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Abstract—Air temperature monitoring is essential for many
Internet of Things (IoT) applications. Many existing applications
rely on the readings provided by the weather stations maintained
by federal, regional, or local government agencies. While the
accuracy of the data provided by those weather stations is high,
the ability of such data to reflect the temperature variability
experienced by urban populations is generally low because the
measurements are collected at the mesoscale. In reality, the air
temperature varies at the microscale and local scale, and the
health risks associated with extreme weather are assumed to vary
with the exposure. In this paper, we present LORATEMP, a novel
solution that uses LoRa link characteristics and advanced machine
learning techniques to predict air temperature. LORATEMP lever-
ages a unique correlation map representation and a novel dual at-
tention network to capture the complex dependency between LoRa
link characteristics and air temperature, and employs adversarial
domain adaptation to transfer the temperature prediction knowl-
edge learned from one device to those without temperature sensors
using a few temporal measurements. We implement LORATEMP
and evaluate it in real-world environments. Experimental results
show that LORATEMP significantly outperforms all baselines and
reduces air temperature prediction errors by at least 30%.

Index Terms—Air temperature monitoring, LoRa link charac-
teristics, domain adaptation, multivariate time series forecasting

I. INTRODUCTION

Air temperature monitoring is essential for many Internet
of Things (IoT) applications. Many existing applications rely
on the readings provided by the weather stations maintained
by federal, regional, or local government agencies [1]–[4].
For example, Zhang et al. used the provided air temperature
readings to conduct research on predicting heat-related mor-
tality in urban environments [1]. While the accuracy of the
data provided by those weather stations is high, the ability
of such data to reflect the temperature variability experienced
by urban populations is generally low because the measure-
ments are collected at the mesoscale (3,000−100,000m). In
addition, the weather stations are often located in open areas
to ensure no interference from shading, therefore they do not
reflect the distribution of populations, nor of built environments
that can generate urban heat island effects. In reality, the
air temperature varies at the microscale (<100m) and the
local scale (100−3,000m), and the health risks associated
with extremely hot weather are assumed to vary with the
exposure. To overcome such limitations, recent studies have
proposed to deploy new infrastructures to provide fine-scale

measurements [5]–[7]. However, industry practitioners have
shown a marked reluctance to embrace such solutions due to
the high deployment and maintenance costs.

Recent years have witnessed rapid deployments of LoRa
networks in both urban and rural areas. As an emerging
Low-Power Wide-Area Network (LPWAN) technology, LoRa
provides a low-cost wireless solution that supports long-range
data collection for low data rate applications. Over the past
decade, LoRa networks have been deployed in 153 countries
to support various applications. For example, a city-wide LoRa
network that consists of 100 gateways and 19,821 end devices
is deployed to support 12 kinds of smart city applications,
such as gas meter monitoring, water meter monitoring, and gas
alarming [8]. The widely deployed LoRa networks offer new
opportunities to provide fine-scale temperature measurements.
Unfortunately, most of the deployed LoRa devices do not have
temperature sensors, and adding new hardware is costly or
infeasible in many cases where the device owners do not allow
a third party to access their hardware or make modifications
due to their security and privacy concerns. This motivates us
to explore a new solution that only requires device owners to
share link traces and allows us to collect a few temporary
temperature measurements near their deployments, which are
enough to turn those deployments into virtual weather stations.

In this paper, we first present our empirical study that
demonstrates the feasibility of using LoRa link characteristics
to predict ambient air temperature. While our study shows
promising results, it also highlights the important challenges
posed by (1) the complex dependency between LoRa link char-
acteristics and temperature measurements observed in the real
world, (2) the lack of methods in capturing the non-static and
complex correlation among link metrics, and (3) the fact that
the prediction model generated on one device are not applicable
in other devices. To address those challenges, we develop a
novel air temperature monitoring solution, namely LORATEMP,
that leverages a unique correlation map representation method
and a novel dual attention network to capture the complex
dependency between LoRa link characteristics and temperature
measurements, and employs adversarial domain adaptation to
transfer the temperature prediction knowledge learned from
one device to those without temperature sensors using a few
temporal measurements. We implement our solution and test
it in real-world environments. Experimental results show that



LORATEMP outperforms all baselines and provides accurate
air temperature predictions.

