
Configuring Industrial Wireless Mesh Networks via Multi-Source
Domain Adaptation

Xia Cheng
Florida International University

Miami, Florida, USA
xchen075@fiu.edu

Mo Sha
Florida International University

Miami, Florida, USA
msha@fiu.edu

Dong Chen
Colorado School of Mines
Golden, Colorado, USA
dongchen@mines.edu

ABSTRACT
Low-power wireless mesh networks (WMNs) have been widely
deployed to connect sensors, actuators, and controllers in industrial
facilities. As industrial WMNs become increasingly heterogeneous
and complex, recent research has reported that resorting to ad-
vanced machine learning techniques to configure WMNs presents
significant performance improvements compared to traditional
methods. However, it is costly to collect sufficient data to train
good network configuration models in many industrial facilities.
In such scenarios, the benefits of using learning-based methods
that depend on a large amount of data are outweighed by the costs.
Recently there have been growing interests in using simulations
to configure WMNs because simulations can be set up in less time
and introduce less overhead. Unfortunately, recent studies show
that the network configuration selected from a simulated network
may not be able to help its corresponding physical network achieve
desirable performance due to the simulation-to-reality gap. In this
paper, we formulate the network configuration prediction as a
multi-source domain adaptation problem and introduce a novel
solution. Experimental results show that our solution effectively
closes the simulation-to-reality gap and provides 80.45% prediction
accuracy when it uses cheaply generated simulation data and 440
data traces collected from the physical network for training. As a
comparison, the deep neural network (DNN) model trained without
using simulation data requires 3,080 costly physical data traces to
achieve 80.39% prediction accuracy.

CCS CONCEPTS
• Networks→Wireless local area networks; Network man-
agement; Network simulations; Network performance mod-
eling; Network measurement; • Computing methodologies
→Machine learning approaches.

KEYWORDS
Industrial Wireless Mesh Networks, Network Configuration, Multi-
Source Domain Adaptation

1 INTRODUCTION
Industrial Internet of Things (IoT) promises one of the largest po-
tential economic effects of IoT – up to $47 trillion in added value
globally by 2025, according to the McKinsey report on future disrup-
tive technologies [35]. Industrial wireless mesh networks (WMNs),
the underlying support of industrial IoT, typically connect sensors,
actuators, and controllers in industrial facilities [31]. Over the last
decade, the networks that implement the IEEE 802.15.4-basedWMN
standards, such as WirelessHART [56], ISA100 [22], WIA-FA [20],
and 6TiSCH [21], have been widely deployed in various industrial

facilities including manufacturing plants, steel mills, and oil re-
fineries. A decade of real-world deployments has demonstrated
the feasibility of using low-power wireless technology to achieve
reliable communication in industrial facilities.

Although WMNs achieve good performance most of the time
thanks to decades of research, they are difficult to configure, be-
cause configuring an industrialWMN is a time-consuming, complex
process, which involves theoretical computation, simulation, and
field testing, among other tasks. If the network or the application
requirement changes, the field engineers may have to repeat the
whole network configuration process. As industrial WMNs become
increasingly heterogeneous and complex, a breadth of recent re-
search has reported that resorting to advanced machine learning
techniques to configure WMNs presents significant performance
improvements compared to traditional methods [36, 57, 59]. How-
ever, it is very costly to collect sufficient data to train good network
configuration models in industrial facilities. In such scenarios, the
benefits of using learning-based methods that depend on a large
amount of training data are outweighed by the costs. To address the
issue, there have been growing interests in using network simula-
tions to configure physical networks [29, 47] because a simulation
can be quickly implemented and set up, introduces little to no com-
munication overhead, and allows for different configurations to be
evaluated under exactly the same conditions. However, Shi et al.
show that the network configuration selected from simulations may
fail to help the physical network achieve its desirable performance
due to the simulation-to-reality gap and propose a single-source
domain adaptation method, namely SDA, to narrow the gap [46].
Unfortunately, SDA cannot close the gap when using the data gen-
erated by a single simulator and leaves a more than 10% accuracy
gap.

In this paper, we present an empirical study to better under-
stand the simulation-to-reality gap in network configuration and
introduce MARIA, a Multi-source domain Adaptation solution for
wiReless network confIgurAtion, which uses a large amount of
simulation data together with a small amount of physical data to
close the gap. To our knowledge, this paper represents the first
study that explores the benefit of using the data generated by multi-
ple simulators to configure industrial WMNs. Specifically, we make
the following contributions:

• We present an empirical study that investigates the benefit
of using the data produced by multiple simulators to train
network configuration models;

• We formulate the network configuration prediction as
a multi-source domain adaptation problem and develop
MARIA to close the simulation-to-reality gap in network
configuration;

Cheng, et al.

• We develop a new method that selects simulation data sets
for MARIA to deliver best performance;

• We implement MARIA and evaluate it using four simulators
and a physical network that consists of 50 devices. Experi-
mental results show thatMARIA provides 80.45% prediction
accuracy when using 6,600 simulation data traces together
with 440 physical data traces for training. As a compari-
son, the deep neural network (DNN) model trained without
using simulation data must use a large amount of phys-
ical data (3,080 data traces) to achieve similar prediction
accuracy (80.39%).

The remainder of our paper is organized as the following sec-
tions. Section 2 introduces the background of WirelessHART net-
works and the data sets used in our empirical study and evaluation.
Section 3 presents our empirical study. Section 4 and Section 5
introduce the design of MARIA and our simulation data selection
method. Section 6 evaluates MARIA. Section 7 reviews the related
work. Section 9 concludes the paper.

2 BACKGROUND AND DATA SETS
In this section, we first introduce the background of WirelessHART
networks and then present the data sets, which are used in our
empirical study and evaluation.

