
AutoTCL: Automated Time Series Contrastive Learning with Adaptive
Augmentations

Xu Zheng1, Tianchun Wang2, Wei Cheng3,
Aitian Ma1, Haifeng Chen3, Mo Sha1, Dongsheng Luo1

1 Knight Foundation School of Computing and Information Sciences, Florida International University
2 College of Information Science and Technology, Pennsylvania State University,

3 NEC Lab America
{xzhen019,aima,msha,dluo}@fiu.edu, tkw5356@psu.edu, {weicheng,haifeng}@nec-labs.com

Abstract
Modern techniques like contrastive learning have
been effectively used in many areas, including
computer vision, natural language processing, and
graph-structured data. Creating positive examples
that assist the model in learning robust and dis-
criminative representations is a crucial stage in con-
trastive learning approaches. Usually, preset hu-
man intuition directs the selection of relevant data
augmentations. Due to patterns that are easily rec-
ognized by humans, this rule of thumb works well
in the vision and language domains. However, it is
impractical to visually inspect the temporal struc-
tures in time series. The diversity of time series
augmentations at both the dataset and instance lev-
els makes it difficult to choose meaningful augmen-
tations on the fly. Thus, although prevalent, con-
trastive learning with data augmentation has been
less studied in the time series domain. In this
study, we analyze data augmentation for time se-
ries based on information theory and summarize
the most adopted transformations in a unified form.
On top of that, we generalize it to a parameterized
augmentation method to support adaptive usage in
time series representation learning. Experiments on
benchmark datasets demonstrate the highly com-
petitive results of our method, AutoTCL, with an
average 10.3% reduction in MSE and 7.0% in MAE
over the leading baselines.

1 Introduction
Time series data is complex, unstructured, and high-
dimensional, making it more difficult to gather the label
than images or languages. This property hinders the deploy-
ment of powerful deep learning methods, which typically re-
quire a large amount of labeled data for training[Eldele et
al., 2021a]. Self-supervised learning is a promising solution
due to its capacity in learning from unlabelled data. Simi-
lar to unsupervised learning, self-supervised learning meth-
ods learn a fixed-dimension embedding of the time series
data that preserves its inherent features with better transfer-
ability and generalization capacity. A representative frame-

work, contrastive learning, has been successful in represen-
tation learning for various types of data including vision,
language, and graphs[Chen et al., 2020; Xie et al., 2019;
You et al., 2020]. These methods train an encoder to map in-
stances to an embedding space where similar instances (posi-
tive pairs) are easily distinguished from dissimilar ones (neg-
ative pairs). As a result, model predictions are unaffected by
minor noise introduced into the inputs or hidden states. As a
key component, data augmentation such as jittering, scaling,
permutation, and subsequence extraction [Fan et al., 2020;
Wen et al., 2021], is usually adopted to produce positive pairs.

Compared to other forms of data, the time series do-
main has seen less research on contrastive learning [Eldele
et al., 2021a; Franceschi et al., 2019; Fan et al., 2020;
Tonekaboni et al., 2021]. Due to the diversity and variability
of real-time series data, it is challenging to apply a general
augmentation technique to all datasets. As a result, current
approaches to contrastive learning for time series data fre-
quently need particular data augmentation techniques that are
guided by domain knowledge and necessitate trial and error to
identify the most appropriate augmentations. Attempts have
recently been made to study the theory behind adaptive aug-
mentation selection for contrastive learning [Tian et al., 2020;
Suresh et al., 2021; Xu et al., 2021]. Good augmentations,
according to InfoMin [Tian et al., 2020], produce label-
preserving views with less shared information. They dis-
cover the best perspectives through adversarial training in
unsupervised or self-supervised environments by adding an
invertible flow-based generative model. The InfoMin prin-
ciple performs well in the vision area and has been suc-
cessfully applied to graph-structured data [Xu et al., 2021;
Suresh et al., 2021; Yin et al., 2022; You et al., 2022]. How-
ever, in a self-regulated environment, the majority of existing
studies soften the label-preserving property and place a more
significant emphasis on enhancing diversity by reducing the
exchange of information between different views. They fre-
quently use stronger transformers as augmentations and un-
dermine the semantics, which is inapplicable to time series
data.

In order to accommodate various augmentation tactics for
time series contrastive learning, we investigate the data aug-
mentation for time series from the information theory per-
spective and provide a theoretical sound definition of good
augmentations based on input factorization. We further

present a parameterized framework, AutoTCL, to adaptively
transform data for contrastive time series learning based on
the proposed factorization technique, which can prevent ad-
hoc decisions or laborious trial-and-error tuning. Specifically,
we utilize a parametric neural network to learn to factorize an
instance into two parts: the task-irrelevant part and the in-
formative part. The informative component is then applied
to a lossless transform function to keep the instance’s se-
mantics. The adaptive transformation produces a prior mask
for the input instance to generate workable positive samples.
We demonstrate how the most effective time series data aug-
mentation methods can be viewed as specialized forms of
the suggested mask-based transformation. By adding another
random variable with adequate variance, the diversity of the
augmented view is further increased. In order to learn rep-
resentations through contrast, augmented pairs are then fed
into a time series encoder along with randomly chosen neg-
ative pairings. Parameters in the factorization network and
transform function, are optimized in tandem with contrastive
learning. We also introduce a reparameterization strategy to
enable efficient backpropagation. Our main contributions are
summarized as follows.

• We introduce a novel factorization-based framework to
guide data augmentations for contrastive self-supervised
learning without prefabricated knowledge.

• To automatically learn workable transformations for
time series data, we provide a straightforward yet effec-
tive instantiation that can handle a variety of frequently
applied augmentations.

• With comprehensive experimental studies, we empiri-
cally verify the advantage of the proposed method on
benchmark time series forecasting datasets. We achieve
highly competitive performances with a 6.5% reduction
in MSE on 4.7% in MAE on univariate forecasting and a
2.9% reduction in MSE on 1.2% in MAE on multivariate
forecasting. In classification tasks, our method achieves
a 1.2% increase in average accuracy.

2 Related work
2.1 Contrastive learning for time series.
Contrastive learning has been widely used in representa-
tion learning, achieving superior results across various do-
mains [Chen et al., 2020; Xie et al., 2019; You et al.,
2020]. Recently, there have been efforts to apply con-
trastive learning to the time series domain [Oord et al., 2018;
Franceschi et al., 2019; Fan et al., 2020; Eldele et al., 2021a;
Tonekaboni et al., 2021; Yue et al., 2021]. In [Franceschi
et al., 2019], Franceschi et.al. utilize subsequences to gen-
erate positive and negative pairs. TNC uses a debiased
contrastive objective to make sure that in the representation
space, signals from the local neighborhood are distinct from
those that are not neighbors [Tonekaboni et al., 2021]. Self-
Time uses several custom-designed augmentations for un-
supervised contrastive learning of time series by examin-
ing both the relations between different samples and those
within samples [Fan et al., 2020]. TS2Vec uses hierarchi-
cal contrastive learning to acquire a representation for each

time stamp [Yue et al., 2021]. TF-C utilizes the distance be-
tween time and frequency components as the self-supervised
signal for representation learning. Each component is inde-
pendently optimized by contrastive estimation [Zhang et al.,
2022]. BTSF further includes spectral information and uti-
lizes a simple dropout to capture the long-term relationship
within each instance [Yang and Hong, 2022]. In [Nonnen-
macher et al., 2022], the authors introduce an approach that
incorporates expert knowledge into time-series representa-
tion learning using expert features, surpassing existing meth-
ods in unsupervised and semi-supervised learning on real-
world datasets. CLUDA [Ozyurt et al., 2022], a novel frame-
work for unsupervised domain adaptation of time series data,
utilizes contrastive learning to learn contextual representa-
tions that preserve label information, achieving state-of-the-
art performance in time series unsupervised domain adapta-
tion. However, data augmentations in these methods are not
widely applied in complex real-life datasets due to the limi-
tations of being either universal or chosen through trial and
error.

2.2 Adaptive data augmentation
Data augmentation is a crucial aspect of contrastive learn-
ing. Previous studies have shown that the choice of opti-
mal augmentation methods depends on the specific task and
dataset being used [Chen et al., 2020; Fan et al., 2020]. Some
studies have explored the adaptive selection of augmentation
methods for contrastive learning in the visual domain, such
as AutoAugment [Cubuk et al., 2019], which uses a rein-
forcement learning method to search for the best combina-
tion of translation policies. Faster-AA [Hataya et al., 2020],
which improves the searching pipeline for data augmenta-
tion using a differentiable policy network. DADA introduces
an unbiased gradient estimator that enables a more efficient
one-pass optimization strategy [Li et al., 2020]. In the con-
trastive learning frameworks, the InfoMin theory is applied
to guide the selection of good views for contrastive learning
in the vision domain [Tian et al., 2020], it further proposes a
flow-based generative model to transfer images from natural
color spaces into novel color spaces for data augmentation.
[Rommel et al., 2022] investigates automatic data augmen-
tation algorithms for deep learning, focusing on class-wise
policies and complex data types like neuroscience signals.
The proposed differentiable relaxation approach outperforms
other methods and introduces novel augmentation operations
for EGG data classification. In [Aboussalah et al.,], RIM, a
recursive framework for time series augmentation, was pro-
posed. However, given the complexity of time series data,
directly applying the InfoMin framework may not be suit-
able. Different from previous works, our focus is on the time
series domain and we propose an end-to-end differentiable
method to automatically learn the optimal augmentations for
each time series instance.

3 Methodology
In this section, we first describe the notations used in this pa-
per. Then, we try to answer the following research questions.
(1) What are the good views for contrastive learning in the

Figure 1: The framework of the proposed AutoTCL. 1⃝ is the fac-
torization function to extract the informative part from the original
instance guided by the Principle of Relevant Information. 2⃝ is the
encoder network, which is optimized with the contrastive objective.

self-supervised setting? (2) How to obtain good views for
each time series instance for contrastive learning?

3.1 Notations
We use a T × F matrix to represent a time series instance x,
where T is the length of its sequence and F is the dimension
of features. With F > 1, x is a multivariate time series in-
stance. Otherwise, with F = 1, x is a single variate instance.
Self-supervised contrastive learning aims to learn an encoder
fθ that maps x from RT×F to a vector space RD, where θ
represents the parameters in the encoder network and D is
the dimension of embedding vectors. In the paper, to distin-
guish random variables and instances, we use the Sans-serif
style lowercase letters, such as x, to represent random time
series variables, and italic lowercase letters, such as x, for
real instances.

3.2 What makes good views for contrastive
self-supervised learning?

In the literature, a well-accepted intuitive principle for view
generation is that good views preserve the semantics and pro-
vide sufficient variances [Tian et al., 2020; Yin et al., 2022;
Suresh et al., 2021]. In the supervised setting, where training
labels are available, the semantics of an instance is usually
approximated with the label. On the other hand, semantics-
preserving is much under-explored in the more popular self-
supervised learning. Moreover, unlike images and natural
language sentences, whose semantics can be manually ver-
ified, the underlying semantics of time series data are not
recognizable to humans, making it more challenging, if not
impossible, to include strong yet faithful data augmentations
for such complicated data. To avoid the degenerate solutions
caused by dismissing the semantics-preserving, InfoMin uti-
lizes an invertible flow-based function, denoted by g, to gen-
erate a view v for an input x [Tian et al., 2020]. Such that
x can be restored by x = g−1(v). However, from the infor-
mation theory perspective, invertible functions fail to include
extra variance to the original variable. Formally, we have the
following property.
Property 1. If view v is generated from x with an invertible
function v = g(x). Then H(v) = H(x) = MI(x; v), where

H(x), H(v) are entropy of variables x and v, respectively;
MI(v; x) is mutual information between v and x.