Our paper is organized as follows. Section II introduces our
empirical study. Section III presents the design of LORATEMP.
Section IV evaluates LORATEMP. Section V reviews the re-
lated work. Section VI concludes this paper.

II. EMPIRICAL STUDY

We perform an empirical study to explore the feasibility and
identify the challenges of using LoRa link characteristics to
predict air temperature. In this section, we first introduce our
hardware deployment and collected data. We then present our
problem formulation and findings.

A. Hardware Deployment and Collected Data

We perform our empirical study on a network consisting of
one LoRa base station and six LoRa end devices, which are
deployed in an urban area to support a smart city application.
We add a temperature sensor to each LoRa end device to collect
ground truth temperature readings. Each LoRa end device
periodically measures ambient air temperature and sends the
measurement to the LoRa base station together with the link
characteristics, including the Received Signal Strength (RSS),
the Signal-to-Noise Ratio (SNR), the Packet Receive Ratio
(PRR), and the Bit Error Rate (BER), measured when receiving
the last packet transmitted by the LoRa base station. After
receiving each packet, the LoRa base station measures the link
characteristics and sends back an acknowledgment packet. The
data traces are gathered from six LoRa end devices, denoted
as d0, d1, d2, d3, d4, and d5.

B. Problem Formulation

We approach the task of air temperature prediction as a
regression problem, where the input is a sequence of mea-
surements on LoRa link characteristics, and the output is the
corresponding air temperature. Mathematically, we define the
sequence of link measurements as a matrix X ∈ RT×L,
where T is the length of the sequence and L is the number
of link metrics considered. Our goal is to learn a nonlinear
mapping f : RT×L → R, which translates the sequence of link
measurements into an accurate temperature prediction. This
mapping is anticipated to encapsulate the underlying dynamics
and dependency between the link metrics and the temperature,
offering a viable solution to the challenge of direct temperature
computation from link metrics in variable outdoor conditions.

C. Feasibility of Using Link Characteristics to Predict Air
Temperature

Although early efforts have been made to theoretically
model the effects of air temperature on wireless communica-
tion medium and wireless transceiver, there exist significant
challenges in using the link characteristics measured by a
wireless receiver to predict air temperature because the link
measurements are largely affected by other factors, such as
nearby wireless transmitters, external events like moving ob-
jects and falling trees, and environmental variables including

TABLE I: Pearson correlation coefficients and MI test results
between air temperature and different LoRa link metrics.

Pearson Correlation Test

Coefficient P Value

RSS -0.057 2.564× 10−16

SNR 0.049 2.167× 10−12

BER 0.034 1.406× 10−6

PRR 0.028 5.973× 10−5

Mutual Information Test

Results

RSS 0.454
SNR 0.529
BER 0.008
PRR 0.322

TABLE II: MAE of temperature predictions provided the MLP
models trained with different features over five days. Single:
MLP trained with RSS as input. Multiple: MLP trained with
RSS, SNR, PRR, and BER as input. Multi-TS: MLP trained
with RSS, SNR, PRR, BER, and Timestamp as input.

Day Single Multiple Multi-TS

First 0.064 0.061 0.058
Second 0.060 0.055 0.048
Third 0.122 0.109 0.083
Forth 0.093 0.086 0.056
Fifth 0.090 0.082 0.053

Avg. MAE 0.086 0.079 0.060

precipitation and humidity. The challenges are exaggerated in
the context of LoRa, which operates at low power in the
license-free sub-gigahertz radio frequency bands.

We begin our empirical study by analyzing the linear corre-
lation between air temperature measurements and various LoRa
link parameters. Table I lists the Pearson correlation coefficients
between air temperature and each LoRa link metric. As Table I
lists, the linear correlation between temperature and LoRa link
characteristics is weak and fragile. For example, the correlation
coefficient between air temperature and RSS measurements is
-0.057 and the P value is 2.564×10−16. Due to the weak and
fragile correlation, it would be very challenging for any linear
models to make good temperature predictions based on link
characteristics.

