
Y. Zhang et al. (Eds.): APWeb 2008, LNCS 4976, pp. 190 – 201, 2008.
© Springer-Verlag Berlin Heidelberg 2008

CROWNBench:
A Grid Performance Testing System

Using Customizable Synthetic Workload

Xing Yang, Xiang Li, Yipeng Ji, and Mo Sha

School of Computer Science, Beihang University, Beijing, China
{yangxing, lixiang, jiyipeng, shamo}@act.buaa.edu.cn

Abstract. The Grid middleware must be developed iteratively and incrementally,
so Grid performance testing is critical for middleware developers of Grid system.
Considering the special characters of Grid system, in order to gain meaningful
and comprehensive results of performance testing, it is necessary to implement
testing on real Grid environment with various types of workload. CROWN-
Bench, as described in this paper, is a system for helping Grid middleware de-
velopers to evaluate middleware design and implement using customizable
synthetic workload. Middleware developers can customize testing workload
basing on the model of Grid workload derived from real workload traces, in-
cluding its structure and parameters, and then workload is synthesized auto-
matically and contained jobs will be submitted by CROWNBench in a distrib-
uted manner. CROWNBench defines several metrics for measuring Grid
performance as automatic testing results. The experiment, which used
CROWNBench to test the performance of Grid system with CROWN Grid
middleware, shows that the system already finished have accomplished its pro-
spective goal. It can implement Grid performance testing in an efficient, flexible,
controllable, replayable and automatic way to help middleware developers
evaluate and improve their products effectively.

Keywords: Grid computing, performance testing, synthetic workload.

1 Introduction

Grid is a new computing infrastructure, and is developing quickly since proposed in
1990s. Performance testing is needed by people including Grid system designers, de-
velopers of Grid middleware, application developers and system users. Comparing to
traditional distributed system, such as cluster, the content and implication of Grid
system performance is different because of its characteristics, for instance, heteroge-
neity, dynamics and the special way for sharing resources. Accordingly, performance
testing methods and tools especial for Grid system are necessary.

The greatest motivation of our work is to provide a performance testing tool for Grid
middleware developers, firstly for CROWN [1] middleware developers, to validate
function and performance of their designing and implementing. To gain meaningful
results, the Grid system, including physical resources, system architecture and workload,

 CROWNBench: A Grid Performance Testing System 191

used in test should be close to the target system. Because testing we discuss and imple-
ment here is real testing which is executed on real circumstance, physical resources and
system architecture are exactly the same as the target system. Thus, what we are focusing
on in our system is workload used in testing.

Workload impacts Grid system performance greatly. Usually, there are three kinds
of workloads can be used in testing to assess the performance of Grid systems: real Grid
workload, synthetic Grid workload and benchmark workload. Synthetic workload,
which is basing on workload model derived from real workload traces, is regarded to be
a more appropriate candidate in our performance testing system.

In this paper, we present CROWNBench, a system for Grid performance testing
using customizable synthetic workload. In order to gain flexibility and universality,
CROWNBench allows testers to customize their workload model, including applica-
tion and job submission rules, basing on workload statistical model extracted from real
workload trace. In this way, Grid middleware developers can acquire comprehensive
performance data of Grid system by running various kinds of workload. What is more,
testing procedure can be controlled and replayed easily.

2 Related Works

Even though workload in CROWNBench system could be customized, synthetic
workload should still be basing on workload model and its contained elements and
parameters. So real workload traces of some certain Grid systems should be well
studied and concluded to a model, which could depict general characteristics of real
workload. Workload models of kinds of computer systems have been well studied and
researched [2] [3]. Even Grid system workload model has been started to research on
some Grid system testbeds to evaluate Gird system performance [4] [5]. Base general
rules in these models are extracted. And for testing performance capacity of Grid sys-
tem, amount and distribution of workload should also be tunable to simulate real
workload in different time and on different Grid testbeds.

GRASP [6] is a project for testing performance and validating dependency of Grid
system by using probes, some low level benchmarks; NGB[7] is developed for Grid
from NPB. It contains a suite of benchmark the structure of which is described by data
flow graph; the benchmarks of GridBench [8] cover multiple levels benchmarks, in-
cluding Micro–benchmark and Micro–kernel. GRENCHMARK [9] is a Grid per-
formance testing framework with synthetic workload. But only four settled applications
are supported to synthesize workload, and customizable workload is not supported.