The detailed proof can be found in Appendix. This prop-
erty shows that the entropy of the augmented view, H(v),
is no larger than that of original data, H(x), indicating that
the existing data augmentation methods don’t bring new in-
formation for input instances, which limits their expressive
power for time series contrastive learning. To address the
challenge and facilitate powerful self-supervised learning in
the time series domain, we propose a novel factorized aug-
mentation technique. Specifically, given an instance x, we
assume that x can be factorized into two parts, informative
x∗ and noise/task-irreverent part ∆x. Formally,

x = x∗ +∆x. (1)

As the informative part, x∗ encodes the semantics of the origi-
nal x. Motivated by the intuitive principle, we formally define
good views for contrastive learning as follows.
Definition 1 (Good View). Given a random variable x with
its semantics x∗, a good view v for contrastive learning can
be achieved by v = g(x∗) + ∆v, where g is an inveri-
ble function, and ∆v is a task-irrelevant noise, satisfying
H(∆v) ≥ H(∆x).

Intuitively, a good view, based on our definition, maintains
the useful information in the original variable and at the same
time, includes a larger variance to boost the robustness of en-
coder training. We theoretically show that the defined good
view has the following properties.
Property 2 (Task Agnostic Label Preserving). If a variable v
is a good view of x, and the downstream task label y (although
not visible to training) is independent to noise in x, the mutual
information between v and y is equivalent to that between raw
input x and y, i.e., MI(v; y) = MI(x; y).
Property 3 (Containing More Information). A good view v
contains more information comparing to the raw input x, i.e.,
H(v) ≥ H(x).

Detailed proofs are given in Appendix. These properties
show that in the self-supervised setting, adopting a good view
for contrastive learning theoretically guarantees that we will
not decrease the fidelity, regardless of the downstream tasks.
Simultaneously, the good view is flexible to the choice of ∆v,
meaning that strong augmentations may be utilized to incor-
porate enough diversity for training.

3.3 How to achieve good views?
The theoretical analysis suggests a factorized augmentation
to preserve task-agnostic labels and improve the diversity of
views. In this part, we introduce a practical instantiation
to obtain good views based on parametric augmentations as
demonstrated in Fig. 1. We first introduce a factorization
function h : RT×F → {0, 1}T×1 to detect the informative
components of the input. Formally,

Factorization mask m(h) = h(x)

Informative component x∗ = m(h) ⊙ x

Noise component ∆x = x− x∗,

(2)

where ⊙ is a generalized Hadamard product operation be-
tween a vector(matrix) and another vector(matrix). If both

Figure 2: The architecture of our augmentation network.

two inputs are vectors, such as v and m, then v ⊙m de-
notes the element-wise product; if the first operator a vector
v ∈ RN and the second one is a matrix M ∈ RN×M , we first
stack M copies of v to get a matrix V ∈ RN×M , then apply
the normal Hadamard product on V and M ; if both inputs
are matrices with the same shape, ⊙ is the vanilla Hadamard
product. For the invertible function applied on x∗, we present
a mask-based instantiation. More sophisticated mechanisms,
such as normalization flow [Kobyzev et al., 2020], can also
be used as a plug-and-play component. Specifically, we in-
troduce a non-zero mask m(g) ∈ RT

+ to form the transforma-
tion. Specifically, we have v∗ = m(g) ⊙ x∗ . It is easy to
show that such a non-zero mask transformation is lossless as
the original x∗ can be restored by

x∗ =
1

m(g)
⊙ v∗. (3)

Considering the diverse nature of time series instances, which
even differ inside a dataset, a universal mask is infeasible for
all instances. For example, the cutout transform works well
for a time series instance and the jitter transform is more suit-
able for another. To support the instance-level adaptive se-
lection of suitable transforms, we propose a parametric mask
generator, denoted by g : RT×F → RT

+, that learns to gen-
erate the non-zero mask for lossless transformation in a data-
driven manner. Formally, m(g) = g(x) . By combing the fac-
torization function, the mask generator, and a random noise
for perturbation, ∆v, Then, a good view v for contrastive
learning can be achieved. Formally, we have

v = v∗ +∆v = m(g) ⊙ x∗ +∆v,

= g(x)⊙ h(x)⊙ x+∆v. (4)

Practical instantiation with augmentation neural net-
work. According to the Universal Approximation Theorem
(Chapter 6 in [Goodfellow et al., 2016]), we implement g(x)
and h(x) with neural networks, respectively. We first uti-
lized the same input layer and a stacked dilated CNN mod-
ule [Franceschi et al., 2019; Yue et al., 2021] for both g(x)
and h(x), respectively. Then, we include two projectors
heads, a factorization head for h(x) and an augmentation
head for g(x). The architecture of the overall augmentation

network is shown in Fig. 2. To ensure the binary output of the
factorization function h(x), we introduce a stochastic mech-
anism following the factorization head. Specifically, we as-
sume that each element in the output m(h), denoted by m

(h)
i ,

is drawn from a Bernoulli distribution parameterized by πi,
which is calculated by the factorization head.

To enable efficient optimization with gradient-based meth-
ods, we approximate the discrete Bernoulli processes with
hard binary concrete distributions [Louizos et al., 2017].
Specifically, we first draw m̃

(h)
i from a binary concrete distri-

bution with πi indicating the location [Maddison et al., 2016;
Jang et al., 2016]. Formally,

m̃
(h)
i = σ((log ϵ− log(1− ϵ) + log

πi

1− πi
)/τ), (5)

where ϵ ∼ Uniform(0, 1) is an independent variable, σ(·)
is the sigmoid function, and τ is the temperature controlling
the approximation. The rationality of such an approximation

is that with temperature τ > 0, the gradient ∂m̃
(h)
i

∂πi
is well-

defined. The output of the binary concrete distribution is in
the range of (0,1). To further facilitate the binary selection,
we stretch m̃

(h)
i the range to (γ, ζ), with γ < 0 and ζ > 1.

Then, the final masking element m(h)
i is obtained by clipping

values to the range [0, 1]. Formally,

m
(h)
i = min(1,max(m̃(h)

i (ζ − γ) + γ, 0)). (6)

∆v as random timestamp masking. To increase the vari-

ance of augmented views, inspired by Dropout [Srivastava et
al., 2014] and TS2Vec [Yue et al., 2022], we implement ∆v
by masking the hidden representation at the first layer. Specif-
ically, given a latent vector of a view v after the first hidden
layer, we randomly mask it along the time dimension with a
binary vector mv ∈ {0, 1}T . Each element in mv is sampled
independently from a Bernoulli distribution Bern(0.5).

Regularization of temporal consistency. As shown in pre-
vious studies [Luo et al., 2023], informative signals tend to be
continuous. Thus, we include regularization of temporal con-
sistency when generating the factorization mask. Specifically,
given a batch XB , for each instance x ∈ XB , we randomly se-
lect a time point a as the anchor. Then we randomly selected
a time point p from the left or right position of a to create a
positive pair (a, p). Their mask values m(h)

x,a and m
(h)
x,p should

be similar, compared to another point n that is far away from
a, whose mask value is denoted by m

(h)
x,n. Formally, we have

the following triplet loss.

Lr =
1

XB

∑
x∈XB

(|m(h)
x,a −m(h)

x,p| − |m(h)
x,a −m(h)

x,n|). (7)

Relationship to existing augmentations for time series. In
recent years, various types of data augmentation techniques
have been applied to enhance the performance of deep learn-
ing on time series dasta [Wen et al., 2021; Yue et al., 2022;
Fan et al., 2020], including time domain, frequency domain,
and their hybrids. Our instantiation can be considered a
general augmentation framework in the time domain. Most

existing techniques in this category, such as cropping, flip-
ping, scaling, and jittering can be unified in our framework.
For example, cropping, which deletes a subsequence, can be
achieved by letting g(x) = x and the cropping time steps
in m(h) be 0; scaling, which multiplies the input time se-
ries by a scaling factor, either a constant or being sampled
from a Gaussian distribution, can also be obtained by setting
m(h) = 1 and m(g) being the scaling factor.

3.4 Training algorithm
In the proposed framework, there are two parametric neural
networks to be optimized, i.e., the encoder and the augmenta-
tion networks. In a nutshell, the augmentation network aims
to generate perceptually realistic views with high diversities,
and the encoder aims to distinguish the positive pairs from
randomly sampled negative pairs. Our method is used as
plug and play component and can be used in a wide range
of contrastive learning frameworks, such as TS2Vec [Yue et
al., 2022] and CoST [Woo et al.,]. In this section, we first
introduce a new objective to train the augmentation network
followed by the alternating training of encoder and augmen-
tation networks.

Training the augmentation network with the principle of
relevant information. Existing optimization techniques for
the learnable augmentation and the encoder generally fol-
low the principle of Information Bottleneck (IB) [Tishby
et al., 2000], which aims to achieve sufficient and min-
imal representations [Tian et al., 2020; Yin et al., 2022;
Suresh et al., 2021]. However, IB relies on the class la-
bels from the downstream task, making it unsuitable for self-
supervised training where there are few or no labels. Instead
of following previous works that adversarially train the en-
coder and augmentation networks, which may fail to pre-
serve the semantics in time series data, we train the augmen-
tation network based on the Principle of Relevant Information
(PRI) [Principe, 2010]. Unlike supervised IB which relies on
another variable as well as their joint distributions, PRI only
exploits the self-organization of a random variable, making it
fully unsupervised. Specifically, with PRI training the aug-
mentation network, we aim to achieve a reduced statistical
representation x∗ by decomposing x as follows.

LPRI = minβH(x∗) +D(P(x)||P(x∗)), (8)
where β is the trade-off hyper-parameter, H(x∗) is the en-
tropy of representation variable x∗, and D(P(x)||P(x∗)) is
the divergence between distributions of the original variable
x and transformed variable x∗. The minimization of H(x∗)
aims to reduce uncertainty and obtain statistical regularity in
x∗ and the second term is for preserving the descriptive power
of x∗ about x.

Given an instance x, the informative part x∗ is obtained
by applying a binary factorization mask m(h) ∈ {0, 1}T on
x, thus, minimizing the first term in Eq. (8), H(x∗), can be
achieved by minimizing the number of non-zero elements in
the factorization mask, i.e. ||m(h)||0. According to the cal-
culation of m(h) in Eq. (6), we have

||m(h)||0 =

T∑
t=1

(
1− σ(τ log

−γ(1− πt)

ζπt
)

)
. (9)

To preserve the descriptive power of x∗ about x, we
follow existing works and approximate the second
term D(P(x)||P(x∗)) with the maximum mean discrep-
ancy(MMD) [Gretton et al., 2012]. Formally, given a
mini-batch XB , we have our practical objective as follows.

LPRI =
1

XB

∑
x∈XB

β||m(h)
x ||0 + MMD(zx, zx∗) (10)

where m
(h)
x is the factorization mask of instance x,1 and

sim(zx, zx∗) is the inner product between representation vec-
tors zx and zx∗ . The final augmentation network loss could
be formulated as:

Laug = LPRI + λLr (11)

Alternating training. To effectively train encoder and aug-
mentation networks, we follow GAN [Goodfellow et al.,
2020] to use an alternating training schedule that trains the
embedding network M times and then trains the augmenta-
tion network one time. M is a hyper-parameter determined
by grid search.