2.1 WirelessHART Networks
In this paper, we use the configuration ofWirelessHARTnetworks [56]
as an example to present our empirical study and network config-
uration solution. Today the networks that implement the Wire-
lessHART standard are the most widely used in industrial facilities.
For instance, Emerson Process Management, one of the leading
WirelessHART network suppliers, has deployed more than 54,835
WirelessHART networks globally and gathered 19.7 billion operat-
ing hours of experience [15]. Typically, a WirelessHART network
consists of a gateway, multiple access points, and a set of field de-
vices. The network manager, a software module that runs on the
gateway, is responsible for performing the management operations,
such as collecting link statistics, generating routes, and schedul-
ing transmissions. To meet the stringent real-time and reliability
requirements posed by industrial IoT applications, WirelessHART
adopts the IEEE 802.15.4 physical layer and employs the time slotted
channel hopping (TSCH) technique in the medium access control
(MAC) layer. TSCH is designed to combat narrow-band interfer-
ence and multi-path fading by combining time-slotted medium
access, multi-channel communication, and channel hopping. Un-
der TSCH, time is divided into slices of fixed length (e.g., 10𝑚𝑠)
that are grouped into a slotframe. Each time slot is long enough
to transmit a data packet and an acknowledgement between a pair
of communicating devices. All network devices are time synchro-
nized and share the notion of a slotframe that repeats over time. A
WirelessHART network uses up to 16 channels and all devices per-
form channel hopping in each time slot. WirelessHART supports
both source routing and graph routing. For each data flow, source
routing provides a single route between source and destination,
while graph routing provides a primary route and a set of backup
routes to improve the network reliability by taking advantage of

route diversity. Therefore, each network device is required to have
at least two outgoing routes under graph routing.

2.2 Configuration-Performance Data Sets
In this paper, we use the data shared by Shi et al. [46]. The data con-
sists of five data sets:D𝑝 ,D1,D2,D3, andD4.D𝑝 contains the data
traces collected from a physical network with 50 TelosB motes [44],
which runs the open-source WirelessHART implementation [55]
and has six data flows with different sources, destinations, data
periods, and priorities. Three performance metrics, including the
end-to-end latency 𝐿, the battery lifetime 𝐵, and the end-to-end
reliability 𝐸, are selected as the requirements for configuring the
WirelessHART network. To meet such performance requirements,
three configurable network parameters, including the packet re-
ception ratio (PRR) threshold for link selection 𝑅, the number of
physical channels used in the network 𝐶 , and the number of max-
imum transmission attempts per packet 𝐴, are used to generate
the routes and transmission schedule for the network operation.
When 𝑅 ∈ {0.60, 0.61, ..., 0.90}, 𝐶 ∈ {1, 2, ..., 8}, and 𝐴 ∈ {1, 2, 3},
there exist 744 (31 ∗ 8 ∗ 3) parameter combinations. The network
manager may generate the same routes and transmission sched-
ule for different network parameter combinations. After removing
the redundant configurations that result in the same routes and
transmission schedule, there are 88 distinct network configura-
tions. The experiments are performed under each of 88 network
configurations and the network performance (𝐿, 𝐵, and 𝐸 values)
is measured and stored as a data trace every 50𝑠 . Under each net-
work configuration, 75 network performance traces are collected,
resulting in 6,600 (75 ∗ 88) data traces in total. The same Wire-
lessHART implementation and settings are adopted to perform
simulations in the TOSSIM simulator [50], the ns-3 simulator [37],
the Cooja simulator [9], and the OMNeT++ simulator [38] to create
D1, D2, D3, and D4, respectively. D1, D2, D3, and D4 contain
the simulated network performance traces under each network
configuration gathered from these four simulators. Each ofD1,D2,
D3, and D4 also contains 6,600 data traces (75 traces under each of
88 configurations).

3 EMPIRICAL STUDY
In this section, we first formulate the configuration of an industrial
WMN as a machine learning problem and introduce our experi-
mental setup. We then present our empirical study that explores
the benefit of using multiple simulators to close the simulation-to-
reality gap in network configuration.

3.1 Problem Formulation
The primary purpose of configuring an industrial WMN is to select
the network configuration, which can help the network achieve
its desirable performance. Therefore, the network configuration
problem can be formulated as a machine learning problem with the
goal of learning a nonlinear mapping 𝑓𝜃 (·) : x→ y, where x is an
input vector of application-specified performance requirements and
y is a vector of network configuration parameters, which allows the
network to meet the performance requirements x. Here, we let x
= 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛(𝐿, 𝐵, 𝐸) and y = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛(𝑅,𝐶,𝐴). 𝜃 denotes
the model parameters that are learned from the training data in a

Configuring Industrial Wireless Mesh Networks via Multi-Source Domain Adaptation

Figure 1: Prediction accuracy when different numbers of
matches are removed.
data-driven manner. The network configuration parameter values
y can be discretized without losing the generality. Therefore, 𝑓𝜃
can be further restricted as a discriminative model, which solves a
classification problem: the classifier 𝑓𝜃 predicts the network con-
figuration y, which allows the network to meet the performance
requirements x.

3.2 Experimental Setup
The primary goal of our empirical study is to answer the question:
Whether using the data produced by multiple simulators can better
close the simulation-to-reality gap in network configuration than
relying on a single simulator.

WeuseD1,D2, andD𝑝 (see Section 2.2) in our study. To facilitate
the comparisons among D1, D2, and D𝑝 , we preprocess the data
by discretizing the performance measurements x. Specifically, we
divide each performance metric into a set of regions and map each
performance measurement into one of those regions. For example,
all the measurements on the end-to-end latency ranges between
100.12𝑚𝑠 and 499.93𝑚𝑠 . We divide the latency range [100, 500)𝑚𝑠

into 80 regions, map the measurements (e.g., 103.17𝑚𝑠 , 290.38𝑚𝑠 ,
and 498.85𝑚𝑠) into those regions, and convert the measurements
into the region IDs (e.g., 1, 39, and 80). Each of D1, D2, and D𝑝

contains 6,600 data tuples, each of which consists of x and y. For
∀(𝑥,𝑦) ∈ D𝑝 , we define the tuple (𝑥,𝑦) as a match in D1 if (𝑥,𝑦)
exists in D1 and count the number of matches in D1. We follow
the same method to count the number of matches in D2.