We further perform the Mutual Information (MI) test to
explore the nonlinear dependence between temperature and link
characteristics. The test results listed in Table I show some
significant dependencies (0.454 for RSS, 0.529 for SNR, and
0.322 for PRR). While the MI test shows promising results, it
also highlights the important challenges posed by the complex
nonlinear dependency, which motivates us to develop a new
deep-learning based method to capture it.

Observation 1: There exists a complex nonlinear dependence
between air temperature and LoRa link characteristics.

To explore the use of LoRa link characteristics to predict air
temperature, we employ the Multi-Layer Perceptron (MLP) to
train the prediction models and examine their prediction per-
formance. We preprocess the data before training by applying
a min-max scaler with a maximum temperature difference of
16°C and train each MLP model with 200 epochs and a learning
rate of 0.01. The MLP model consists of four hidden layers
with 128, 256, 128, and 64 neurons, respectively. Table II lists
the Mean Absolute Error (MAE) of temperature predictions
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Fig. 1: Pearson correlation between link metrics in two tem-
perature ranges.

over a 5-day period. As Table II lists, the MLP model with RSS,
SNR, PRR, BER, and Timestamp as input provides the best per-
formance with the smallest averaged MAE (0.06). The results
demonstrate the benefit of treating the LoRa link measurements
as the time series data when training the prediction model and
leveraging the temporal dependency in the link measurements
to produce good temperature predictions.

Observation 2: The temporal dependency in the LoRa link
measurements carries additional knowledge on air temperature
predictions.

To further understand the temperature knowledge carried by
the link characteristics, we analyze the correlation between
those link metrics in different temperature ranges. Figure 1
plots the Pearson correlation coefficients in two ranges: high-
temperature range (no less than 28°C) and low-temperature
range. Figure 1 shows that the correlation coefficients differ a
lot in different temperature ranges. For example, the correlation
coefficient between RSS and BER in the low-temperature range
is -0.13, while the coefficient is 0.19 in the high-temperature
range. Similarly, the correlation coefficients between PRR and
SNR are 0.21 in the low-temperature range and -0.47 in the
high-temperature range. The results indicate that temperature
plays an important role in modulating the correlation between
different link metrics, which carries additional knowledge on
air temperature predictions. Unfortunately, the existing machine
learning models, such as Linear Regression (LR) and MLP, can-
not encode such inter-correlation (correlation between different
link metrics) between different pairs of time series [9].

Observation 3: Air temperature plays an important role
in modulating the correlation between different link metrics,
which carries additional knowledge on air temperature predic-
tions.

D. Feasibility of Sharing Temperature Prediction Models Be-
tween Different Devices

One of our main objectives is to enable accurate air tempera-
ture predictions for those devices without temperature sensors.
However, obtaining temperature labels for the LoRa end device
not equipping a temperature sensor is labor-intensive and
time-consuming, primarily due to the requirement for manual
data collection and labeling. This process involves directly
measuring ambient air temperature around devices without
built-in sensors, accurately associating these measurements

Fig. 2: Air temperature distributions under various RSS and
SNR combinations on two different LoRa end devices: one
marked in blue and the other marked in red.

1 2 3 4 5 6 7
Test Day ID

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
AE

MLP on Device 1
MLP on Device 2
Random Forest on Device 1
Random Forest on Device 2

Fig. 3: MAE of temperature predictions when using MLP and
Random Forest models.
with the correct devices and time stamps, and integrating this
information into the existing dataset. We explore the feasibility
of applying the temperature prediction model trained with the
data collected from one device to the data gathered by other
devices. Figure 2 plots the air temperature distributions under
various RSS and SNR combinations on two different LoRa end
devices. As Figure 2 shows, there exist significant differences in
temperature values measured by those two devices, even under
the same RSS and SNR conditions. The centers and shapes of
those two distributions differ a lot. Therefore, directly applying
the prediction model trained on one device to others is very
unlikely to succeed. However, the similarities in the distribution
patterns indicate the feasibility of transferring temperature
prediction knowledge between different devices.