Comparing to projects discussed above, CROWNBench provides tools to analyze
real workload trace and maintain testing environment, which are both not covered in
these projects. Analyzing real workload trace could find out approximate workload
statistical model, and testers could use it to customize the synthetic workload close to
real workload and acquire meaningful result of Grid performance testing by running it.
Maintaining an isolated testing environment for a Grid performance testing could
eliminate the influence among different performance testing and minimize the influ-
ence which is exerted on working Grid by performance testing.

192 X. Yang et al.

3 Grid Performance Testing System

3.1 Grid Performance

When discussing performance of distributed systems, we are usually focusing on the
quality and quantity of resources they providing. Grid is regarded as a virtual computer
in [10], and performance testing of Grid system is to test performance of this virtual
computer constituted by each layers of Grid system while it is running.

Compared to traditional distributed system, performance of physical resources is not
the only content of Grid system performance. Grid middleware performance is a very
important part in the whole Grid system, especially when we consider requirements of
CROWNBench. Throughout development, the middleware must be developed itera-
tively and incrementally. On each milestone, performance of middleware should be
tested on real circumstance. After that, results of performance metrics, which defined
before, are required to validate the design and implement of Grid middleware.

3.2 Grid Performance Testing System

Usually, there are three ways of testing Grid performance, model analysis, emulating
and real testing respectively. Comparing to real testing, former two have difficulties in
emulating dynamic behaviors of the Grid system. Thus, we choose the way, imple-
menting Grid performance testing on real Grid environment to gain performance results
in CROWNBench.

In order to fulfill our system goal, helping middleware developers to evaluate and
compare performance of different middleware versions, Grid system performance
testing should be implemented on same physical resources and Grid environment
structure deployed with different middleware version. As a result, performance data
could be acquired to compare the performance of different middleware version, to
testify whether the new one is better than the old ones.

As a Grid performance testing system, CROWNBench faces challenges in three
aspects, and now our contributions also locate in them: generating meaningful and
comprehensive workload for Grid performance testing. They will be described in detail
in 5.4.

4 Grid Workload Model

Generally, Grid workload includes all jobs submitted to Grid within a period of time. A
given real workload on some certain period of time and certain condition is not nec-
essarily representative of workloads on other times and conditions. Thus, Gird work-
load model should be derived from traces of history workloads, and then be studied as
the basis of workload synthesizing.

When we study Grid workload model from a higher view, there are two aspects
discussed in our system. Firstly, arrival process and submission process of a certain
kind of jobs in workload would be stable in a long term. Distribution of interarrival
times and submission nodes are derived from this stable rule, and are used to model
Grid workload and customize synthetic workload. Secondly, job running time is also an

 CROWNBench: A Grid Performance Testing System 193

aspect in Grid workload model as well as in traditional parallel and distributed system
workload. In our system, job running time will be measure after testing running as
turnaround time. So it will not be settled down before testing.

5 CROWNBench

5.1 System Architecture

CROWNBench is a system for Grid performance testing with customizable synthetic
workload, which has been used on Grid deployed with CROWN Grid middleware.
Figure 1 shows its architecture.

Fig. 1. CROWNBench system architecture

CROWNBench is built upon physical resources and Grid middleware. It is isolated
from certain Grid middleware instance by Grid middleware agent factory. Layers in
CROWNBench above isolating layer do not know which type of Grid middleware was
deployed above physical resource layer in Grid environment. In running layer, there are
three components. When testing starts running, job submitter will submit jobs in
synthetic workload automatically. Data transferrer takes the responsibility to transfer
related data, including testing running files and results data, among nodes in Grid en-
vironment. Testing controller provides a general testing running platform in hetero-
geneous Grid environment. In tools layer, trace analyzer, workload composer and
environment manager work before testing starts. Trace analyzer extracts statistical
model of real workload by analyzing workload trace. Workload composer synthesizes
workload for testing through definition of testers. Environment manager maintains a
testing environment for a performance testing by building up a testing environment
before testing starts and clearing it after testing finishes. Testers could use CROWN-
Bench through system portal, including edit testing environment, view workload
analyzing results and customize synthetic workload.