4 Experiments
In this section, we compare AutoTCLwith representative and
SOTA baselines on time series forecasting and classification
tasks. We also conduct ablation studies to show insights into
each component in AutoTCL. All experiments are conducted
on a Linux machine with 8 NVIDIA A100 GPUs, each with
40GB of memory. The software environment is CUDA 11.6
and Driver Version 520.61.05. We used Python 3.9.13 and
Pytorch 1.12.1 to construct our project. Due to the space limi-
tation, detailed experimental setups, full experimental results,
and extensive experiments are presented in Appendix.

4.1 Time series forecasting

Datasets and baselines. Six benchmark datasets for time
series forecasting, ETTh1, ETTh2, ETTm1, [Zhou et al.,
2021], Electricity [Dua and Graff, 2017] dataset, Weather
dataset2, and Lora dataset are adopted for both univariate
and multivariate settings. Lora dataset is a new proposed
real-world dataset that captures the wireless signal data us-
ing the LoRa devices3. It contains 74 days of data with
timestamps. The proposed AutoTCL model is compared to
representative state-of-the-art methods such as TS2Vec [Yue
et al., 2022], Informer [Zhou et al., 2021], StemGNN [Cao
et al., 2021], TCN [Bai et al., 2018], LogTrans [Li et
al., 2019], LSTnet [Lai et al., 2018], CoST [Woo et al.,
], TNC[Tonekaboni et al., 2021], TS-TCC[Eldele et al.,
2021b], InfoTS [Luo et al., 2023] and N-BEATS [Oreshkin
et al., 2019], with N-BEATS being exclusive to univariate
forecasting and StemGNN to multivariate.

Setup. We follow CoST [Woo et al.,] network architecture.
A multi-layer dilated CNN module is used for the backbone

1We slightly reuse notations with different fonts. m
(h)
x is the

mask vector of x and m
(h)
i is the i-th element in a vector m(h).

2https://www.ncei.noaa.gov/data/local-climatological-data/
3https://lora-alliance.org/

Table 1: Univariate time series forecasting results.

AutoTCL TS2Vec Informer LogTrans N-BEATS TCN CoST TNC TS-TCC InfoTS

Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.076 0.207 0.110 0.252 0.186 0.347 0.196 0.365 0.218 0.375 0.263 0.431 0.091 0.228 0.150 0.303 0.168 0.316 0.091 0.227
ETTh2 0.158 0.299 0.170 0.321 0.204 0.358 0.217 0.391 0.326 0.442 0.219 0.362 0.161 0.307 0.168 0.322 0.298 0.428 0.149 0.299
ETTm1 0.046 0.154 0.069 0.186 0.241 0.382 0.270 0.416 0.162 0.326 0.200 0.349 0.054 0.164 0.069 0.191 0.158 0.299 0.050 0.157
Elec. 0.366 0.345 0.393 0.370 0.464 0.388 0.744 0.528 0.727 0.482 0.525 0.423 0.375 0.353 0.378 0.359 0.511 0.603 0.369 0.348
WTH 0.160 0.287 0.181 0.308 0.243 0.370 0.280 0.411 0.256 0.374 0.166 0.291 0.183 0.307 0.175 0.303 0.302 0.442 0.176 0.304
Lora 0.177 0.273 0.356 0.385 1.574 0.999 0.656 0.550 0.311 0.349 1.160 0.927 0.186 0.282 0.620 0.565 0.490 0.591 0.333 0.325

Avg. 0.157 0.258 0.207 0.301 0.486 0.477 0.382 0.441 0.320 0.388 0.419 0.465 0.168 0.271 0.256 0.340 0.315 0.441 0.188 0.274

Table 2: Multivariate time series forecasting results.

AutoTCL TS2Vec Informer LogTrans StemGNN TCN CoST TNC TS-TCC InfoTS

Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.656 0.590 0.788 0.646 0.907 0.739 1.043 0.890 0.738 0.632 1.021 0.816 0.650 0.585 0.904 0.702 0.748 0.635 0.784 1.622
ETTh2 1.191 0.815 1.566 0.937 2.371 1.199 2.898 1.356 1.940 1.077 2.574 1.265 1.283 0.851 1.869 1.053 2.120 1.109 1.474 0.914
ETTm1 0.409 0.441 0.628 0.553 0.749 0.640 0.965 0.914 0.729 0.626 0.818 0.849 0.409 0.439 0.740 0.599 0.612 0.564 0.568 0.521
Elec. 0.175 0.272 0.319 0.397 0.495 0.488 0.351 0.412 0.501 0.489 0.332 0.404 0.165 0.268 0.387 0.446 0.511 0.602 0.289 0.376
WTH 0.423 0.457 0.451 0.474 0.574 0.552 0.645 0.617 0.353 0.593 0.440 0.461 0.430 0.464 0.441 0.466 0.483 0.535 0.455 0.472
Lora 0.346 0.372 0.356 0.384 0.743 0.586 0.766 0.520 0.258 0.492 1.013 0.814 0.350 0.378 0.590 0.518 0.490 0.591 0.345 0.368
Avg. 0.545 0.499 0.697 0.571 0.990 0.708 1.138 0.798 0.753 0.651 1.057 0.781 0.561 0.505 0.837 0.637 0.838 0.675 0.665 0.556

and we remove the seasonal feature disentangler module. The
Augmentation network has the same feature extract architec-
ture and two projectors as shown in Fig. ??. In addition,
the proposed AutoTCL is a general data augmentation frame-
work that can also be combined with more recent methods,
such as BTSF [Yang and Hong, 2022], TF-C [Zhang et al.,
2022], and LsST [Wang et al., 2022] to further improve ac-
curacy performances. We leave this as our future work. Due
to the page limit, details of the experiments are provided in
Appendix. Time series forecasting aims to predict future time
stamps, using the last Lx observations. Following the method
presented in [Yue et al., 2021], a linear model regularized
with L2 norm penalty, is trained to make predictions. In the
univariate case, the model’s output has a dimension of Ly ,
while in the multivariate case, it has a dimension of Ly × F ,
where F is the number of features. The evaluation is based on
standard regression metrics, Mean Squared Error (MSE), and
Mean Absolute Error (MAE). To comprehensively evaluate
the performances, we consider different prediction lengths,
Ly .

Results. For each dataset, we calculate the average fore-
casting performances in both univariate and multivariate set-
tings. The results are shown in Table 1 and Table 2, re-
spectively. The detailed results of univariate and multivariate
time series forecasting could be found in Table 5 and Table 6
in Appendix. From these tables, we have several observa-
tions. First, in general, contrastive learning methods, includ-
ing AutoTCL, TSvec, CoST, and InfoTS, achieve better per-
formances compared to traditional baselines, indicating the
effectiveness of contrastive learning for learning time series
representations. Second, the consistent improvement of our
method over CoST indicates that universal data augmenta-
tions may not be the most informative for generating positive
pairs in various datasets. Compared to CoST, AutoTCL de-
creases the average MSE by 6.5% and the average MAE by

4.8% in the univariate setting. This is because AutoTCL can
adaptively learn the most suitable augmentations in a data-
driven manner, preserving semantics and ensuring sufficient
variance. Encoders trained with these informative augmenta-
tions lead to representations with higher quality. In the more
complicated multivariate setting, AutoTCL decreases the av-
erage MSE by 2.9% and the average MAE by 1.2% on aver-
age. In particular, AutoTCL reduces the MSE and MAE by
7.2% and 4.2% on the dataset ETTh2 compared to the second-
best baseline CoST [Woo et al.,].

4.2 Time series classification

Datasets and baselines. For the classification task, we eval-
uate our method on the UEA dataset [Dau et al., 2019],
which contains 30 multivariate time series datasets. We com-
pare our method with 8 state-of-the-art baselines, includ-
ing TS2Vec [Yue et al., 2022], T-Loss [Franceschi et al.,
2019], TNC [Tonekaboni et al., 2021], TS-TCC [Eldele et al.,
2021b], TST [Zerveas et al., 2021], DTW [Chen et al., 2013],
TF-C [Zhang et al., 2022] and InfoTS [Luo et al., 2023].

Setup. Similar to forecasting tasks, we use TS2Vec [Yue
et al., 2022] network architecture. In the training stage, we
use the same strategy as the forecasting tasks which could
be found in Appendix. We follow the previous setting [Yue et
al., 2022] that the evaluation is conducted in a standard super-
vised manner. A radial basis function kernel SVM classifier is
trained on the training set and then makes predictions on test
data. We report two metrics in the results, accuracy(ACC)
and rank(RANK).

Results. The results on the 30 UEA datasets are summa-
rized in Table 3. The detailed results can be found in Table 9
in Appendix. Overall, AutoTCL substantially outperforms
baselines with an average rank value 2.3. As shown in Ta-
ble 9, our method achieves the best results in 16 out of 30

Table 3: Classification result of the UEA dataset

Dataset AutoTCL TS2Vec T-Loss TNC TS-TCC TST DTW TF-C InfoTS

Avg. ACC 0.742 0.704 0.658 0.670 0.668 0.617 0.629 0.298 0.730
Avg. RANK 2.300 3.700 4.667 5.433 5.133 6.133 5.400 8.200 2.367

Table 4: Ablation studies and model analysis

AutoTCL W/o h(x) W/o g(x) W/o ∆v W/o Aug Cutout Jitter Adversarial

Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.076 0.207 0.077 0.208 0.078 0.209 0.086 0.219 0.095 0.231 0.088 0.221 0.086 0.219 0.089 0.224
ETTh2 0.158 0.299 0.168 0.305 0.178 0.312 0.176 0.311 0.170 0.309 0.160 0.306 0.173 0.317 0.187 0.319
ETTm1 0.046 0.154 0.052 0.161 0.050 0.159 0.051 0.163 0.053 0.162 0.053 0.164 0.056 0.170 0.052 0.163
Elec. 0.365 0.348 0.371 0.349 0.365 0.348 0.366 0.347 0.368 0.354 0.367 0.345 0.366 0.344 0.365 0.345
WTH 0.160 0.287 0.172 0.301 0.166 0.295 0.164 0.293 0.183 0.309 0.167 0.294 0.174 0.304 0.166 0.294
Lora 0.177 0.273 0.237 0.309 0.489 0.385 0.304 0.361 0.711 0.412 0.783 0.442 0.285 0.346 0.445 0.373

Avg. 0.157 0.258 0.173 0.270 0.216 0.282 0.185 0.280 0.260 0.294 0.266 0.394 0.184 0.281 0.212 0.284

datasets. In addition, it improves the classification accuracy
by 1.6%, on average, over the second-best baseline, InfoTS.
The comprehensive comparison indicates the effectiveness of
the proposed method.

4.3 Ablation study and model analysis.
In this set of experiments, we conduct ablatio studies to in-
vestigate the effectiveness of each component in the proposed
method.

Effectiveness of automatic data augmentation and
factorization
To present deep insights into the automatic data augmenta-
tion and factorization, we compare AutoTCL with multiple
groups of variants. (1)W/o h(x), W/o g(x), and W/o ∆v are
ablation studies about the effectiveness of each part of Au-
toTCL. In our experiments, W/o h(x) means the whole input
instance would be regarded as the informative part. W/o g(x)
represents the augmentation head g(x) would be replaced by
all 1 vectors and No noise will be added in W/o ∆v setting.
(2) Cutout and Jitter are two commonly adopted data aug-
mentation techniques for time series contrastive learning. We
replace the augmentation network in AutoTCL with these two
static transformations as variants. (3) Adversarial training
is routinely adopted in the literature to learn views for con-
trastive learning. For this variant, we adversarially train the
augmentation network by minimizing the mutual information
between views and original instances, approximated by the
InfoNCE [Tian et al., 2020]. We report the averaged perfor-
mances in Table 4 and The full results are shown in Table 7
in Appendix.