We use the number of matches in each simulation data set as a
metric to quantify how much network configuration knowledge
learned from it can be applied in D𝑝 , because there exists a strong
positive correlation between the number of matches in a data set
and the prediction accuracy provided by the machine learning mod-
els trained with it. We have performed experiments to confirm this.
Specifically, we remove different numbers of matches in a simula-
tion data set, train network configuration models using it, and then
measure the prediction performance. For example, Figure 1 shows
the prediction accuracy provided by DNN and SDA models on D𝑝

when the percentage of matches removed from D1 varies from
0% to 90%. Both DNN and SDA provide lower prediction accuracy
when more matches are removed fromD1. The prediction accuracy
achieved by DNN is 33.45% when no match is removed from D1.
The prediction accuracy decreases to 10.15% when 90% of matches
are removed. Similarly, the prediction accuracy provided by SDA
decreases from 70.02% to 59.31% when the percentage of matches
removed from D1 increases from 0% to 90%. More importantly,

we observe very high correlation coefficients between the number
of matches and the prediction accuracy. The Pearson correlation
coefficient under DNN is 0.997 and the one under SDA is 0.984.
The results show that the number of matches in a simulation data
set is a good metric to reflect how much network configuration
knowledge learned from it can be applied in the physical data.

3.3 Results and Observations
To better understand the simulation-to-reality gap in network con-
figuration, we count the number of matches under each network
configuration and divide each number by the number of data tuples
under a configuration (75) to calculate the percentages of matches.
Figure 2 plots the percentage of matches under each network con-
figuration (from 1 to 88). As Figure 2 shows, D1 does not have
any matches under 29 network configurations. For example, D1
does not have any matches under Configuration 70, thus it is very
unlikely for the machine learning model trained with D1 to make
good predictions under this configuration. D2 also does not con-
tain any matches under 29 configurations. The small percentages of
matches under more than half of 88 network configurations explain
the cause of the simulation-to-reality gap in network configura-
tion. The network configuration model learned from simulations
cannot work well in a physical network because of the domain
discrepancy. Such domain discrepancy results from the fact that
the theoretical models adopted by the simulators cannot precisely
capture extensive uncertainties and variations such as interference
in real-world deployments. To investigate whether it is beneficial
to use the data produced by multiple simulators for training, we
combine D1 and D2, count the matches in the combined set D1+2,
and compare them against the ones in D1. We divide the increased
matches under each network configuration by 75 to compute the
increased percentage of matches. Figure 3 plots the increased per-
centage of matches under each configuration. As Figure 3 shows,
compared to D1, D1+2 contains more matches under 10 network
configurations. For example, D1+2 gets five more matches (6.67%)
under Configuration 2. More importantly, under Configuration 79
and 85, D1+2 contains matches (79: 4.0%; 85: 5.33%) while D1 does
not have any matches. D2 is generated by ns-3, which adopts a
theoretical model different from that of TOSSIM. Such a model
provides the knowledge, which cannot be learned from D1. There-
fore, D1 and D2 provide complementary knowledge on network
configuration.

Observation 1: The data produced by multiple simulators carries
more matches than a single simulation data set, which can help on
better closing the simulation-to-reality gap in network configuration.

As Figure 3 shows, the combined set does not have any matches
under some network configurations. This emphasizes the impor-
tance of using the data collected from the physical network to
learn the missing knowledge. Therefore, it is important to develop
a solution that makes good use of the data generated by multiple
simulators and the one collected from the physical network. A naive
solution is to combine the data generated from multiple simulators
and use it as the single source domain for domain adaptation. To
investigate the performance of such an approach, we use half data
from the combined set as the training data and employ SDA to

Cheng, et al.

Figure 2: The percentage of matches under each network configuration in D1 or D2.

Figure 3: The increased percentage of matches under each network configuration in D1+2.

Figure 4: Prediction accuracy on physical data when using
different simulation data sets.

perform training. Figure 4 plots the prediction accuracy when we
use the combined D1 and D2, together with different amounts of
data traces collected from the physical network for training. As
Figure 4 shows, SDA cannot take the advantage of the combined
data and its prediction accuracy when using the combined data is
lower than the one when only using D1 or D2. For example, when
SDA uses D1, D2, and 88 data traces (one data trace under each of
88 configurations) collected from the physical network for training,
SDA achieves 51.67% accuracy. As a comparison, it provides 55.98%
accuracy without using D2 and 53.22% accuracy by using D2.

Observation 2: Simply mixing the data generated by multiple simu-
lators for domain adaptation cannot effectively improve accuracy.

4 MARIA
Motivated by our observations in Section 3.3, we develop MARIA, a
multi-source domain adaptation solution for wireless network con-
figuration, which uses a large amount of simulation data generated
by multiple simulators together with a small amount of physical
data to close the simulation-to-reality gap. Specifically, we consider
𝑀 source domains (the data produced by𝑀 simulators):D𝑠

1 ,D
𝑠
2 , ...,

D𝑠
𝑀
, and one target domainD𝑡 (the data collected from the physical

network). We name source domain as simulation domain and target
domain as physical domain in the rest of this paper. Each simulation
domain consists of data traces D𝑠

𝑘
= {(𝑥𝑠

𝑖
, 𝑦𝑠

𝑖
)}𝑁

𝑠
𝑘

𝑖=1, 𝑘 = 1, 2, ..., 𝑀 ,

where 𝑥𝑠
𝑖
is the 𝑖-th input vector of performance requirements, 𝑦𝑠

𝑖
is

the corresponding network configuration label, and 𝑁 𝑠
𝑘
is the num-

ber of the data traces in the 𝑘-th simulation domain. The physical
domain consists of data traces D𝑡 = {(𝑥𝑡

𝑖
, 𝑦𝑡

𝑖
)}𝑁 𝑡

𝑖=1, where 𝑁
𝑡 is the

number of the data traces in the physical domain. The creation of
D𝑡 is much more costly than creating D𝑠

𝑘
, therefore our goal is to

learn a good classifier 𝑓𝜃 from the data traces in multiple simulation
domains and a little physical domain data (𝑁 𝑡 ≪ 𝑁 𝑠

𝑘
).