To intuitively quantify the discrepancy between two temper-
ature distributions, we train the temperature prediction model
on one LoRa end device and apply it on another. Figure 3 plots
MAE of temperature predictions when we apply MLP and the
random forest models trained on one device to the new data
collected from the same device and another device. As Figure 3
shows, the MAE values are small and always no more than
0.121 when we test the models on the same device. However,
the MAE values increase up to 0.251 under MLP and up to
0.200 under the random forest model when we apply the model
on the other device. The results show that directly sharing the
temperature prediction model between devices may not be able
to provide good prediction performance and there is a critical
need for a good solution to transfer the temperature prediction



knowledge between devices.
Observation 4: Directly applying the temperature prediction

model trained on one device to others does not work well.

III. LORATEMP

Guided by the insights gathered from our empirical study,
we develop a novel air temperature prediction solution, namely
LORATEMP. Figure 4 shows the framework of LORATEMP,
which consists of three components: Correlation Map Repre-
sentation (preprocessing), Dual Attention Network, and Ad-
versarial Domain Adaptation. The preprocessing aims to
capture the dynamic correlation between link metrics over
time by transforming the multivariate link characteristics into
a sequence of correlation maps (see Section III-A). Dual
Attention Network takes the correlation maps generated by
the preprocessing component as input and leverages a dual
attention mechanism to capture the complex temporal and link-
wise dependency within the data (see Section III-B). Adver-
sarial Domain Adaptation offers a label-efficient methodology
for model training, which robustly transfers the temperature
prediction knowledge learned from one device to others (see
Section III-C).
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Fig. 4: Overview of LORATEMP.
A. Correlation Map Representation

As Observation 1 in Section II-C states, there exists complex
nonlinear dependence between air temperature and LoRa link
characteristics. Observation 3 in Section II-C further suggests
that the knowledge of the correlation between different link
metrics can help characterize the system status and produce
good air temperature predictions. Inspired by Zhang et al. [9],
we employ a correlation map to explicitly model the dynamic
correlation. Specifically, each time step t is characterized by
a correlation map, where the relationship between link met-
rics is quantified using the inner product of their respective
measurements over the past Tw time steps. With X ∈ RTw×L

encapsulating the preceding link metrics, where L represents
the number of link characteristics, the correlation map is
constructed as follows:

Mt = X⊤
t Xt, (1)

with X⊤
t being the transpose of Xt. Here, Mt is the correlation

map, and its element at position (i, j) reveals the correlation
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Fig. 5: Dual Attention Network with three components: a
temporal attention network, a link-wise attention network, and
a prediction layer.
between the i-th and j-th features at time t. In addition
to explicit correlation modeling, this preprocessing design is
resilient to input noise, as turbulence at certain time steps has
a negligible effect on the overall correlation patterns.

B. Dual Attention Network

Observations 2 and 3 in Section II-C highlight the critical
role of temporal-level and link metric dependency in providing
accurate temperature predictions. Nonetheless, extracting such
a dependency from the complex, multivariate characteristics of
wireless links is a formidable challenge. The existing wire-
less sensing techniques designed for device tracking, gesture
recognition, and activity recognition rely on capturing multi-
path channel variations, such as amplitude attenuation and
phase shifts, for prediction purposes. However, acquiring such
detailed data often necessitates hardware modifications, which
are impractical in our application scenario.

To overcome such obstacles, we turn to the self-attention
mechanism, a concept that has demonstrated remarkable flex-
ibility and effectiveness in identifying correlations within se-
quence data across a range of fields, including natural language
processing, computer vision, and audio processing [10]. This
mechanism draws inspiration from human cognitive processes,
enabling the explicit modeling of dependency between each
pair of input units without requiring domain-specific knowl-
edge. By training the attention mechanism alongside other
model parameters using prediction loss, we can capture com-
plex temporal dynamics and link metric dependency directly
from the data.

To this end, we develop a novel Dual Attention Network,
which is tailored for air temperature prediction from multi-
variate link features. This network leverages the self-attention
mechanism to address two key challenges: first, it captures the
intricate temporal patterns that are essential for understanding
temperature fluctuations over time; and second, it identifies
the subtle dependency between different link metrics that are
indicative of temperature changes. By integrating these dual
aspects of attention, our network offers a comprehensive and
data-driven approach to temperature prediction. As Figure 5
shows, our Dual Attention Network consists of three com-
ponents: a temporal attention network, a link-wise attention
network, and a prediction layer.