We have several observations in Table 4. First, by re-
moving the factorization head, W/o h(x) increase the MSE
by 10.19% and MAE by 4.65% respectively, verifying the
effectiveness of the proposed factorization-based augmenta-
tion. The comparison between AutoTCL, W/o g(x), and W/o
∆v indicates the importance of diversity in data augmenta-
tion. Specifically, W/o g(x) increases the MSE by 37.6% and
MAE by 9.3%; W/o ∆v increases by 17.83% and 8.52%, re-
spectively.

Second, the comparison between W/o Aug and Cutout
shows that universal and non-parametric augmentation tech-
niques may harm the performances of time series contrastive
learning. On average, Cutout performs even worse than
W/o Aug. This observation is consistent with the conclu-
sion drawn in TS2Vec [Yue et al., 2022]. By adaptive learn-
ing suitable augmentations, our methods can consistently and
significantly outperform these baselines.

Third, with the augmentation network trained in an ad-
versarial manner, the variant, Adversarial improves the per-
formances, indicating the necessity of adaptive augmenta-
tion for time series data. However, overlooking the semantic
preservation may generate trivial augmented views, hinder-
ing the performance of downstream contrastive learning. On
the other hand, our method achieves the best performances
in most cases, especially for forecasting long periods, which
verifies the advantage of our training algorithm.

5 Conclusion and future work
We present a novel factorization-based augmentation frame-
work for time series representation learning in the self-
supervised setting. Theoretical analysis from the informa-
tion theory perspective shows that the proposed framework is
more flexible to persevere semantics and includes sufficient
variances to augment views. On top of that, we provide a
simple and effective instantiation and an efficient training al-
gorithm. With time series forecasting as the downstream task,
we compare the proposed method, AutoTCL, with represen-
tative methods and verify its effectiveness.

As a general framework, our work is easy to combine with
existing state-of-the-art methods and achieve a better result.
In addition, AutoTCL exploits the informative part of time se-
ries data, which might help users better understand the time
series data. We believe our work can bring a positive effect
on such area and we do not see any negative side-effect of
this work at present. In the future, we plan to include aug-
mentations in the frequency domain into our factorization-
based framework to further improve the performance of Au-
toTCL. Moreover, we will also extend the technique to other
domains, such as graph-structured data.

References
[Aboussalah et al.,] Amine Mohamed Aboussalah, Minjae

Kwon, Raj G Patel, Cheng Chi, and Chi-Guhn Lee. Re-
cursive time series data augmentation. In The Eleventh
International Conference on Learning Representations.

[Bai et al., 2018] Shaojie Bai, J Zico Kolter, and Vladlen
Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv
preprint arXiv:1803.01271, 2018.

[Cao et al., 2021] Defu Cao, Yujing Wang, Juanyong Duan,
Ce Zhang, Xia Zhu, Conguri Huang, Yunhai Tong, Bix-
iong Xu, Jing Bai, Jie Tong, et al. Spectral temporal
graph neural network for multivariate time-series forecast-
ing. arXiv preprint arXiv:2103.07719, 2021.

[Chen et al., 2013] Yanping Chen, Bing Hu, Eamonn Keogh,
and Gustavo EAPA Batista. Dtw-d: time series semi-
supervised learning from a single example. In Proceed-
ings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 383–391,
2013.

[Chen et al., 2020] Ting Chen, Simon Kornblith, Moham-
mad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In ICML,
pages 1597–1607, 2020.

[Cubuk et al., 2019] Ekin D Cubuk, Barret Zoph, Dandelion
Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In CVPR,
pages 113–123, 2019.

[Dau et al., 2019] Hoang Anh Dau, Anthony Bagnall, Kaveh
Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn
Keogh. The ucr time series archive. IEEE/CAA Journal
of Automatica Sinica, 6(6):1293–1305, 2019.

[Dua and Graff, 2017] Dheeru Dua and Casey Graff. UCI
machine learning repository, 2017.

[Eldele et al., 2021a] Emadeldeen Eldele, Mohamed Ragab,
Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li,
and Cuntai Guan. Time-series representation learning
via temporal and contextual contrasting. arXiv preprint
arXiv:2106.14112, 2021.

[Eldele et al., 2021b] Emadeldeen Eldele, Mohamed Ragab,
Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li,
and Cuntai Guan. Time-series representation learning
via temporal and contextual contrasting. arXiv preprint
arXiv:2106.14112, 2021.

[Fan et al., 2020] Haoyi Fan, Fengbin Zhang, and Yue
Gao. Self-supervised time series representation learn-
ing by inter-intra relational reasoning. arXiv preprint
arXiv:2011.13548, 2020.

[Franceschi et al., 2019] Jean-Yves Franceschi, Aymeric
Dieuleveut, and Martin Jaggi. Unsupervised scalable
representation learning for multivariate time series. arXiv
preprint arXiv:1901.10738, 2019.

[Goodfellow et al., 2016] Ian Goodfellow, Yoshua Bengio,
and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[Goodfellow et al., 2020] Ian Goodfellow, Jean Pouget-
Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

[Gretton et al., 2012] Arthur Gretton, Karsten M Borgwardt,
Malte J Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. The Journal of Machine
Learning Research, 13(1):723–773, 2012.

[Hataya et al., 2020] Ryuichiro Hataya, Jan Zdenek, Kazuki
Yoshizoe, and Hideki Nakayama. Faster autoaugment:
Learning augmentation strategies using backpropagation.
In ECCV, pages 1–16. Springer, 2020.

[Jang et al., 2016] Eric Jang, Shixiang Gu, and Ben Poole.
Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Kobyzev et al., 2020] Ivan Kobyzev, Simon JD Prince, and
Marcus A Brubaker. Normalizing flows: An introduc-
tion and review of current methods. IEEE transactions on
pattern analysis and machine intelligence, 43(11):3964–
3979, 2020.

[Lai et al., 2018] Guokun Lai, Wei-Cheng Chang, Yiming
Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In SIGIR,
pages 95–104, 2018.

[Li et al., 2019] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou
Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan. En-
hancing the locality and breaking the memory bottleneck
of transformer on time series forecasting. In NeurIPS,
pages 5243–5253, 2019.

[Li et al., 2020] Yonggang Li, Guosheng Hu, Yongtao Wang,
Timothy Hospedales, Neil M Robertson, and Yongxin
Yang. Dada: Differentiable automatic data augmentation.
arXiv preprint arXiv:2003.03780, 2020.

[Louizos et al., 2017] Christos Louizos, Max Welling, and
Diederik P Kingma. Learning sparse neural net-
works through l 0 regularization. arXiv preprint
arXiv:1712.01312, 2017.

[Luo et al., 2021] Dongsheng Luo, Wei Cheng, Yingheng
Wang, Dongkuan Xu, Jingchao Ni, Wenchao Yu, Xuchao
Zhang, Yanchi Liu, Haifeng Chen, and Xiang Zhang.
Information-aware time series meta-contrastive learning.
2021.

[Luo et al., 2023] Dongsheng Luo, Wei Cheng, Yingheng
Wang, Dongkuan Xu, Jingchao Ni, Wenchao Yu, Xuchao
Zhang, Yanchi Liu, Yuncong Chen, Haifeng Chen, and
Xiang Zhang. Time series contrastive learning with
information-aware augmentations, 2023.

http://www.deeplearningbook.org

[Maddison et al., 2016] Chris J Maddison, Andriy Mnih, and
Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint
arXiv:1611.00712, 2016.

[Nonnenmacher et al., 2022] Manuel T Nonnenmacher,
Lukas Oldenburg, Ingo Steinwart, and David Reeb. Utiliz-
ing expert features for contrastive learning of time-series
representations. In International Conference on Machine
Learning, pages 16969–16989. PMLR, 2022.

[Oord et al., 2018] Aaron van den Oord, Yazhe Li, and Oriol
Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

[Oreshkin et al., 2019] Boris N Oreshkin, Dmitri Carpov,
Nicolas Chapados, and Yoshua Bengio. N-beats: Neural
basis expansion analysis for interpretable time series fore-
casting. arXiv preprint arXiv:1905.10437, 2019.

[Ozyurt et al., 2022] Yilmazcan Ozyurt, Stefan Feuerriegel,
and Ce Zhang. Contrastive learning for unsuper-
vised domain adaptation of time series. arXiv preprint
arXiv:2206.06243, 2022.

[Principe, 2010] Jose C Principe. Information theoretic
learning: Renyi’s entropy and kernel perspectives.
Springer Science & Business Media, 2010.

[Rommel et al., 2022] Cédric Rommel, Thomas Moreau,
Joseph Paillard, and Alexandre Gramfort. Cadda: Class-
wise automatic differentiable data augmentation for eeg
signals. In ICLR 2022-International Conference on Learn-
ing Representations, 2022.

[Srivastava et al., 2014] Nitish Srivastava, Geoffrey Hinton,
Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning re-
search, 15(1):1929–1958, 2014.

[Suresh et al., 2021] Susheel Suresh, Pan Li, Cong Hao, and
Jennifer Neville. Adversarial graph augmentation to im-
prove graph contrastive learning. Advances in Neural In-
formation Processing Systems, 34:15920–15933, 2021.

[Tian et al., 2020] Yonglong Tian, Chen Sun, Ben Poole,
Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning? arXiv
preprint arXiv:2005.10243, 2020.

[Tishby et al., 2000] Naftali Tishby, Fernando C Pereira, and
William Bialek. The information bottleneck method.
arXiv preprint physics/0004057, 2000.

[Tonekaboni et al., 2021] Sana Tonekaboni, Danny Eytan,
and Anna Goldenberg. Unsupervised representation learn-
ing for time series with temporal neighborhood coding.
arXiv preprint arXiv:2106.00750, 2021.

[Wang et al., 2022] Zhiyuan Wang, Xovee Xu, Goce Tra-
jcevski, Weifeng Zhang, Ting Zhong, and Fan Zhou.
Learning latent seasonal-trend representations for time se-
ries forecasting. In Advances in Neural Information Pro-
cessing Systems, 2022.

[Wen et al., 2021] Qingsong Wen, Liang Sun, Xiaomin
Song, Jingkun Gao, Xue Wang, and Huan Xu. Time se-
ries data augmentation for deep learning: A survey. In
AAAI, 2021.

[Woo et al.,] Gerald Woo, Chenghao Liu, Doyen Sahoo,
Akshat Kumar, and Steven Hoi. Cost: Contrastive learning
of disentangled seasonal-trend representations for time se-
ries forecasting. In International Conference on Learning
Representations.

[Xie et al., 2019] Qizhe Xie, Zihang Dai, Eduard Hovy,
Minh-Thang Luong, and Quoc V Le. Unsupervised data
augmentation for consistency training. arXiv preprint
arXiv:1904.12848, 2019.

[Xu et al., 2021] Dongkuan Xu, Wei Cheng, Dongsheng
Luo, Haifeng Chen, and Xiang Zhang. Infogcl:
Information-aware graph contrastive learning. Advances in
Neural Information Processing Systems, 34:30414–30425,
2021.