194 X. Yang et al.

5.2 Grid Performance Metrics

W stands for workload during a period of time. The number of applications included in

workload is W . Job iJ includes iJ tasks,
iJTT ...1 . For a task iT , it could have 0

to)1(−iJ pre-tasks. It can run when these tasks finished. Similarly, iT could have 0

to)1(−iJ post tasks, which could run simultaneously only when iT finished.

Because of characters of Grid system, a ratio of successful jobs to whole jobs can be
looked as a metric of Grid system performance, especially in Grid system where testers
look job correctness more important than processing speed.

JS is the successful job rate for workloadW . For an included job J , TS is the suc-
cessful tasks rate:

WJS
JsucceedwJ

/1∑
∧∈

= (1)

∑∑
∧∈∧∈

=
finisedTpretasksofJTsucceedTJT iiii

TS 1/1

(2)

Average successful task rates, shown in (3), can be computed to evaluate whole Grid
system performance:

WTSTS i /∑=

(3)

In Grid system which pays attention to quality of service, turn-around time TT of a job
(time from submission to finishing) and each component processing time could be
chosen as metrics. In a special scenario, workload contains only one kind of applica-
tion. (4) is a metric of high level Grid system performance:

WTTTT
WJ

i

i

/∑
∈

= (4)

Processing time of a certain component can be looked as a metric of that component’s
performance. For example, (5) can be used for evaluating performance of scheduling
component in Grid middleware.

WSTST
WJ

i

i

/∑
∈

= (5)

 CROWNBench: A Grid Performance Testing System 195

5.3 CROWNBench Testing Process

A typical testing process with CROWNBench is described below as Figure 2.

Fig. 2. CROWNBench system testing process

As shown above, workload statistical model could be extracted after analyzing
workload trace①; Testers could define testing environment structure in topology
description file②, and then testing environment will be built by environment man-
ager; Basing on workload trace analyzing result, testers could edit Application De-
scription File, which contains detailed tasks and working flow and dependency
among them; The other file testers should edit is Submission Rule Description File, in
which submission statistic rule is set③; Workload Composer composes workload
into Workload Description File for testing from Application Description File and
Submission Rule Description File④; Jobs Submitter parses workload and submits
each job from appointed node and in appointed time⑤; Testing Controller and script
which describe the workflow of an application will control the running order of tasks
⑥; When testing is finished, output file was generated⑦; After Data Transferrer
transfers result files to the testing control node, result will be extracted and saved into
database⑧; After computing test results of metrics⑨; Final results will be fed back
to testers⑩.

196 X. Yang et al.

5.4 Key Techniques of CROWNBench

Analyzing Workload Trace. If testers could acquire some knowledge about statistical
model of workload in Grid of which performance to be tested, they could customize
synthetic workload which will be more close to real workload in the Grid. In order to
extract statistical model of real workload, CROWNBench analyzes data in logs. We
assume Grid workload to be analyzed is periodical, stable and self similar [11] as the
precondition of our analyzing, which prove our analyzing to be meaningful and
feasible. Data in logs are processed in below steps.
1. Logs processing. Job records of some certain type of application are chosen, in

which job submitting time and submitting user are extracted for analyzing;
2. Data filtering. Abnormal records should be filtered to improve the accuracy of

analyzing results. We use the algorithm discussed in [12] to find out abnormal
data;

3. Distribution fitting. Firstly, for each distribution, parameters should be estimate

by the moment matching method. Secondly, using 2χ method, tests for goodness

of fit for each distribution and choose the most suitable one.

Composing Workload. Testers define submission statistical rules for each job
submitting node, which defines distribution of jobs interarrival times. After they edit
Submission Rule Description File (Figure 3), Workload Composer generate synthetic
workload according to Submission Rule Description File, and then jobs in workload
will be serialized in lines as several “<request>”s in Workload Description File (Figure
4) in time order. This file will be parsed by Jobs Submitter.

 Fig. 3. Submission rule description file Fig. 4. Workload description file

Maintaining Testing Environment. To eliminate the influence among different
performance testing and minimize the influence which is exerted on Grid environment
by performance testing, CROWNBench maintains a testing environment for a
performance testing by building an isolated testing environment before testing starts
and clearing it after testing finishes. Concretely, a suit of Grid middleware was
deployed and configured on each node in basing on its status in Grid environment
according to Testing Environment Topology File (Figure 5), and middleware and
related files and database will be deleted after performance testing.

