designated value. Further
more, the wire connecting the sensor and the Pi may also have
higher resistance than expected, which may cause insufficient pull-
up voltage. To improve the performance, we may need to properly
ground the Pi, and use shorter wires to lower the resistance.

Fig. 17. Error Readings

4 POSSIBLE IMPROVEMENTS AND EXTENSION
This project is mainly to complete some basic work for the design
of advanced IoT projects. We built a set of distributed devices to
collect, store and displaying data. Unlike using existing platforms
like Homeassisstant, which may exist several restrictions on oper-
ating devices or services, we can extend the job to more complex
environments. What’s more , the sensor we chose is more flexible
and atomic comparing with IoT devices on market. Which means
the extendibility and robustness is higher.

Since we haven’t mastered the skill of building a long-term con-
nection between Java application and MySQL database, in order to
prevent unexpected connection failure, we open a connection when
we need to insert data, and close that connection right after we
finished inserting. This method has a some limitation, mostly on the
time resource trumpet. In this situation, we may not be able to deal
with messages coming in a relatively high frequency (1 message
per second or so), for the time cost for connecting is unstable, and
these operations are pretty costly. This problem could be fixed by
importing database connection pool, such as Mybatis, which is a
famous Java persistence framework for database management.

, Vol. 1, No. 1, Article . Publication date: December 2018.

	Abstract
	1 Overall Designing
	2 Design Breakdown
	2.1 Raspberry Pi
	2.2 Database
	2.3 Chart Rendering

	3 Design Trade-offs
	4 Possible Improvements and Extension