[Yang and Hong, 2022] Ling Yang and Shenda Hong. Unsu-
pervised time-series representation learning with iterative
bilinear temporal-spectral fusion. In International Confer-
ence on Machine Learning, pages 25038–25054. PMLR,
2022.

[Yin et al., 2022] Yihang Yin, Qingzhong Wang, Siyu
Huang, Haoyi Xiong, and Xiang Zhang. Autogcl: Auto-
mated graph contrastive learning via learnable view gener-
ators. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 8892–8900, 2022.

[You et al., 2020] Yuning You, Tianlong Chen, Yongduo Sui,
Ting Chen, Zhangyang Wang, and Yang Shen. Graph con-
trastive learning with augmentations. In NeurIPS, pages
5812–5823, 2020.

[You et al., 2022] Yuning You, Tianlong Chen, Zhangyang
Wang, and Yang Shen. Bringing your own view: Graph
contrastive learning without prefabricated data augmenta-
tions. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, pages 1300–
1309, 2022.

[Yue et al., 2021] Zhihan Yue, Yujing Wang, Juanyong
Duan, Tianmeng Yang, Congrui Huang, and Bixiong Xu.
Ts2vec: Towards universal representation of time series.
arXiv preprint arXiv:2106.10466, 2021.

[Yue et al., 2022] Zhihan Yue, Yujing Wang, Juanyong
Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of
time series. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 36, pages 8980–8987, 2022.

[Zerveas et al., 2021] George Zerveas, Srideepika Jayara-
man, Dhaval Patel, Anuradha Bhamidipaty, and Carsten
Eickhoff. A transformer-based framework for multivari-
ate time series representation learning. In SIGKDD, pages
2114–2124, 2021.

[Zhang et al., 2022] Xiang Zhang, Ziyuan Zhao, Theodoros
Tsiligkaridis, and Marinka Zitnik. Self-supervised con-
trastive pre-training for time series via time-frequency
consistency. arXiv preprint arXiv:2206.08496, 2022.

[Zhou et al., 2021] Haoyi Zhou, Shanghang Zhang, Jieqi
Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long
sequence time-series forecasting. In AAAI, 2021.

Appendix
A Detailed proofs
Property 1. If view v is generated from x with an invertible
function v = g(x). Then H(v) = H(x) = MI(x; v), where
H(x), H(v) are entropy of variables x and v, respectively;
MI(v; x) is the mutual information between v and x.

Proof. Since g is an invertible function and v = g(x), we
have an one-to-one mapping between variables v and x. Thus,
v = g(x) for each pair of x and v. We have P[x = x] = P[v =
v]. From the definition of Shannon entropy, we have

H(x) = −
∑
x

p(x) log p(x) = −
∑
x

P[x = x] logP[x = x]

= −
∑
v

P[v = v] logP[v = v] = −
∑
x

p(v) log p(v)

= H(v).

From the definition of conditional entropy, we have

H(x|v) =
∑
v,x

p(v, x) log
p(v, x)

p(v)
,

H(x|v) =
∑
v,x

p(v) log
p(v)

p(v)
= 0.

The above results in the mutual information between v and x,
given by

MI(v; x) = H(x)−H(x|v) = H(v).

Property 2 (Task agnostic label preserving). If a variable v is
a good view of x, and the downstream task label y (although
not visible to training) is independent to noise in x, the mutual
information between v and y is equivalent to that between raw
input x and y, i.e., MI(v; y) = MI(x; y).

Proof. From the definition of the good view, we have

x = x∗ +∆x

v = g(x∗) + ∆v.

We first analyze the relationship between MI(x, y) and
MI(x∗, y).

MI(x, y) = H(y)−H(y|x)

= H(y) +
∑
x,y

p(x, y) log
p(x, y)

p(x)

= H(y) +
∑

x∗,∆x,y

p(x∗,∆x, y) log
p(x∗,∆x, y)

p(x∗,∆x)

= H(y) +
∑

x∗,∆x,y

p(x∗,∆x, y) log
p(∆x, y|x∗)

p(∆x|x∗)
.

With the safe independence assumption, we have

p(∆x, y|x∗) = p(∆x|x∗)p(y|x∗).

Thus, we show that

MI(x, y) = H(y) +
∑

x∗,∆x,y

p(x∗,∆x, y) log
p(x∗, y)

p(x∗)

= H(y) +
∑
x∗,y

p(x∗, y) log
p(x∗, y)

p(x∗)

= H(y)−H(y|x∗)
= MI(x∗, y).

Letting v∗ = g(x∗), from the Property 1, we have

MI(x∗, y) = MI(v∗, y).

Since ∆v is a random noise and is independent to the label y,
similarly, we have

MI(v∗, y) = MI(v, y).

Combining them together results in

MI(v, y) = MI(x, y).

Property 3. (Containing more information). A good view v
contains more information comparing to the raw input x, i.e.,
H(v) ≥ H(x).

Proof. Since ∆v denotes the included random noise, we as-
sume that its generation is independent of the augmented
view v∗. Thus we have

MI(∆v, v∗) = 0. (12)

Further, with our decomposing model, we can rewrite the en-
tropy of x as the joint entropy of x∗ and ∆x. Formally, we
have

H(x) = H(x∗,∆x) = H(x∗) +H(∆x)−MI(∆x, x∗).

Then H(x∗) = H(v∗) holds (Property 1). From the definition
of the good view, we have H(∆v) ≥ H(∆x). Thus, we have

H(x) = H(x∗) +H(∆x)−MI(∆x, x∗)

≤ H(v∗) +H(∆v)

= H(v∗) +H(∆v)−MI(∆v, v∗)

= H(∆v, v∗) = H(v).

Derivation of Eq. (9) As described in Section 3.3, the factor-
ization mask m(h) is generated with a hard concrete distri-
bution. Thus, the number of non-zero entries in m(h) can be
reformulated with

||m(h)||0 =
∑
t

(1− P
m

(h)
t

(0)),

where P
m

(h)
i

(0) is the cumulative distribution function (CDF)

of m(h)
i (before clipping). We let S(·) be an affine function of

the stretch process in Eq. (6), such that

m
(h)
i = S(m̃(h)

i) = m̃
(h)
i (ζ − γ) + γ,

where γ ∈ (−∞, 0) and ζ ∈ (1,∞). As derived in [Maddi-
son et al., 2016], the density of m(h)

i is

p
m

(h)
t

(x) =
τα

(h)
t x−τ−1(1− x)−τ−1

(α
(h)
t x−τ + (1− x)−τ)2

,

where α
(h)
t = log πt

1−πt
. The CDF of variable m

(h)
t reads

P
m

(h)
t

(x) = σ((log x− log(1− x))τ − α
(h)
t).

Thus, the probability density function of m(h)
t is

p
m

(h)
t

(x) = p
m̃

(h)
i

(S−1(x))

∣∣∣∣ ∂∂xS−1(x)

∣∣∣∣
=

(ζ − γ)τα
(h)
t (x− γ)−τ−1(ζ − x)−τ−1

(α
(h)
t (x− γ)−τ + (ζ − x)−τ)2

.

The CDF of m(h)
t is given by

P
m

(h)
t

(x) = P
m̃

(h)
i

(S−1(x))

= σ((log(x− γ)− log(ζ − x))τ − α
(h)
t).

When setting x = 0, we have the

P
m

(h)
t

(0) = σ(τ log
−γ
ζ
− α

(h)
t).

B Implementation details
B.1 Training the encoder with local and global

contrasts.
Similar to the augmentation network, our method can work
with different architectures. We formulate the feature extrac-
tion encoder as fθ(x) : RT×F → RD, where θ represents
the learnable parameters and D is the dimensionality of out-
put embeddings. Following existing work [Luo et al., 2021],
we use both global and local contrastive losses.

Global contrast aims to improve the inter-instance robust-
ness for representation learning. Given a batch of time series
instances XB ⊆ X, for each instance x ∈ XB , we generate
an augmented view v. Such a pair of the original instance
x and the corresponding view v is then used as a positive
pair. Other pairs of instances and views are treated as neg-
ative pairs. Formally, (x, v′) is a negative pair, where v′ is
an augmented view of x′ and x′ ̸= x. Following [Chen et
al., 2020], we use the InfoNCE as the global-wise contrastive
loss to train the encoder network. Formally, we have

Lg = − 1

|XB |
∑
x∈XB

log
exp(sim(zx, zv))∑

x′∈XB
exp(sim(zx, zv′))

. (13)

Local contrast is designed to enhance the encoder network to
capture the intra-instance relationship. Given an augmented
view v, we first segment it into a set of subsequences S, where
each subsequence s ∈ S has length L. Following [Tonek-
aboni et al., 2021], two close subsequences (s, p) are consid-
ered as a positive pair, and the ones with a large distance lead
to a negative pair. Formally, the loss of local contrast is:

Llx = − 1

|S|
∑
s∈S

log
exp(sim(zs,zp))

exp(sim(zs,zp)) +
∑

j∈N̄s
exp(sim(zs,zj))

,

(14)

where N̄s is the set of negative pairs for a subsequence s.
Considering all instances in a batch, we have

Ll =
1

|XB |
∑
x∈XB

Llx . (15)

With both local and global contrasts, we have our contrastive
loss as follows.

Lcon = Lg + αLl, (16)

where α is the hyper-parameter to achieve the trade-off be-
tween global and local losses.

B.2 Training algorithm
In the training stage, AutoTCL optimizes the augmentation
network and encoder network simultaneously. Similar to
GAN [Goodfellow et al., 2016], these networks were ran-
domly initialized. Different from GAN, AutoTCL is less af-
fected by the problem of gradient explosion and mode col-
lapse, because our encoder network aims to embed the in-
formation part from different views rather than distinguish
them. Although our argumentation network tries to reduce
the distribution between original instances and arguments,
AutoTCL augmentations preserve the information part by us-
ing a reversible mapping function, which alleviates the mode
collapse problem. Our training algorithm could be described
as follows.

Algorithm 1 AutoTCL training algorithm

Require: augmentation network faug, encoder network fenc,
epochs E, a hyperparameter M ,
epoch← 0
while epoch < E do

count = 0
for x in dataset do
xa ← faug(x)
zx ← fenc(x)
za ← fenc(xa)
if count%M == 0 then

Compute loss with using Eq. (11)
Update parameters in faug with backpropagation

end if
Compute loss with using Eq. (16)
Update parameters in fenc with backpropagation

end for
epoch← epoch + 1

end while

C Experimental settings
C.1 Baseline settings
In forecasting tasks, we conducted baseline methods on six
benchmark datasets by following the experiment setting of
TS2Vec[Yue et al., 2022] for most baseline methods, such
as Informer [Zhou et al., 2021], [Tonekaboni et al., 2021],
StemGNN [Cao et al., 2021], TCN [Bai et al., 2018], N-
BEATS [Oreshkin et al., 2019], etc. For TS2Vec[Yue et al.,

2022], CoST [Woo et al.,], we followed its code default set-
ting for Lora and Weather datasets. The representation di-
mension was 320 and the learning rate and batch size were
0.001 and 8. For InfoTS [Luo et al., 2023], We used the de-
fault setting to conduct experiments. As for TS-TCC [Eldele
et al., 2021b] in forecasting tasks, we used the Epilepsy con-
fig as the default config and modified the network model to
make the input and output channels remain the same. Due
to its pooling layers, the network would require 3 times the
lengths of inputs of other baselines which is unfair for fore-
casting tasks. In the experiments, we used another interpo-
late layer to make the length of input data and prediction data
the same. In classification tasks, similar to the forecasting
task, we followed the experiment setting of TS2Vec[Yue et
al., 2022]. In TF-C [Zhang et al., 2022] classification exper-
iments, we use its HAR config as the default setting. Similar
to TS-TCC, we modified the network so that the transformer
encoder could fit the input length and the pre-train dataset is
the same as finetune dataset.