The temporal attention network aims to capture the temporal
dependency within the input LoRa link sequences. We represent
the input multivariate link features as a three-dimensional
tensor, M ∈ RT×L×L, where T represents the window size
and L denotes the number of link features. At each time
step, we flatten the signature matrix to produce the input,
denoted by XT ∈ RT×L2

, for the temporal attention process.
We employ a single-head self-attention network to facilitate
the temporal collaboration among the inputs. The temporal
attention is defined as:

AT = softmax(
QTK

⊤
T√

dkT

)VT , (2)

where the query vectors QT , the key vectors KT , and the value
vectors VT are computed within the attention mechanism using
the input XT ∈ RT×L2

, dkT
is the dimension of KT , and the

element at the i, j-th position quantifies the relevance of time
step j for i.

The link-wise attention network is adept at unraveling tem-
poral patterns within the data and engineered to extract and
analyze the intricate dependency existing among the various
link features. This analysis is pivotal for understanding the
nuanced interplay between different link metrics and their
collective effects on air temperature prediction. Given the
nature of our data and the specific focus on link features, the
input for the link-wise attention network is a transposed version
of XT , denoted as XL ∈ RL2×T . This transposition facilitates
a shift in focus from temporal dynamics to the relationships
between link features across the same time frame. Similar to
the temporal domain, we employ a single-head self-attention
mechanism tailored for the link-wise domain. The objective is
to enable the network to discern and leverage the dependency
between different link metrics that might influence temperature
readings. The link-wise attention is defined as:

AL = softmax

(
QLK

⊤
L√

dkL

)
VL, (3)

where the query vectors QL, the key vectors KL, and the value
vectors VL are computed within the attention mechanism using
the input XL ∈ RL2×T , dkL

is the dimension of KL, and the
element at the i, j-th position quantifies the relevance of time
step j for i.

To synthesize the insights garnered from both the temporal
and link-wise attention networks, the prediction layer concate-
nates their outputs and subsequently flatten the resulting matrix
to form a unified representation vector. Formally, we have

h = flattening([AT ;AL]), (4)

where [·; ·] denotes the concatenation operator, and the flatten-
ing operation transforms a matrix into a vector by sequentially
aligning its elements along the first dimension.

C. Adversarial Domain Adaptation

One of our design goals is to enable accurate air temperature
predictions for those devices without temperature sensors. The
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Fig. 6: Adversarial Domain Adaptation. The red cylinder
represents the source domain-specific knowledge, the blue one
represents the target domain-specific knowledge, and the green
one represents the domain-invariant knowledge shared between
source and target domains.

availability and quality of labeled data play an important role in
the performance of deep learning models. However, obtaining
temperature labels for the LoRa end device that does not have
a temperature sensor is labor intensive and time consuming,
which emphasizes the critical need for domain adaptation
techniques, which enable the transfer of knowledge from a
well-labeled source domain to a less-labeled target domain,
thus alleviating the dependency on extensive labeled datasets
and reducing the overall cost and effort required for model
training. Traditional approaches, such as the Teacher Student
Model (TSM), presuppose the availability of parallel data from
both the source and the target domains, a condition that is
rarely met in our scenario due to the disparities in wireless
conditions and environmental variables between the source and
target devices [11].

To address the domain discrepancy issue, we develop the
Adversarial Domain Adaptation framework tailored for our air
temperature prediction task. As Figure 6 shows, the framework
consists of three components: the source domain predictor, the
target domain predictor, and the MLP discriminator. The source
domain predictor extracts knowledge from the source domain,
while the target domain predictor extracts knowledge from the
target domain. The MLP discriminator identifies whether the
predictor’s attention output originates from the source or target
domain, aiding in the distinction between domain-specific
and domain-invariant knowledge. Furthermore, the attention
network within the predictor is shared across both domains,
facilitating the transfer of domain-invariant knowledge from
the source domain to the target domain.