Inspired by the efforts that employ multi-source domain adap-
tation in surface electromyography physiological signal process-
ing [7, 48], video concept detection [14], image classification [51]
as well as the theoretical analysis [4, 34], MARIA trains the clas-
sifier 𝑓𝜃 based on the weighted simulation domain data and a few
physical domain data traces. Specifically, the classifier 𝑓𝜃 is learned
by optimizing the following loss function:

L(𝜃) = L𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 + 𝛼L𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (1)

where 𝜃 denotes the parameters of the classifier learned during
the minimizing loss process, 𝛼 is a weighting factor, which is used
to achieve the balance between the loss on physical domain data
L𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 and the loss on simulation domain data L𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 .

Classification loss on physical domain L𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 : L𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙
allows the classifier to learn from a small amount of physical domain
data by employing the cross-entropy loss:

L𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 = − E
(x,y) ∈D𝑡

𝑦 log(𝑓𝜃 (𝑥)) (2)

where y is the one-hot label and 𝑓𝜃 (𝑥) is the prediction provided
by the classifier.

Domain Alignment loss L𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 : L𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 helps the clas-
sifier learn from a larger amount of the simulation data generated
by different simulators. Although the distribution of data traces in
each simulation domain is different from the one in the physical
domain, each simulation domain shares a few matches with the

Configuring Industrial Wireless Mesh Networks via Multi-Source Domain Adaptation

physical domain. Therefore, the classifier can learn more knowl-
edge on the input feature space and the corresponding classification
label of the physical domain when training with the matches of
different simulation domains.

Motivated by the observation that different simulation domains
share different numbers of matches with the physical domain (as
Figure 2 shows), MARIA employs a set of weighting factors to differ-
entiate the contributions of different simulation domains to the loss
L𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 and uses such a weighting scheme to ensure the better
use of those simulation domains that contain more matches and less
use of the simulation domains that contain many duplicated even
conflicted data traces in the training process. Specifically, MARIA
uses the maximum mean discrepancy (MMD) criterion proposed
in [5] to measure the relevance between each simulation domain
and the physical domain. The core idea of MMD is to match two
distributions based on the mean of features in the reproducing
kernel Hilbert space (RKHS) after mapping them to RKHS. By com-
puting MMD between each simulation domain and the physical
domain, MARIA defines the weighting factor 𝛽𝑖 and assigns it to its
corresponding cross-entropy loss. Finally, L𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is decided
by calculating the function:

L𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = −
𝑀∑︁
𝑖=1

𝛽𝑖 E
(x,y) ∈D𝑠

𝑖

𝑦 log(𝑓𝜃 (𝑥)) (3)

where 𝛽𝑖 denotes the relevance between D𝑠
𝑖
and D𝑡 . To compute

𝛽𝑖 , MARIA first measures the MMD value between each simulation
domain and the physical domain, applies the exponential function
to each measured value, and then adds them up. Finally, 𝛽𝑖 is calcu-
lated according to the ratio of the single MMD value to the sum of
all values. Specifically, 𝛽𝑖 is adjusted by calculating the following
function:

𝛽𝑖 =
exp(−𝛾 (𝐷𝑖𝑠 (D𝑠

𝑖
,D𝑡))𝛿)∑𝑀

𝑖=1 exp(−𝛾 (𝐷𝑖𝑠 (D𝑠
𝑖
,D𝑡))𝛿)

(4)

where 𝐷𝑖𝑠 (D𝑠
𝑖
,D𝑡) denotes the measured MMD value between

D𝑠
𝑖
and D𝑡 , 𝛾 and 𝛿 are the coefficients to adjust the spread of

𝐷𝑖𝑠 (D𝑠
𝑖
,D𝑡).

Our implementation adopts a DNN architecture that consists of
three fully connected layers. It uses 𝐿, 𝐵, and 𝐸 as the input features
of 𝑥𝑖 , two hidden layers, and the rectified linear unit (ReLU) as
the activation function for those hidden layers. In addition, our
implementation sets the number of neurons in the output layer
to 88 (equal to the number of all distinct network configuration
categories) and employs the softmax function as the activation
function for the output layer. While considering the number of
total data traces, our implementation sets the batch size equal to
the number of data traces and updates the parameters 𝜃 once in
each epoch to speed up the training process. Our implementation
employs the Adam optimizer [24] to optimize the parameters 𝜃 and
configures the learning rate to 0.12. We set 𝛾 = 1000 and 𝛿 = 2
when we compute 𝛽𝑖 for each simulation domain before optimizing
the loss function L(𝜃).

5 SIMULATION DATA SELECTION
MARIA is designed to train network configuration models based on
input simulation and physical data. However, it is not always bene-
ficial to use all available data for training because some simulation
data sets may not carry unique network configuration knowledge.
Moreover, having more simulation domains increases the difficulty
of optimizing a good network configuration model.

Inspired by the insights learned in Section 3.3, we develop a
method that selects the simulation data sets for training based on
a small amount of physical domain data in D𝑡 . To reduce the dif-
ficulty of optimizing the loss, our method minimizes the number
of simulation domains used for training and makes sure that the
selected simulation data sets include all matches. Specifically, we
consider𝑀 sets: 𝑇𝑘 , 𝑘 = 1, 2, ..., 𝑀 , where 𝑇𝑘 is associated with the
𝑘-th domain D𝑠

𝑘
and includes all matches when comparing D𝑠

𝑘

with D𝑡 . The number of sets𝑀 is equal to the number of simula-
tion domains. The union of those𝑀 sets contains all matches in all
simulation data, namely the universe. Therefore, the simulation do-
main selection problem can be formulated as the set cover problem,
which aims to identify the smallest sub-collection of those𝑀 sets
whose union equals the universe. We have proved the problem to
be NP-hard and omitted the proof here due to space limit.