C.2 Hyperparameters
In our experiments, we used grid search to obtain the best
performance. We used the same strategy in forecasting and
classification tasks that each dataset had its own group of hy-
perparameters. We provided all of the hyperparameters as
well as their configurations in the following:

• Optimizer: Two Adam optimizers [Kingma and Ba,
2014] were used for the augmentation network and fea-
ture extraction network with learning rate and other hy-
perparameters were setting with default decay rates set-
ting to 0.001 and (0.9,0.999) respectively.

• Encoder architecture: The depth of the multi-layer di-
lated CNN module and the hidden dimension were de-
signed to be able to change, which were searched in
{6, 7, 8, 9, 10} and {256, 128, 64, 32, 16, 8}. In train-
ing, we used a designed dropout rate to avoid overfitting,
which was tuned in [0.01, 1].

• Augmentation architecture: Same as encoder, the depth
of multi-layer dilated CNN module and hidden di-
mension are hyperparameters, searched in {1, 2, 3, 4, 5}
and {256, 128, 64, 32, 16, 8} and as mention in equa-
tion Eq. 6, ζ is another hyperparameter, tuned in
[0.0005, 0.5].

• Trade-off hyperparameters: β in Eq. (10), and λ in
Eq. (11) are tuned in [0, 0.3].

• Alternating training hyperparameters: M in Sec. (3.4) is
tuned in 1, 2, 4, 8, 16, 32.

C.3 Extra experiments
Visualization of augmentation
In order to further explore the effectiveness of AutoTCL, we
used T-SNE to visualize the embeddings of different aug-
mented views in Figure 3. We chose an instance, denoted
by x, from dataset ETTh1 and compare different augmen-
tation methods, including Cutout, Jitter, and Adversarial.
To avoid the special case, we reported 10 augmented views

for AutoTCL. We also include another x′ instance as a ref-
erence. As shown in Figure 3, the instances augmented by
AutoTCL include more diversity compared with Jitter and
Cutout. Moreover, the augmentation generated by the Ad-
versarial is closer to x′ or x, indicating that it fails to preserve
the underlying semantics.

(a) Samples a

(b) Samples b

Figure 3: T-SNE visualization of different augmentation instances.
In samples a and b, AutoTCL-generated samples are closer to the
original instance x than other instances x′ with large variety

Visualization of convergence

To show the convergence of our method, we plotted the
curves of Eq.(11) and Eq. (16) on different datasets. As
shown in Figure 4, our method converged easily in both the
argumentation network and the embedding network. In Fig-
ure 4(a) and 4(d), we observed that after the argumentation
network converged to a certain level, the encoding network
still benefited from that. In Figure 4(b), 4(c), and 4(e),
they have the same patterns that the augmentation loss arrived
the convergence level almost the same as the contrastive loss.
While the situation was different in Figure 4(f), at the begin-
ning the augmentation network benefited from encoding loss,
then two losses converged gradually.

(a) ETTh1 (b) ETTh2

(c) ETTm1 (d) Elec.

(e) WTH (f) Lora

Figure 4: The augmentation loss, Eq. (11) and contrastive loss, Eq. (16), in the training process

Parameter sensitivity studies
In the proposed AutoTCL, we have three hyper-parameters, α
in Eq. (16), β in Eq. (10), and γ in Eq. (11), to get the trade-
off in training the augmentation network and the encoder net-
work. In this part, we chose different values for these three
variables in the range from 0.0001 to 0.3 and reported MSE
and MAE scores in the ETTh1 dataset. The results of this
part could be found in Figure 5 in Apendix C.3. The sensi-
tivity studies result of three hyper-parameters are shown in
Figure 5. From this figure, some results could be observed
that our method is able to achieve comparative performances
with a wide range of choices for these three hyperparameters,
indicating the robustness of our method. The β in Eq. (10),
and γ in Eq. (11) have the opposite effect as the weight goes
up. Second, we observe that small values, such as 0.001, give
good performances on ETTh1 datasets as well as others.

1E-4 3E-4 1E-3 3E-3 1E-2 3E-2 1E-1 3E-1
0.077

0.078

0.079

0.080

0.081

M
SE

(a) MSE

1E-4 3E-4 1E-3 3E-3 1E-2 3E-2 1E-1 3E-1
0.208

0.209

0.210

0.211

0.212

0.213

0.214

M
AE

(b) MAE

Figure 5: Parameter sensitivity studies on ETTh1.

Case study
To further explore the augmentation of AutoTCL, we have
done the case study in this section. We selected three in-
stances to show the effectiveness of our method in Figure 6.
As shown in Figure 6, we used the CrocketX dataset as input
instances and got the informative part by using the augmen-
tation network to get masks, the result of h(x). From the re-
sults, our method could find the informative part in the whole
input. With the regularization loss help in Eq. (7), our method
could have a continuous mask that makes the informative part
more consistent.

Performance with TS2vec as backbone
As a general framework for time series contrastive learning,
AutoTCL can be used as a plug-and-play component to boost

performance. To further verify the generalization capacity of
AutoTCL, in this part, we adopt Ts2vec [Yue et al., 2022] as
the backbone. Comparison results are shown in Table 8. We
can draw similar conclusions that by adaptively selecting the
optimal augmentations with the principle of relevant informa-
tion, AutoTCL can outperform the vanilla Ts2vec and other
baselines.

C.4 Full experiments

Univariate forecasting. Full experiment results of univari-
ate time series forecasting results can be found in Table 5.
In these experiments, AutoTCL achieved minimum error in
most cases. Compare to the state-of-the-art CoST method,
AutoTCL reduced the average MSE error by 6.5% and the
average MAE by 4.8%.

Multivariate forecasting. We provided our full experiment
results of multivariate time series forecasting results in Ta-
ble 6. In multivariate forecasting tasks, our method achieved
fewer best results than univariate forecasting. AutoTCL re-
duced the average MSE error by 2.9% and the average MAE
by 1.2% than CoST. In the column of stemGNN, because of
the error out-of-memory, we can’t report part results.

Effectiveness of automatic data augmentation and factor-
ization. The full ablation studies with CoST/TS2Vec back-
bone are provided in Table 7 and Table 8. From the results,
we found Jitter is the second-best effective augmentation on
average while Adversial has almost the same result as No
g(x). These results show both g(x) and ∆V are necessary
for augmentation in AutoTCL.

Classification. In Table 9, the full results of 30 class datasets
are provided. AutoTCL is the most powerful method than
other baselines with the highest average accuracy rate and
ranks. Due to the out-of-memory errors, some items could
not be filled with accurate results and we left them blank.

Table 5: Univariate time series forecasting results.

AutoTCL TS2Vec Informer LogTrans N-BEATS TCN CoST TNC TS-TCC InfoTS

Dataset Ly MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

24 0.037 0.148 0.039 0.152 0.098 0.247 0.103 0.259 0.094 0.238 0.075 0.210 0.040 0.152 0.057 0.184 0.103 0.237 0.039 0.149
48 0.054 0.176 0.062 0.191 0.158 0.319 0.167 0.328 0.210 0.367 0.227 0.402 0.060 0.186 0.094 0.239 0.139 0.279 0.056 0.179

168 0.078 0.210 0.134 0.282 0.183 0.346 0.207 0.375 0.232 0.391 0.316 0.493 0.097 0.236 0.171 0.329 0.253 0.408 0.100 0.239
336 0.093 0.231 0.154 0.310 0.222 0.387 0.230 0.398 0.232 0.388 0.306 0.495 0.112 0.258 0.192 0.357 0.155 0.318 0.117 0.264
720 0.120 0.272 0.163 0.327 0.269 0.435 0.273 0.463 0.322 0.490 0.390 0.557 0.148 0.306 0.235 0.408 0.190 0.337 0.141 0.302

ETTh2

24 0.079 0.206 0.090 0.229 0.093 0.240 0.102 0.255 0.198 0.345 0.103 0.249 0.079 0.207 0.097 0.238 0.239 0.391 0.081 0.215
48 0.117 0.255 0.124 0.273 0.155 0.314 0.169 0.348 0.234 0.386 0.142 0.290 0.118 0.259 0.131 0.281 0.260 0.405 0.115 0.261

168 0.176 0.319 0.208 0.360 0.232 0.389 0.246 0.422 0.331 0.453 0.227 0.376 0.189 0.339 0.197 0.354 0.291 0.420 0.171 0.327
336 0.193 0.344 0.213 0.369 0.263 0.417 0.267 0.437 0.431 0.508 0.296 0.430 0.206 0.360 0.207 0.366 0.336 0.453 0.183 0.341
720 0.223 0.373 0.214 0.374 0.277 0.431 0.303 0.493 0.437 0.517 0.325 0.463 0.214 0.371 0.207 0.370 0.362 0.472 0.194 0.357

ETTm1

24 0.016 0.091 0.015 0.092 0.030 0.137 0.065 0.202 0.054 0.184 0.041 0.157 0.015 0.088 0.019 0.103 0.089 0.228 0.014 0.087
48 0.026 0.120 0.027 0.126 0.069 0.203 0.078 0.220 0.190 0.361 0.101 0.257 0.025 0.117 0.036 0.142 0.134 0.280 0.025 0.117
96 0.036 0.145 0.044 0.161 0.194 0.372 0.199 0.386 0.183 0.353 0.142 0.311 0.038 0.147 0.054 0.178 0.159 0.305 0.036 0.142

288 0.063 0.191 0.103 0.246 0.401 0.554 0.411 0.572 0.186 0.362 0.318 0.472 0.077 0.209 0.098 0.244 0.204 0.327 0.071 0.200
672 0.090 0.225 0.156 0.307 0.512 0.644 0.598 0.702 0.197 0.368 0.397 0.547 0.113 0.257 0.136 0.290 0.206 0.354 0.102 0.240

Elec.