Generally, these tasks are finished manually. In CROWNBench, we developed a
tool, WSAnt, to implement automatically. Building and clearing of testing environment

 CROWNBench: A Grid Performance Testing System 197

Fig. 5. Testing environment topology file

process are implemented in ANT script, and WSAnt controls its running in remote node
by using web service technology. In this way, the whole process is implemented in a
more automatic, accelerated and simple manner.

Application’s Workflow Control. To control application workflow, we chose a
flexible script tool, Ant [13], to avoid a large mount of developing works. Ant is a free
open source tool of Apache Software Foundation. CROWNBench uses it to control
workflow in applications for following reasons: at first, it is developed by JAVA, so it
is platform independent and testing applications written by it can be integrated with
Grid services frame easily; Ant and its additional project Ant-contrib [14] provide tasks
and dependencies which can be described by XML. So testers’ description of tasks’
dependencies and workflow can easily mapping to relations between tasks of Ant. We
can extend any Grid task to Ant task, and construct them to Grid application.
Parameters of those tasks can be defined to change the amount of workload.

In order to support complex workflow of Grid application, CROWNBench extended
Ant, and added some new tasks and conditions. These tasks have been collected in
workflow control dictionary of CROWNBench. Figure 6 is a fraction of a sample
workflow control script.

Fig. 6. Workload control script

198 X. Yang et al.

6 CROWNBench Performance Testing Experiments

6.1 Experiment Environment

Two suites performance testing experiments with CROWNBench are implemented on
CROWN testbed, which is deployed on 30 tree-structured nodes in our research insti-
tute. The first experiment is done to study the different influence on Grid system per-
formance caused by different Grid workload model instances. We did the second one to
find whether our system could gain meaningful performance results with synthetic
workload comparing to real workload.

6.2 Experiment Ⅰ

In experiment we compose three applications (①②③) with different structure by
using three basic tasks, which have been provided by CROWNBench, including file
transferring, float computing and I/O operation. ①② all contain sequential and parallel
workflow, ③ is pure chain of tasks. In this term, CROWNBench is used to study in-
fluence on Grid system performance given by job submission frequency. Three kind of
workload described by matrix and testing results showed below.

Fig. 7. Workload① workload② workload③

Grid correctness testing results on daytime

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%
100.00%

successful jobs
rate

average successful

tasks rate

workload1

workload2

workload3

 Fig. 8. Correctness testing results(daytime) Fig. 9. Correctness testing results (nighttime)

In daytime, besides testing workload, normal running workloads on Grid system are
heavy. This situation will be eased during nighttime. Correspondingly, performance of
Grid system should also be different in common sense, and it is also revealed by

 CROWNBench: A Grid Performance Testing System 199

experiments. We can find in both of two experiments that long lasting and continuous
workload will give Grid system a more great impact.

In this experiment, workload are same as ones used in first experiment, but they all
contain only one application (③) for simplifying testing workload model and com-
puting metrics of Grid system Qos. The testing results are showed as Figure 10.

Fig. 10. Grid system Qos testing results (nighttime)

From testing results listed above, we can make some probable conclusions. Jobs
submission frequency and lasting time exert influence on both running correctness and
Qos of Grid system. Those workloads with higher jobs submission frequency and
longer lasting time will spend longer average turnaround time and scheduling time, and
also generate greater performance jitter (variance).

6.3 Experiment Ⅱ

We had learned from jobs observing component in CROWN Grid middleware that the
arrival process of AREM jobs, an application used to predict a day’s weather in the
future, appears to be Poison distribution in a long term, and parameters of distribution
are different among periods in a day. Such observing and analyzing processes are
finished by component out of CROWNBench system, so it is beyond discussion of this

Fig. 11. Successful jobs rate of real workload and synthetic workload

200 X. Yang et al.

paper. In this application, data firstly is fetched through I/O operation and then is
processed. We used CROWNBench to compose synthetic workload using basic tasks
of float computing and I/O operation and tuning parameters of Poison to emulate real
AREM workload in each two hours period in a day. Then we chose a day to do per-
formance testing every 2 hours. And we compared the average jobs rate of synthetic
workload to real workload to evaluate the effectiveness of our system.