Algorithm 1: Simulation Data Selection Method
Input :𝑇1, 𝑇2, ..., 𝑇𝑀
Output :a sub-collection

1 Initialize 𝑛 = 0, 𝑐𝑜𝑢𝑛𝑡 [] = {0}, 𝑆 = {𝑇1,𝑇2, ...,𝑇𝑀 };
2 ∀𝑝, 𝑞 ∈ [1 .. 𝑀], initialize𝑈𝑞

𝑝 = 𝑇𝑝 ∩𝑇𝑞 if 𝑝 ≠ 𝑞; otherwise
𝑈
𝑞
𝑝 = ∅;

3 for 𝑖 ← 1 to𝑀 do
4 for 𝑗 ← 1 to𝑀 do
5 If𝑈 𝑗

𝑖
≠ ∅, 𝑐𝑜𝑢𝑛𝑡 [𝑖] = 𝑐𝑜𝑢𝑛𝑡 [𝑖] + 1;

6 If 𝑇𝑖 =
⋃𝑀

𝑗=1𝑈
𝑗
𝑖
, 𝑛 = 𝑛 + 1;

7 for 𝑛 ≥ 1 do
8 if 𝑛 > 1 then
9 if ∃𝑇𝑝 ⊆ 𝑇𝑞 and 𝑇𝑝 ,𝑇𝑞 ∈ 𝑆 (𝑝, 𝑞 ∈ [1 .. 𝑀], 𝑝 ≠ 𝑞)

then
10 𝑆 = 𝑆 −

{
𝑇𝑝

}
;

11 else
12 Identify 𝑇𝑝 among the 𝑛 sets, where 𝑐𝑜𝑢𝑛𝑡 [𝑝] is

the least ;
13 𝑆 = 𝑆 −

{
𝑇𝑝

}
;

14 else
15 𝑆 = 𝑆 −

{
𝑇𝑝

}
; // 𝑇𝑝 is the only one

16 ∀𝑟 ∈ [1 .. 𝑀],𝑈 𝑟
𝑝 = 𝑈

𝑝
𝑟 = ∅;

17 𝑛 = 0, 𝑐𝑜𝑢𝑛𝑡 [] = {0};
18 for 𝑖 ← 1 to𝑀 do
19 for 𝑗 ← 1 to𝑀 do
20 If𝑈 𝑗

𝑖
≠ ∅, 𝑐𝑜𝑢𝑛𝑡 [𝑖] = 𝑐𝑜𝑢𝑛𝑡 [𝑖] + 1;

21 If 𝑇𝑖 ∈ 𝑆 and 𝑇𝑖 =
⋃𝑀

𝑗=1𝑈
𝑗
𝑖
, 𝑛 = 𝑛 + 1;

22 Output 𝑆 ;

Our simulation data selection method removes each simulation
data set, which does not contain unique matches, from the initial

Cheng, et al.

𝑀-set collection one by one. Algorithm 1 illustrates our method
with a collection of simulation data sets 𝑇1, 𝑇2, ..., 𝑇𝑀 as its input.
Algorithm 1 first initializes a counter 𝑛 for the number of redundant
sets, an array 𝑐𝑜𝑢𝑛𝑡 , and a collection of sets 𝑆 (line 1). It also initial-
izes the intersection between each pair of sets𝑈 (line 2). Then, it
traverses each pair of sets in a two-level nested loop and counts
the number of non-empty intersections for each set (line 3-5). If a
set does not contain unique matches, this set is a candidate that
can be removed from 𝑆 and 𝑛 increases by one (line 6). There may
be more than one candidate. If any set 𝑇𝑝 is a subset of 𝑇𝑞 , 𝑇𝑝 is re-
moved from 𝑆 to eliminate the inclusion relation (line 9-10). When
a redundant set is removed, the sets that represent this redundant
set may have to be kept in the final sub-collection. To minimize the
final sub-collection, Algorithm 1 sorts 𝑐𝑜𝑢𝑛𝑡 and removes 𝑇𝑝 with
the least value in 𝑐𝑜𝑢𝑛𝑡 among 𝑛 candidates (line 12-13). If 𝑇𝑝 is
the only candidate, it is removed (line 15). Then, the intersections
associated with 𝑇𝑝 are emptied (line 16). Accordingly, the counter
𝑛 and 𝑐𝑜𝑢𝑛𝑡 are updated to check whether there still exists any
redundant set (line 18-21). Finally, the collection 𝑆 is the output
(line 22). Therefore, the simulation data sets associated with the
sets in 𝑆 are selected for MARIA.

6 EVALUATION
We perform a series of experiments to examine the performance
of MARIA on identifying good network configurations. We first
evaluate the prediction accuracy of MARIA and compare it against
the one provided by the state-of-the-art method SDA [46] (see
Section 6.1). We change the data used by SDA to create multiple
baselines. We then apply the network configurations selected by
MARIA on a physical network and measure its performance (see
Section 6.2). In addition, we investigate the effects of different loss
functions and simulation domain data size on the performance of
MARIA (see Section 6.3 and 6.4) and study how our simulation
data selection affects MARIA (see Section 6.5). Finally, we validate
the performance of MARIA by introducing a validation stage (see
Section 6.6).

We run MARIA and baselines on the data introduced in Sec-
tion 2.2. Specifically, we use D1, D2, D3, and D4, which are gen-
erated by TOSSIM, ns-3, Cooja, and OMNeT++, respectively, for
training. We divide 6,600 physical domain data traces into two sets:
3,960 traces (60% of the data) for training and 2,640 traces (40% of
the data) for testing. We train the network configuration model us-
ing the simulation domain data and the training set of the physical
domain data, and evaluate the model using the testing set of the
physical domain data. We implement our neural network under
the framework provided by PyTorch. In each iteration, our neural
network is trained with all data in the training set and all parame-
ters are updated accordingly. We employ the program provided by
Shi et al. [46] as our baseline implementation and adopt its default
settings.