Specifically, we employ a domain-specific predictor in each
domain to accommodate domain-specific characteristics: fθS in
the source domain and fθT in the target domain. Here, θS and
θT represent the learnable parameters of the domain-specific
predictors. The prediction loss minimizes MAE between the
predicted air temperature values and the ground truth. Formally,



we have

Lpred =
1

|D(S)|
∑

(x,y)∈D(S)

|fθS (hx)− y|

+
1

|D(T )|
∑

(x,y)∈D(T )

|fθT (hx)− y|,
(5)

where D(S) and D(T ) are sets of labeled samples from the
source domain and the target domain, respectively. The variable
hx represents the output from the dual attention network.

In addition, our framework incorporates a parametric dis-
criminator network, denoted as gθD (·), to introduce an adver-
sarial component into the training regimen. Here, θD represents
the learnable parameters. This discriminator is designed to
challenge the shared dual attention network, compelling it to
generate embeddings that are indistinguishable between the
source and target domains. The discriminator, implemented
as a MLP, takes the representation embedding hx as input
and outputs a prediction regarding its domain of origin. The
objective during training is to optimize the discriminator’s
ability to distinguish between the source and target domain
embeddings, leading to the following domain loss function:

Ldomain = − 1

|D(S)|
∑

(x,y)∈D(S)

log(gθD (hx))

− 1

|D(T )|
∑

(x,y)∈D(T )

log(1− gθD (hx))).
(6)

We employ the pretrain-and-fine-tune paradigm [12] to en-
hance domain-invariant feature learning and model generaliza-
tion. We first train the shared dual attention network and the
source domain predictor and then initialize the target predictor
with θT = θS for adversarial fine-tuning. The predictors and
the discriminator are alternately trained: the predictors are op-
timized using Lpred+λLdomain, with λ balancing prediction
and domain losses, while freezing θD. The discriminator is then
trained with Ldomain, keeping the predictor’s parameters static.
This process repeats until convergence.

IV. EVALUATION

We conduct a series of experiments to evaluate the per-
formance of LORATEMP. We first perform five experiments
to examine the ability of LORATEMP to provide accurate air
temperature predictions and compare its performance against
five baselines: Weather Station Data (WS)1, LR, MLP, LSTM,
and TSM (Section IV-B). We then perform a 79-day measure-
ment to evaluate the long-term performance of LORATEMP
(Section IV-C). Finally, we examine the generalizability of
LORATEMP by applying it to a publicly accessible dataset
collected from a vineyard in Italy (Section IV-D).

1This baseline uses the temperature readings provided by the nearest weather
station as predictions.

A. Implementation of LORATEMP and Baselines

We implement LORATEMP and all baselines using Python
3.8 with the libraries including PyTorch, TensorFlow, NumPy,
and Scikit-learn. We have performed an ablation study to select
40 as the window size and 0.01 as the flexible factor λ for our
LORATEMP implementation. We use the Stochastic Gradient
Descent (SGD) optimizer with a learning rate of 0.0052 to train
the temperature prediction model. We implement the baseline
MLP with four hidden layers (128, 256, 128, and 64 neurons)
and ReLU activation and set the learning rate to 0.0025 with
the SGD optimizer. We implement the baseline LSTM with two
layers, each of which has 128 neurons, and the SGD optimizer,
set the learning rate to 0.0001, and use 0.1 as the dropout to
prevent overfitting. The baseline TSM employs the knowledge
distillation-based domain adaptation with a MLP model for
both teacher and student neural networks. The student neural
network is trained using the SGD optimizer with a learning
rate of 0.0001. All training and testing are performed on a
server equipped with eight NVIDIA A100 GPUs, each of which
boasts a memory capacity of 40GB.