The Figure 11 show successful jobs rate of real workload and synthetic workload
respectively. Its effect could be showed by results of this experiment.

7 Conclusion

CROWNBench is an automatic Grid system performance testing system using cus-
tomizable synthetic workload. It allows testers to define testing workload by con-
structing workload and application with tasks which can be defined by them. Main
contributions of CROWNBench are concluded as:

1. Testers can customize their Grid applications running for Grid performance
testing. Grid performance testing is not limited to scenario running certain kinds
of applications;

2. Testers can define jobs submission statistical laws to compose testing workload,
and then load them to Grid system in a usual manner;

3. Running testing workload can be controlled and replayed. Because user can de-
fine their applications and tasks with probes, low level performance data of a
certain component of system could also be collected to study and improve the
performance of the component;

4. The whole procedure of testing is automatic, because testers only need to take part
in works of editing Application Description File, Submission Rule Description
File and Testing Environment Topology File.

References

1. China Research and Development Environment Over Wide-area Network, http://www.
crown.org.cn/

2. Lublin, U., Feitelson, D.: The Workload on Parallel Supercomputers: Modeling the Char-
acteristics of Rigid Jobs. http://citeseer.nj.nec.com/lublin01workload.html

3. Calzarossa, M., Serazzi, G.: Workload Characterization a Survey. Proc. Of the IEEE 81(8),
1136–1150 (1993)

4. Li, H.: Performance Evaluation in Grid Computing: A Modeling and Prediction Perspective.
In: ccgrid. Seventh IEEE International Symposium on Cluster Computing and the Grid
(CCGrid 2007), pp. 869–874 (2007)

5. Iosup, A., Dumitrescu, C., Epema, D., Li, H., Wolters, L.: How are real grids used? The
analysis of four grid traces and its implications. In: proceedings of 7th IEEE/ACM Intl.
Conference on Grid Computing (Grid 2006) (2006)

6. Khalili, O., He, J., Olschanowsky, C., Snavely, A., Casanova, H.: Measuring the Perform-
ance and Reliability of Production Computational Grids. In: Grid Computing Conference
(2006)

 CROWNBench: A Grid Performance Testing System 201

7. Frumkin, M., Van der Wijngaart, R.F.: NAS Grid Benchmarks: A Tool for Grid Space
Exploration. Cluster Computing 5(3), 247–255 (2002)

8. Tsouloupas, G., Dikaiakos, M.: GridBench: A Tool for Benchmarking Grids. In: Proceed-
ings of the 4th International Workshop on Grid Computing (Grid 2003), pp. 60–67 (2003)

9. Iosup, A., Epema, D.H.J.: GrenchMark: A Framework for Analyzing, Testing, and Com-
paring Grids. In: Proc. of the 6th IEEE/ACM Int’l Symposium on Cluster Computing and
the Grid (CCGrid 2006), May 2006, pp. 313–320. IEEE Computer Society Press, Los
Alamitos (2006)

10. Németh, Z., Gombás, G., Balaton, Z.: Performance Evaluation on Grids: Directions, Issues,
and Open Problems. In: Parallel, Distributed and Network-Based Processing (2004)

11. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling the char-
acteristics of rigid jobs. J. Parallel & Distributed Comput. 63(11), 1105–1122 (2003)

12. Calzarossa, M., Serazzi, G.: Workload characterization: a survey. Proc. IEEE 81(8),
1136–1150 (1993)

13. The Apache, A.N.T.: Project, http://ant.apache.org
14. Ant-Contrib Tasks, http://ant-contrib.sourceforge.net

	CROWNBench: A Grid Performance Testing System Using Customizable Synthetic Workload
	Introduction
	Related Works
	Grid Performance Testing System
	Grid Performance
	Grid Performance Testing System

	Grid Workload Model
	CROWNBench
	System Architecture
	Grid Performance Metrics
	CROWNBench Testing Process
	Key Techniques of CROWNBench

	CROWNBench Performance Testing Experiments
	Experiment Environment
	Experiment Ⅰ
	Experiment Ⅱ

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