24 0.241 0.262 0.260 0.288 0.251 0.275 0.528 0.447 0.427 0.330 0.263 0.279 0.243 0.264 0.252 0.278 0.379 0.561 0.245 0.269
48 0.287 0.292 0.319 0.324 0.346 0.339 0.409 0.414 0.551 0.392 0.373 0.344 0.292 0.300 0.300 0.308 0.453 0.600 0.294 0.301

168 0.394 0.365 0.427 0.394 0.544 0.424 0.959 0.612 0.893 0.538 0.609 0.462 0.405 0.375 0.412 0.384 0.575 0.616 0.402 0.367
336 0.543 0.460 0.565 0.474 0.713 0.512 1.079 0.639 1.035 0.669 0.855 0.606 0.560 0.473 0.548 0.466 0.637 0.633 0.533 0.453

WTH

24 0.093 0.211 0.096 0.215 0.117 0.251 0.136 0.279 0.136 0.264 0.109 0.217 0.096 0.213 0.102 0.221 0.221 0.386 0.101 0.222
48 0.131 0.256 0.140 0.264 0.178 0.318 0.206 0.356 0.198 0.319 0.143 0.269 0.138 0.262 0.139 0.264 0.255 0.406 0.141 0.266

168 0.182 0.311 0.207 0.335 0.266 0.398 0.309 0.439 0.309 0.420 0.188 0.319 0.207 0.334 0.198 0.328 0.339 0.458 0.199 0.328
336 0.195 0.325 0.231 0.360 0.297 0.416 0.359 0.484 0.369 0.460 0.192 0.320 0.230 0.356 0.215 0.347 0.372 0.491 0.220 0.351
720 0.198 0.330 0.233 0.365 0.359 0.466 0.388 0.499 0.270 0.406 0.198 0.329 0.242 0.370 0.219 0.353 0.322 0.467 0.218 0.353

Lora

24 0.052 0.141 0.212 0.268 0.917 0.720 0.264 0.371 0.072 0.170 0.981 0.899 0.053 0.144 0.206 0.273 0.365 0.514 0.058 0.149
48 0.080 0.181 0.267 0.316 1.067 0.786 0.364 0.424 0.115 0.223 0.981 0.898 0.082 0.184 0.286 0.349 0.426 0.562 0.090 0.192

168 0.155 0.263 0.355 0.389 1.745 1.067 0.452 0.465 0.286 0.350 1.276 0.946 0.166 0.274 0.523 0.549 0.481 0.587 0.156 0.267
336 0.229 0.335 0.425 0.441 1.661 1.050 0.950 0.683 0.405 0.429 1.273 0.943 0.252 0.355 0.772 0.724 0.588 0.645 0.313 0.386
720 0.370 0.445 0.523 0.509 2.482 1.370 1.248 0.807 0.679 0.573 1.290 0.950 0.379 0.451 1.313 0.929 0.592 0.649 1.047 0.635

Avg. 0.157 0.258 0.207 0.301 0.486 0.477 0.382 0.441 0.320 0.388 0.419 0.465 0.168 0.271 0.256 0.340 0.315 0.441 0.188 0.274

Table 6: Multivariate time series forecasting results.

AutoTCL TS2Vec Informer LogTrans StemGNN TCN CoST TNC TS-TCC InfoTS

Dataset Ly MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

24 0.389 0.439 0.599 0.534 0.577 0.549 0.686 0.604 0.614 0.571 0.767 0.612 0.386 0.429 0.708 0.592 0.516 0.508 0.564 0.520
48 0.447 0.477 0.629 0.555 0.685 0.625 0.766 0.757 0.748 0.618 0.713 0.617 0.437 0.464 0.749 0.619 0.644 0.579 0.607 0.553

168 0.615 0.574 0.755 0.636 0.931 0.752 1.002 0.846 0.663 0.608 0.995 0.738 0.643 0.582 0.884 0.699 0.678 0.619 0.746 0.638
336 0.802 0.671 0.907 0.717 1.128 0.873 1.362 0.952 0.927 0.730 1.175 0.800 0.812 0.679 1.020 0.768 0.967 0.754 0.904 0.722
720 1.028 0.789 1.048 0.790 1.215 0.896 1.397 1.291 – – 1.453 1.311 0.970 0.771 1.157 0.830 0.935 0.715 1.098 0.811

ETTh2

24 0.337 0.433 0.398 0.461 0.720 0.665 0.828 0.750 1.292 0.883 1.365 0.888 0.447 0.502 0.612 0.595 0.782 0.666 0.383 0.462
48 0.572 0.576 0.578 0.573 1.457 1.001 1.806 1.034 1.099 0.847 1.395 0.960 0.699 0.637 0.840 0.716 1.357 0.881 0.567 0.582

168 1.470 0.947 1.901 1.065 3.489 1.515 4.070 1.681 2.282 1.228 3.166 1.407 1.549 0.982 2.359 1.213 4.318 1.728 1.789 1.048
336 1.685 1.027 2.304 1.215 2.723 1.340 3.875 1.763 3.086 1.351 3.256 1.481 1.749 1.042 2.782 1.349 2.097 1.145 2.120 1.161
720 1.890 1.092 2.650 1.373 3.467 1.473 3.913 1.552 – – 3.690 1.588 1.971 1.092 2.753 1.394 2.047 1.127 2.511 1.316

ETTm1

24 0.256 0.339 0.443 0.436 0.323 0.369 0.419 0.412 0.620 0.570 0.324 0.374 0.246 0.329 0.522 0.472 0.403 0.455 0.391 0.408
48 0.339 0.396 0.582 0.515 0.494 0.503 0.507 0.583 0.744 0.628 0.477 0.450 0.331 0.386 0.695 0.567 0.618 0.552 0.503 0.475
96 0.376 0.422 0.622 0.549 0.678 0.614 0.768 0.792 0.709 0.624 0.636 0.602 0.378 0.419 0.731 0.595 0.607 0.572 0.537 0.503

288 0.464 0.484 0.709 0.609 1.056 0.786 1.462 1.320 0.843 0.683 1.270 1.351 0.472 0.486 0.818 0.649 0.722 0.638 0.653 0.579
672 0.608 0.566 0.786 0.655 1.192 0.926 1.669 1.461 – – 1.381 1.467 0.620 0.574 0.932 0.712 0.708 0.601 0.757 0.642

Elec.

24 0.153 0.250 0.287 0.374 0.312 0.387 0.297 0.374 0.439 0.388 0.305 0.384 0.136 0.242 0.354 0.423 0.379 0.561 0.255 0.350
48 0.167 0.264 0.307 0.388 0.392 0.431 0.316 0.389 0.413 0.455 0.317 0.392 0.153 0.258 0.376 0.438 0.453 0.600 0.279 0.368

168 0.179 0.275 0.332 0.407 0.515 0.509 0.426 0.466 0.506 0.518 0.358 0.423 0.175 0.275 0.402 0.456 0.575 0.616 0.302 0.385
336 0.199 0.297 0.349 0.420 0.759 0.625 0.365 0.417 0.647 0.596 0.349 0.416 0.196 0.296 0.417 0.466 0.637 0.633 0.320 0.399

WTH

24 0.302 0.364 0.307 0.363 0.335 0.381 0.435 0.477 0.283 0.507 0.321 0.367 0.298 0.360 0.320 0.373 0.356 0.463 0.316 0.369
48 0.361 0.412 0.374 0.418 0.395 0.459 0.426 0.495 0.337 0.573 0.386 0.423 0.359 0.411 0.380 0.421 0.429 0.500 0.381 0.420

168 0.455 0.484 0.491 0.506 0.608 0.567 0.727 0.671 0.397 0.652 0.491 0.501 0.464 0.491 0.479 0.495 0.511 0.550 0.490 0.501
336 0.487 0.505 0.525 0.530 0.702 0.620 0.754 0.670 0.394 0.639 0.502 0.507 0.497 0.517 0.505 0.514 0.575 0.584 0.532 0.527
720 0.508 0.519 0.556 0.552 0.831 0.731 0.885 0.773 – – 0.498 0.508 0.533 0.542 0.519 0.525 0.545 0.577 0.554 0.543

Lora

24 0.198 0.252 0.212 0.267 0.376 0.345 0.456 0.394 0.161 0.373 0.854 0.775 0.202 0.259 0.264 0.302 0.365 0.514 0.198 0.243
48 0.254 0.301 0.266 0.316 0.428 0.420 0.663 0.467 0.204 0.439 0.851 0.774 0.258 0.307 0.319 0.345 0.426 0.562 0.254 0.297

168 0.346 0.377 0.354 0.389 0.734 0.597 0.682 0.510 0.270 0.536 1.118 0.839 0.350 0.383 0.474 0.477 0.481 0.587 0.345 0.374
336 0.414 0.428 0.425 0.441 0.995 0.738 1.068 0.608 0.395 0.618 1.111 0.836 0.417 0.432 0.625 0.588 0.588 0.645 0.412 0.427
720 0.517 0.502 0.522 0.509 1.181 0.831 0.959 0.622 – – 1.131 0.844 0.524 0.507 1.266 0.876 0.592 0.649 0.514 0.501

Avg. 0.545 0.499 0.697 0.571 0.990 0.708 1.138 0.798 0.753 0.651 1.057 0.781 0.561 0.505 0.837 0.637 0.838 0.675 0.665 0.556

input 𝛾=0 𝛾=0.2

mask

Info.

mask

Info.

mask

Info.

Figure 6: Case study of AutoTCL. The inputs are from the CricketX dataset, which is a univariate time series dataset. The first column is
the original input instance and we demonstrate the augmented instances in two settings, w/ and w/o regularization loss in Eq.(11), which are
the second and third columns. The odd rows are the masks, outputs of g(x) and the even rows are informative parts of the original instances
guided by the masks.

Table 7: Ablation studies using CoST backbone

AutoTCL W/o h(x) W/o g(x) W/o ∆V W/o Aug Cutout Jitter Adversarial

Dataset Ly MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

24 0.037 0.148 0.037 0.148 0.037 0.148 0.038 0.149 0.037 0.148 0.037 0.147 0.038 0.147 0.039 0.149
48 0.054 0.176 0.054 0.176 0.054 0.177 0.055 0.180 0.055 0.178 0.053 0.175 0.054 0.176 0.056 0.180

168 0.078 0.210 0.079 0.210 0.080 0.211 0.083 0.217 0.100 0.237 0.078 0.210 0.081 0.212 0.090 0.227
336 0.093 0.231 0.093 0.231 0.094 0.232 0.096 0.234 0.108 0.251 0.092 0.230 0.095 0.233 0.106 0.250
720 0.120 0.272 0.121 0.274 0.124 0.277 0.157 0.317 0.175 0.340 0.179 0.345 0.163 0.325 0.152 0.313

ETTh2

24 0.079 0.206 0.077 0.204 0.076 0.205 0.079 0.209 0.078 0.208 0.076 0.204 0.092 0.217 0.078 0.207
48 0.117 0.255 0.124 0.258 0.113 0.256 0.118 0.259 0.127 0.259 0.110 0.253 0.135 0.272 0.124 0.265

168 0.176 0.319 0.191 0.329 0.212 0.346 0.240 0.358 0.220 0.347 0.191 0.340 0.207 0.356 0.227 0.361
336 0.193 0.344 0.201 0.350 0.243 0.371 0.204 0.349 0.200 0.357 0.201 0.355 0.212 0.366 0.253 0.375
720 0.223 0.373 0.246 0.384 0.246 0.380 0.238 0.379 0.227 0.374 0.220 0.376 0.217 0.374 0.251 0.385

ETTm1

24 0.016 0.091 0.014 0.087 0.015 0.090 0.015 0.089 0.013 0.085 0.017 0.092 0.015 0.091 0.015 0.092
48 0.026 0.120 0.025 0.119 0.025 0.117 0.027 0.122 0.024 0.116 0.028 0.123 0.027 0.124 0.028 0.125
96 0.036 0.145 0.037 0.146 0.038 0.146 0.039 0.150 0.036 0.144 0.039 0.150 0.043 0.158 0.040 0.151

288 0.063 0.191 0.074 0.205 0.072 0.204 0.072 0.205 0.080 0.216 0.078 0.211 0.082 0.218 0.075 0.205
672 0.090 0.225 0.108 0.250 0.098 0.239 0.104 0.248 0.114 0.248 0.104 0.246 0.112 0.260 0.100 0.240

Elec.