B. Performance of LORATEMP

We first examine the capability of LORATEMP to provide
good temperature predictions for five LoRa end devices de-
ployed in different locations. We deploy a standalone ther-
mometer close to each LoRa end device to collect ground
truth temperature readings. Our training data has the link and
temperature measurements collected from the source LoRa
device d0 equipped with a temperature sensor over half a
month and a single day of measurements gathered from each
of those five target devices (d1, d2, d3, d4, and d5). We
preprocess the data before training by applying a min-max
scaler with a maximum temperature difference of 16°C. We
use the new data collected from the target devices as our
testing data3. Table III lists MAE and the Mean Squared
Error (MSE) of the temperature predictions provided by dif-
ferent methods. We make four observations from Table III.
First, WS exhibits the least accurate performance, with an
average MAE of 0.186 and an average MSE of 0.045. This
discrepancy underscores the significant variation between the
sensor-generated temperature readings and those obtained from
weather stations, highlighting the necessity for fine-grained
measurement capabilities. Second, LR and MLP demonstrate
averaged MAE values of 0.139 and 0.119, respectively. De-
spite the Universal Approximation Theorem suggesting MLP’s
potential to approximate any function [13], the suboptimal
results show that the direct computation of air temperature from
link metrics does not work well in real-world environments.
Third, TSM, a domain adaptation method, surpasses LSTM by

2The learning rate of LORATEMP or each baseline is set to achieve the best
performance.

3Please note that the MAE values reported in this section is not comparable
to the ones listed in Table II. Both the training and testing data used to produce
Table II are collected from the same device, which represents a much easier
problem without the need of prediction knowledge transfer.



TABLE III: MAE and MSE of temperature predictions provided by LORATEMP and baselines on five LoRa end devices.

Device WS LR MLP LSTM TSM LORATEMP

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

d1 0.187 0.045 0.089 0.010 0.059 0.006 0.051 0.005 0.050 0.005 0.042 0.003
d2 0.180 0.042 0.181 0.043 0.118 0.025 0.111 0.023 0.143 0.035 0.106 0.020
d3 0.162 0.035 0.168 0.044 0.144 0.032 0.149 0.036 0.150 0.035 0.118 0.023
d4 0.215 0.056 0.110 0.019 0.102 0.017 0.113 0.021 0.097 0.015 0.069 0.007
d5 0.186 0.045 0.147 0.033 0.130 0.027 0.154 0.037 0.128 0.025 0.102 0.016

Avg. 0.186 0.045 0.139 0.030 0.119 0.025 0.135 0.032 0.114 0.023 0.088 0.014
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Fig. 7: MAE and MSE of temperature predictions over 78 days.

15.96% in MAE and 28.12% in MSE on average, indicating the
critical role of domain adaptation in addressing discrepancies
between different devices for temperature predictions. Last but
not least, LORATEMP consistently outperforms all baselines,
achieving MAE values of 0.042 (0.67°C), 0.106 (1.70°C), 0.118
(1.89°C), 0.069 (1.10°C), and 0.102 (1.63°C) on those five
LoRa end devices. Such a superior performance, with an over
30% reduction in MAE compared to all baselines, is attributed
to our unique designs presented in Section III.

C. Long-Term Evaluation

We perform a 79-day measurement to evaluate the long-term
performance of LORATEMP. The training data includes the
link and temperature measurements collected from the LoRa
end device d0 over half a month and from another LoRa end
device d6 over one day. The testing data is the measurements
collected from d6 over 78 consecutive days, encompassing
a wide range of environmental variations. Figure 7 presents
MAE and MSE of temperature predictions on the testing
data made by LORATEMP, MLP, and LSTM. As Figure 7
shows, the MAE value under LORATEMP is 0.097, which is
significantly lower than the ones under MLP (0.134) and LSTM
(0.138). Similarly, LORATEMP significantly outperforms MLP
and LSTM in terms of MSE, with a value of 0.016 compared
to 0.029 under MLP and 0.041 under LSTM. The results show
that LORATEMP excels in both minimizing absolute prediction
errors and reducing the effects of larger deviations, highlighting
its robustness in long-term forecasting.

D. Performance with a Publicly Accessible Dataset

To examine the generalizability of LORATEMP, we apply
it to the publicly accessible dataset provided by Goldoni et
al. [14]. The dataset consists of the data collected from eight
Tinovi PM-IO-5-SM LoRaWAN end devices and a MikroTik
gateway, which are deployed to monitor a 400m×30m vineyard
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Fig. 8: Average MAE and MSE performance of temperature
predictions on vineyard dataset.

in Rio Saliceto, Reggio Emilia, Italy. The dataset has the LoRa
link characteristic measurements and temperature readings col-
lected over 85 days (from November 16, 2020, to February 9,
2021). Each of the eight LoRaWAN end devices transmits every
300s and the temperature is collected from a nearby weather
station every 600s. The distance between each LoRa end device
and the gateway varies from 16m to 340m.