6.1 Performance of MARIA
We first evaluate the prediction accuracy of MARIA and compare it
against the baselines. Our simulation data selection method selects
D1 and D2 for MARIA as its input. To ensure fair comparisons,
we also use D1 and D2 for SDA and vary the data used as the

Figure 5: Prediction accuracy of different methods when one
to 10 shots of physical domain data, together with the simula-
tion domain data, are used for training. The black dotted line
indicates the accuracy provided by the DNN model trained
with 35 shots of physical domain data.

single simulation domain to create three baselines: (i) using D1
(named SDA-TOSSIM), (ii) using D2 (named SDA-ns-3), and (iii)
using the combination of D1 and D2: half from D1 and half from
D2 (named SDA-mixed). We define 88 data traces (one data trace
under each network configuration) as one shot of data. Figure 5
plots the prediction accuracy of different methods when one to 10
shots of physical domain data, together with simulation domain
data, are used for training. When only one shot of physical domain
data (88 data traces) is used for training, the prediction accuracy
provided by MARIA is 58.18%. Our three baselines provide similar
performance. The highest accuracy provided by three baselines is
55.98%. None of these methods can perform well when they use
a single shot of physical domain data for training. This confirms
the observation that there exist significant performance variations
when the network uses the same configuration due to runtime
dynamics and multiple shots of physical data are needed for ef-
fective domain adaptation [45]. The results also show that blindly
exploring the parameter space (e.g., using a brute-force method)
would require a large amount of physical domain data (thousands
of experimental runs on the physical network) to identify a good
configuration. Collecting one sample under each configuration is
not enough to produce a good model. After more physical domain
data is used for training, the prediction accuracy of all methods
increases. As Figure 5 shows, MARIA consistently achieves the
best performance. For example, when using three shots of physical
domain data, MARIA provides 75.68% prediction accuracy, while
SDA-TOSSIM, SDA-ns-3, and SDA-mixed provide 65.76%, 67.15%,
and 64.85% accuracy, respectively. When five shots of physical do-
main data (440 data traces) are used for training, MARIA achieves
80.45% prediction accuracy, which is close to the 80.39% accuracy
provided by the DNNmodel that is trained with 35 shots of physical
domain data (3,080 data traces). As a comparison, SDA-TOSSIM,
SDA-ns-3, and SDA-mixed provide 70.56%, 67.72%, and 69.75% accu-
racy, respectively, when five shots of physical domain data are used
for training. The reason behind is that different simulators employ
different models to capture the effects of ambient environments
and the network configuration knowledge offered by different sim-
ulators is complementary to each other. MARIA outperforms the
baselines thanks to its capability of taking advantage of the diverse
network configuration knowledge offered by multiple simulators.

Configuring Industrial Wireless Mesh Networks via Multi-Source Domain Adaptation

Figure 6: Energy consumption and time consumption of col-
lecting different amounts of physical data from a physical
network with 50 devices.

Figure 7: Time consumption of different methods when dif-
ferent amounts of physical data are used for training.

Using a small amount of physical domain data to provide a good
model represents a very important feature of MARIA because the
data collection from a physical network is very time and energy
consuming. Figure 6 plots the energy and time consumption of
collecting physical domain data from a network with 50 devices. As
Figure 6 shows, collecting five shots of physical domain data con-
sumes 1,503𝐽 and takes 6.11ℎ𝑜𝑢𝑟𝑠 , while the collection of 10 shots of
physical domain data consumes 3,150𝐽 and takes 12.22ℎ𝑜𝑢𝑟𝑠 . As a
comparison, it consumes 13,974𝐽 and takes 54.99ℎ𝑜𝑢𝑟𝑠 to collect 45
shots of physical domain data to train the DNNmodel for the 82.92%
accuracy. As Figure 5 shows, the prediction accuracy of all methods
increases slowly when more than five shots of physical domain data
are used for training. For example, the accuracy provided byMARIA
increases slightly from 80.45% to 82.70% and the accuracy provided
by SDA-TOSSIM, the one providing the best performance among
three baselines, increases from 70.56% to 71.74%, when we increase
the physical domain data used for training from five shots to 10
shots. Besides, the low accuracy provided by SDA-mixed also shows
that simply mixing the data generated by different simulators for
training does not work well. This is because many duplicated even
conflicted data traces are also added into the training data, which
significantly increases the difficulty of optimizing the classifier.

MARIA is designed to be lightweight. We then evaluate the
efficiency of MARIA by measuring its runtime overhead. We run all
methods on a server equipped with a 2.6GHz quad-core processor
and measure the training time. Figure 7 plots the time consumption
of different methods when different amounts of physical domain
data are used for training. As Figure 7 shows, MARIA consumes
slightly more time than the baselines when three, four, and five

shots of physical domain data are used for training. The slight
increases in time consumption are in exchange for a proportionally
much-larger increase in prediction accuracy. More importantly, the
time consumption of MARIA increases slowly when more physical
domain data is used for training, while the time consumption of
all baselines increases sharply. For example, the time consumed by
MARIA increases from 264𝑠 to 312𝑠 when we increase the physical
domain data from five shots to 10 shots. As a comparison, the
time consumed by SDA-TOSSIM increases from 253𝑠 to 718𝑠 . This
represents another very important feature of MARIA, which results
from the fact that our model is trained with all data traces of the
training set in each iteration while the baselines only use part of
the data traces in the training set during each iteration.