24 0.240 0.266 0.244 0.266 0.241 0.267 0.242 0.264 0.243 0.272 0.241 0.264 0.240 0.264 0.242 0.265
48 0.285 0.294 0.291 0.295 0.285 0.295 0.287 0.294 0.290 0.300 0.286 0.291 0.284 0.292 0.287 0.294

168 0.392 0.371 0.400 0.371 0.392 0.366 0.394 0.367 0.398 0.372 0.394 0.365 0.395 0.362 0.393 0.364
336 0.542 0.461 0.547 0.465 0.541 0.464 0.542 0.461 0.541 0.470 0.545 0.460 0.545 0.457 0.539 0.457

WTH

24 0.093 0.211 0.098 0.220 0.092 0.209 0.091 0.207 0.096 0.215 0.092 0.210 0.093 0.212 0.092 0.209
48 0.131 0.256 0.139 0.266 0.130 0.255 0.127 0.250 0.141 0.266 0.129 0.252 0.134 0.260 0.131 0.257

168 0.182 0.311 0.194 0.324 0.185 0.314 0.184 0.316 0.208 0.336 0.186 0.315 0.195 0.327 0.185 0.315
336 0.195 0.325 0.210 0.342 0.208 0.342 0.206 0.341 0.231 0.357 0.209 0.339 0.215 0.349 0.203 0.335
720 0.198 0.330 0.218 0.353 0.217 0.353 0.211 0.349 0.240 0.369 0.220 0.352 0.231 0.370 0.218 0.352

Lora

24 0.052 0.141 0.060 0.152 0.138 0.219 0.128 0.213 0.078 0.171 0.067 0.170 0.158 0.223 0.057 0.154
48 0.080 0.181 0.092 0.196 0.117 0.225 0.181 0.264 0.127 0.223 0.112 0.218 0.185 0.257 0.084 0.189

168 0.155 0.263 0.246 0.317 0.196 0.308 0.232 0.334 0.481 0.393 0.676 0.433 0.311 0.359 0.235 0.323
336 0.229 0.335 0.302 0.372 0.395 0.444 0.363 0.433 0.941 0.532 1.403 0.619 0.378 0.429 0.535 0.475
720 0.370 0.445 0.483 0.509 1.60 0.729 0.617 0.561 1.926 0.739 1.655 0.771 0.395 0.461 1.315 0.722

Avg. 0.157 0.258 0.173 0.270 0.216 0.282 0.185 0.280 0.260 0.294 0.266 0.394 0.184 0.281 0.212 0.284

Table 8: Ablation studies using TS2Vec backbone

AutoTCL W/o h(x) W/o g(x) W/o ∆V W/o Aug Cutout Jitter Adversarial

Dataset Ly MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

24 0.039 0.146 0.039 0.148 0.047 0.165 0.047 0.164 0.039 0.149 0.043 0.155 0.040 0.150 0.041 0.151
48 0.058 0.180 0.060 0.185 0.075 0.212 0.073 0.205 0.063 0.190 0.063 0.187 0.063 0.190 0.062 0.186
168 0.106 0.245 0.115 0.259 0.145 0.298 0.131 0.278 0.119 0.264 0.118 0.262 0.111 0.253 0.114 0.255
336 0.121 0.266 0.139 0.289 0.159 0.317 0.148 0.303 0.141 0.291 0.133 0.285 0.130 0.277 0.132 0.280
720 0.154 0.314 0.181 0.347 0.198 0.365 0.180 0.344 0.193 0.359 0.167 0.331 0.164 0.323 0.167 0.330

ETTh2

24 0.106 0.252 0.108 0.250 0.095 0.235 0.104 0.248 0.108 0.251 0.105 0.250 0.105 0.249 0.107 0.252
48 0.131 0.284 0.134 0.285 0.129 0.279 0.136 0.289 0.140 0.290 0.133 0.287 0.135 0.287 0.137 0.288
168 0.182 0.343 0.185 0.344 0.212 0.365 0.211 0.366 0.203 0.360 0.198 0.355 0.194 0.353 0.195 0.353
336 0.190 0.351 0.191 0.351 0.205 0.362 0.209 0.366 0.206 0.367 0.204 0.363 0.201 0.362 0.199 0.360
720 0.204 0.370 0.204 0.368 0.203 0.366 0.200 0.364 0.205 0.369 0.205 0.367 0.200 0.364 0.194 0.359

ETTm1

24 0.014 0.085 0.018 0.098 0.015 0.089 0.014 0.087 0.014 0.087 0.015 0.089 0.014 0.087 0.014 0.085
48 0.026 0.117 0.027 0.121 0.028 0.123 0.026 0.120 0.027 0.121 0.027 0.121 0.027 0.121 0.026 0.117
96 0.038 0.147 0.039 0.149 0.039 0.147 0.041 0.153 0.041 0.153 0.041 0.153 0.038 0.147 0.038 0.147
288 0.081 0.216 0.083 0.219 0.082 0.216 0.084 0.222 0.084 0.222 0.084 0.222 0.081 0.215 0.081 0.216
672 0.119 0.263 0.123 0.269 0.122 0.266 0.124 0.271 0.124 0.270 0.121 0.267 0.120 0.265 0.119 0.263

Elec.

24 0.247 0.269 0.249 0.271 0.248 0.269 0.247 0.270 0.250 0.271 0.248 0.270 0.249 0.273 0.250 0.270
48 0.297 0.301 0.302 0.306 0.297 0.301 0.297 0.303 0.298 0.302 0.296 0.302 0.297 0.307 0.298 0.302
168 0.408 0.380 0.413 0.381 0.408 0.380 0.410 0.380 0.408 0.377 0.408 0.383 0.410 0.384 0.408 0.377
336 0.541 0.468 0.553 0.472 0.541 0.469 0.547 0.470 0.542 0.471 0.545 0.470 0.470 0.547 0.542 0.471

WTH

24 0.093 0.212 0.096 0.214 0.094 0.210 0.096 0.214 0.094 0.211 0.099 0.215 0.096 0.213 0.096 0.213
48 0.133 0.258 0.134 0.259 0.130 0.253 0.134 0.258 0.134 0.257 0.132 0.256 0.135 0.259 0.133 0.254
168 0.188 0.316 0.192 0.322 0.184 0.313 0.192 0.322 0.197 0.324 0.189 0.317 0.192 0.321 0.193 0.322
336 0.201 0.333 0.208 0.341 0.202 0.335 0.208 0.341 0.216 0.347 0.208 0.338 0.211 0.342 0.212 0.344
720 0.204 0.339 0.210 0.347 0.204 0.339 0.210 0.347 0.225 0.357 0.211 0.343 0.220 0.353 0.217 0.352

Lora

24 0.193 0.239 0.192 0.238 0.196 0.244 0.192 0.238 0.195 0.239 0.193 0.240 0.194 0.240 0.193 0.241
48 0.250 0.293 0.251 0.295 0.253 0.299 0.249 0.293 0.251 0.293 0.252 0.297 0.251 0.294 0.253 0.297
168 0.339 0.370 0.344 0.375 0.340 0.372 0.339 0.370 0.341 0.371 0.345 0.377 0.341 0.372 0.355 0.382
336 0.397 0.418 0.409 0.427 0.398 0.418 0.399 0.418 0.400 0.420 0.410 0.428 0.402 0.421 0.431 0.438
720 0.478 0.479 0.505 0.498 0.480 0.480 0.488 0.486 0.484 0.482 0.501 0.496 0.492 0.489 0.547 0.514

Avg. 0.191 0.285 0.197 0.291 0.198 0.293 0.198 0.293 0.198 0.292 0.196 0.290 0.195 0.289 0.198 0.290

Table 9: Classification result of the UEA dataset

Dataset AutoTCL TS2Vec T-Loss TNC TS-TCC TST DTW TF-C InfoTS

ArticularyWordRecognition 0.983 0.987 0.943 0.973 0.953 0.977 0.987 0.467 0.993
AtrialFibrillation 0.467 0.200 0.133 0.133 0.267 0.067 0.200 0.040 0.267

BasicMotions 1.000 0.975 1.000 0.975 1.000 0.975 0.975 0.475 1.000
CharacterTrajectories 0.976 0.995 0.993 0.967 0.985 0.975 0.989 0.090 0.987

Cricket 1.000 0.972 0.972 0.958 0.917 1.000 1.000 0.125 1.000
DuckDuckGeese 0.700 0.680 0.650 0.460 0.380 0.620 0.600 0.340 0.600

EigenWorms 0.901 0.847 0.840 0.840 0.779 0.748 0.618 – 0.748
Epilepsy 0.978 0.964 0.971 0.957 0.957 0.949 0.964 0.217 0.993
ERing 0.944 0.874 0.133 0.852 0.904 0.874 0.133 0.167 0.953

EthanolConcentration 0.354 0.308 0.205 0.297 0.285 0.262 0.323 0.247 0.323
FaceDetection 0.581 0.501 0.513 0.536 0.544 0.534 0.529 0.502 0.525

FingerMovements 0.640 0.480 0.580 0.470 0.460 0.560 0.530 0.510 0.620
HandMovementDirection 0.432 0.338 0.351 0.324 0.243 0.243 0.231 0.405 0.514

Handwriting 0.384 0.515 0.451 0.249 0.498 0.225 0.286 0.051 0.554
Heartbeat 0.785 0.683 0.741 0.746 0.751 0.746 0.717 0.737 0.771

JapaneseVowels 0.984 0.984 0.989 0.978 0.930 0.978 0.949 0.135 0.986
Libras 0.833 0.867 0.883 0.817 0.822 0.656 0.870 0.067 0.889
LSST 0.554 0.537 0.509 0.595 0.474 0.408 0.551 0.314 0.593

MotorImagery 0.570 0.510 0.580 0.500 0.610 0.500 0.500 0.500 0.610
NATOPS 0.944 0.928 0.917 0.911 0.822 0.850 0.883 0.533 0.939
PEMS-SF 0.838 0.682 0.676 0.699 0.734 0.740 0.711 0.312 0.757
PenDigits 0.984 0.989 0.981 0.979 0.974 0.560 0.977 0.236 0.989

PhonemeSpectra 0.218 0.233 0.222 0.207 0.252 0.085 0.151 0.026 0.233
RacketSports 0.914 0.855 0.855 0.776 0.816 0.809 0.803 0.480 0.829

SelfRegulationSCP1 0.891 0.812 0.843 0.799 0.823 0.754 0.775 0.502 0.887
SelfRegulationSCP2 0.578 0.578 0.539 0.550 0.533 0.550 0.539 0.500 0.527
SpokenArabicDigits 0.925 0.932 0.905 0.934 0.970 0.923 0.963 0.100 0.988

StandWalkJump 0.533 0.467 0.333 0.400 0.333 0.267 0.200 0.333 0.467
UWaveGestureLibrary 0.893 0.884 0.875 0.759 0.753 0.575 0.903 0.125 0.906

InsectWingbeat 0.488 0.466 0.156 0.469 0.264 0.105 – 0.108 0.472

Avg. ACC 0.742 0.704 0.658 0.670 0.668 0.617 0.629 0.298 0.730
Avg. RANK 2.300 3.700 4.667 5.433 5.133 6.133 5.400 8.200 2.367

	Introduction
	Related work
	Contrastive learning for time series.
	Adaptive data augmentation

	Methodology
	Notations
	What makes good views for contrastive self-supervised learning?
	How to achieve good views?
	Training algorithm

	Experiments
	Time series forecasting
	Time series classification
	Ablation study and model analysis.
	Effectiveness of automatic data augmentation and factorization

	Conclusion and future work
	Detailed proofs
	Implementation details
	Training the encoder with local and global contrasts.
	Training algorithm

	Experimental settings
	Baseline settings
	Hyperparameters
	Extra experiments
	Visualization of augmentation
	Visualization of convergence
	Parameter sensitivity studies
	Case study
	Performance with TS2vec as backbone

	Full experiments