We use the data collected by one LoRa end device tinovi-
01 from November 16, 2020, to January 10, 2021, and the
data gathered by another LoRa end device tinovi-02 during
a single day (January 11, 2021) as the training date. We
employ LORATEMP to generate the prediction model and
test it on the date measured at tinovi-02 from January 11,
2021, to February 9, 2021. We repeat the experiments on six
other end devices (tinovi-03, tinovi-04, tinovi-05, tinovi-06,
tinovi-07, and tinovi-08). Figure 8 plots the averaged MAE
and MSE of the temperature predictions when we employ
LORATEMP and our baselines. As Figure 8 shows, the MAE
value under LORATEMP is 0.163, much smaller than the ones
provided by MLP (0.239), LSTM (0.210), and TSM (0.217). As
Figure 8 shows, LORATEMP achieves the smallest MSE (0.04)
among all solutions. The results confirm the effectiveness of
LORATEMP in providing accurate air temperature predictions
and transferring the prediction knowledge from one device to
another.

V. RELATED WORKS

There has been increasing interest in using wireless link char-
acteristics to perform environmental sensing. In recent years,
significant efforts have been made to measure soil properties
using wireless signals. For instance, Chang et al. [15] developed
machine learning-based methods for soil moisture sensing
by measuring the signal strength of the underground LoRa
devices, which complement the solutions that use Wi-Fi [16],
RFID [17], or LTE [18] signals for sensing in the soil. Chen



et al. [19] and Xie et al. [20] proposed to use LoRa signals for
localization and activity recognition. However, such solutions
rely on application-specific hardware, such as multiple antennas
or Universal Software Radio Peripheral (USRP), and require
modifications to the existing infrastructure, which is costly and
even infeasible due to security and privacy concerns in many
cases. In contrast to the existing solutions, this paper explores
the feasibility of equipping the existing LoRa devices with air
temperature sensing capability without hardware modifications.

Multivariate time series forecasting plays a pivotal role
across various sectors by enabling the prediction of future
trends from interrelated variables. Significant efforts have been
made in the literature to explore the use of various models, such
as Vector Autoregression (VAR) [21], Random Forests, Support
Vector Machines (SVM), and LSTM. Recently, there has been
increasing interest in applying the attention models, which
address the inherent challenges of multivariate time series
forecasting by enabling the decoder to access the complete
encoded input sequence. Unfortunately, the attention models’
applications to time series data forecasting remain relatively
unexplored. Moreover, the existing solutions for time series
forecasting with attention models involve complex and time-
consuming training processes that do not fully leverage the
temporal and feature correlations present in the time series
data. In contrast, this paper proposes a dual attention network
that enhances the performance of current attention-based time
series prediction models, offering improved efficiency and
effectiveness.

The pursuit of domain adaptation has been explored from
various angles, encompassing both linear and non-linear hy-
potheses [22], [23]. In the realm of unsupervised domain
adaptation, multiple methods have emerged to align the feature
distributions between the source and target domains. Some ap-
proaches achieve this by reweighing or selecting samples from
the source domain [24], while others seek explicit transforma-
tions of the feature space to map the source distribution onto
the target distribution. A critical aspect of distribution matching
approaches lies in measuring the (dis)similarity between the
distributions. Our solution aims to encapsulate both target
domain-specific and domain-invariant knowledge to ensure its
robust performance on the target domain rather than employing
reweighing or geometric transformations.

VI. CONCLUSIONS

This paper first demonstrates the feasibility and presents the
challenges of using LoRa link characteristics to predict ambient
air temperature and then presents novel deep learning-based
methods that predict air temperature using LoRa link char-
acteristics and transfer the temperature prediction knowledge
between devices. Experimental results show that LORATEMP
significantly outperforms all baselines and reduces air temper-
ature prediction errors by at least 30%.
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