6.2 Validation on a Physical Network
To demonstrate the practicality of MARIA, we apply the network
configurations selected by MARIA on a physical network that con-
sists of 50 devices and measure the network performance including
the end-to-end reliability, the end-to-end latency, and the battery
lifetime. We run the open-source implementation of WirelessHART
networks provided by Li et al. [55] and configure multiple data
flows. We run the experiments under different network topologies
by varying the number of data flows and the locations of sensors
and actuators. When performing the experiments, we first inject
different network performance requirements into MARIA, apply
the network configurations selected by our model on the physical
network, and then examine whether the network that uses the
selected parameters can provide the desirable performance. Table 1
lists the network configurations selected by our model based on
five different sets of network performance requirements. We repeat
experiments under each network configuration 100 times on the
physical network. Figure 8 plots the boxplots of latency, battery
lifetime1, and reliability when deploying five sets of network con-
figurations selected by our model. As Figure 8 shows, when the
network uses the configurations selected by our model, its perfor-
mance meets the requirements specified by the application (listed
in Table 1). For example, the latency, battery lifetime, and relia-
bility requirements are 165𝑚𝑠 , 215𝑑𝑎𝑦, and 98%, respectively, in
the first testing case (ID = 1). When employing the network con-
figuration selected by our model (87% as the PRR threshold, three
physical channels, and three transmission attempts per packet), the
median values of latency, battery lifetime, and reliability measured
from the network are 160.80𝑚𝑠 , 217.93𝑑𝑎𝑦, and 100%, respectively,
which meet all specified requirements. Similarly, the latency, bat-
tery lifetime, and reliability requirements are 180𝑚𝑠 , 205𝑑𝑎𝑦, and
96%, respectively, in the third case (ID = 3). When the network uses
the selected configuration (87% as the PRR threshold, four physical
channels, and two transmission attempts per packet), the network
achieves the median latency of 164.13𝑚𝑠 , the median battery life-
time of 207.05𝑑𝑎𝑦, and the median reliability of 98.0%, which meet
all specified requirements. These results show that the network
configurations selected by MARIA can help the network achieve
desirable performance.

1The battery lifetime is calculate according to the assumption that each device is
powered by two Lithium Iron AA batteries with a total capacity of 42,700𝐽 , the time
duration of radio activities, and the power consumption of the radio in each state
provided by the radio chip data sheet [10].

Cheng, et al.

Table 1: Five Example Network Configurations Selected by Our Model.

Case ID Performance Requirement Network Configuration
Latency (ms) Battery lifetime (day) Reliability (%) PRR threshold (%) # of channels # of Tx attempts

1 165 215 98 87 3 3
2 160 210 96 90 3 2
3 180 205 96 87 4 2
4 220 225 95 90 7 2
5 120 200 98 84 2 3

(a) End-to-end latency. (b) Battery lifetime. (c) End-to-end reliability.

Figure 8: Measured network performance when the network configurations selected by our model are used. Central mark
in box indicates median; bottom and top of box represent the 25th percentile and 75th percentile; red dots indicate outliers;
whiskers indicate the range that excludes outliers.

Figure 9: Prediction accuracy provided by MARIA without
the loss function L𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 .

6.3 Effect of Different Loss Functions
To investigate the effects of different loss functions on the perfor-
mance of MARIA, we repeat the experiments by disabling one loss
function in each run. We first remove all simulation domain data
and disable the loss function L𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 defined in Eq. 3. Figure 9
plots the prediction accuracy when we disable L𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 and
use different shots of physical domain data for training. As Fig-
ure 9 shows, without using L𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 , the accuracy provided by
MARIA is 71.97% when five shots of physical domain data are used
for training. As a comparison, MARIA achieves 80.45% accuracy
with both losses enabled. Without using L𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 , MARIA must
use five more shots of physical domain data to achieve similar pre-
diction accuracy (80.03%). The results show that the loss function
L𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 plays an important role in enhancing the prediction
accuracy, especially when only a small amount of physical domain
data is available for training.

Figure 10: Prediction accuracy provided by MARIA without
the loss function L𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 .

We then remove all physical domain data traces and disable the
loss function L𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 defined in Eq. 2. Figure 10 plots the predic-
tion accuracy provided by MARIA without using L𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 when
different numbers of simulation domain data traces are used for
training. As a comparison, we plot the accuracy achieved byMARIA
when it uses both loss functions and one shot of physical domain
data for training in Figure 10. As Figure 10 shows, the prediction
accuracy increases from 34.35% to 36.38% when the number of data
traces increases from 880 to 7,920. This is because the number of
matches increases when more simulation domain data is used for
training. When more than 7,920 simulation data traces are used
for training, the accuracy increases slightly as the newly added
data includes very few unique matches. For example, the prediction
achieved by MARIA without L𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 is 36.52% when 13,200 data
traces are used for training. As a comparison, the accuracy provided
by MARIA with both loss functions is significantly higher when it
uses only one shot of physical domain data. For example, MARIA
achieves 56.93% accuracy when it uses 880 simulation data traces for

Configuring Industrial Wireless Mesh Networks via Multi-Source Domain Adaptation

Figure 11: Prediction accuracy when we use different num-
bers of simulation data traces.

training and 59.12% accuracy when it uses 13,200 simulation data
traces. The results show the significant effect of the loss function
L𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 on the performance of MARIA.

6.4 Effect of Simulation Domain Data Size
To study the effect of the size of simulation domain data on the
performance of MARIA, we repeat the experiments when different
numbers of simulation data traces (a half fromD1 and the rest from
D2) and five shots of physical domain data are used for training.
Figure 11 plots the prediction accuracy provided by MARIA when
we increase the total number of simulation data traces from 880
to 13,200. As Figure 11 shows, the prediction accuracy increases
when we add more simulation data traces into the training set. For
example, MARIA achieves 77.6% accuracy when using 880 simula-
tion data traces and 80.34% accuracy when using 6,160 simulation
domain data traces. After using more than 6,160 data traces, the
prediction accuracy achieved by MARIA increases slowly. For in-
stance, when 13,200 simulation data traces are used for training, the
prediction accuracy is 82.00%. This is because the newly added data
traces introduce a small amount of unique matches when the size
of simulation domain data is large. The results show that MARIA
can achieve a high accuracy when sufficient simulation domain
data and a few physical domain data traces are used together for
training.

6.5 Effect of Our Simulation Data Selection
Method

To examine the effect of our simulation data selection method on
the performance of MARIA, we disable it and manually create
11 different simulation domain combinations by including some
or all of those four data sets (six combinations by including two
data sets, four combinations by including three data sets, and one
combination by including all four data sets). We then use each
of 11 simulation domain combinations together with five shots of
physical domain data (440 traces) to train the network configuration
model through MARIA. To ensure fair comparisons, we let each
simulation domain combination include 13,200 traces. Figure 12
plots the accuracy provided by MARIA when it uses each of 11
combinations and one single simulation domain for training.

As Figure 12 shows, MARIA achieves the best performance
(82.00% accuracy) when it uses D1 (generated by TOSSIM) and
D2 (generated by ns-3) for training. As a comparison, the model
that usesD3 (generated by Cooja) andD4 (generated by OMNeT++)

Figure 12: Prediction accuracy when the simulation domains
consist of the data sets generated by different simulators.

for training provides 76.55% accuracy. This is because the combina-
tion of D1 and D2 includes more matches than the combination
of D3 and D4. The results confirm the correctness of the selection
made by our method. Figure 12 also shows that using the data from
three or all four simulators does not provide better performance.
For instance, MARIA provides 80.38% accuracy when it uses D1,
D2, and D4 for training and 79.58% accuracy when it replaces D4
with D3. The accuracy of our model is only 78.90% when using
the data generated by all simulators. The results show that blindly
introducing more simulation domains cannot improve the perfor-
mance of MARIA. This is because the combination of D1 and D2
already includes all matches in the simulation data and the difficulty
of optimizing the classifier among multiple simulation domains and
the physical domain increases when more simulation domains are
introduced. The results emphasize the importance of our simula-
tion data selection method. Besides, MARIA provides the lowest
prediction accuracy (72.01%) when it uses the data produced by a
single simulator for training. The results highlight the benefit of
using the simulation data gathered from multiple simulators.

To further validate our simulation data selection method, we
vary the data in the simulation data sets, run Algorithm 1 to select
simulation data, and compare the selections against the optimal
ones. Specifically, we remove different amounts of data from one
data set and combine it with the other sets to create various simu-
lation data combinations. Under each combination, we randomly
remove a certain ratio of data from one data set 1,000 times and
compare the simulation data sets selected by Algorithm 1 against
the optimal selections. If the selection provided by our simulation
data selection method is the same with the optimal selection, we
define it as a correct selection. Figure 13 plots the selection accuracy
(the number of correct selections divided by 1,000) when different
ratios of data (0% to 90%) are removed from D1, D2, D3, and D4,
respectively. As Figure 13 shows, the accuracy is always 100% when
the data removal from D1 ranges from 0% to 70%. After that, the
accuracy decreases slightly to 99.90% when 80% of data is removed
from D1 and finally reaches 99.60% when 90% of data is removed
from D1. When more data is removed, the chance for no unique
matches in D1 increases. Similarly, the accuracy decreases from
100% to 99.90% when 60% of data is removed from D2. It further
decreases to 98.10% when 90% of data is removed D2. As a compar-
ison, the accuracy is consistently 100% when we remove data from
D3 orD4. They both are proper subsets ofD1 orD2, therefore the
data removal does not result in any change on unique matches. The

Cheng, et al.

Figure 13: Selection accuracy of our data selection method
when we vary data in D1, D2, D3, and D4, respectively.

Figure 14: Prediction accuracy with the validation stage.

results demonstrate the effectiveness of our data selection method
in selecting the best-suited simulation data sets for MARIA.

6.6 Performance Validation
Finally, we repeat our experiments with a validation stage to further
validate the performance of MARIA. We use the same simulation
domain data as presented in Section 6.1, and divide 6,600 physical
domain data traces into three sets: training set (60% of the data),
validation set (20% of the data), and testing set (20% of the data).
We train the network configuration model using the simulation
data and the training set of the physical domain data, validate the
model on the validation set of the physical domain data, and then
evaluate the optimal model validated using the testing set of the
physical domain data. We randomly select the data samples from
the physical domain data and put them into those three data sets
and repeat the experiments to eliminate the effect of data partitions
on the results. Figure 14 plots the prediction accuracy achieved by
MARIA and the baselines on the testing set from an experimental
run. As Figure 14 shows, MARIA consistently achieves the best
performance. For example, MARIA achieves 77.65% prediction ac-
curacy when five shots of physical domain data (440 data traces)
are used for training. As comparisons, SDA-TOSSIM, SDA-ns-3, and
SDA-mixed provide 67.42%, 67.35%, and 68.18% accuracy, respec-
tively. We observe similar results when we split the physical data
differently. The experimental results confirm that the prediction
accuracy provided by MARIA is not resulted from overfitting.

7 RELATEDWORK
Significant efforts have been made in the literature to model the
characteristics of wireless sensor networks (WSNs) and optimize

network configurations through mathematical techniques such as
convex optimization [32], game theory [1], and meta heuristics [43].
For example, the characteristics of low-power wireless links have
been studied empirically with different platforms, under varying
experimental conditions, assumptions, and scenarios [3], and net-
work configuration methods have been developed to improve the
performance of WSNs by adapting a few parameters in the physi-
cal and media access control (MAC) layers [12, 13, 16, 42, 52, 62].
As wireless deployments become increasingly hierarchical, hetero-
geneous, and complex, a breadth of recent research has reported
that resorting to advanced machine learning techniques for wire-
less networking presents significant performance improvements
compared to those traditional methods. For instance, deep learning
has been used to automatically uncover correlations that would
otherwise have been too complex to be extracted by human ex-
perts [6, 26, 36, 59] and reinforcement learning has been employed
to enable network self-configuration [11, 23, 28, 33, 40, 53, 57]. The
key component behind the remarkable success of those data-driven
methods is the capability of optimizing a huge number of free
parameters to capture extensive uncertainties, variations, and dy-
namics in real-world wireless deployments, which not only yield
complex features, such as communication signal characteristics,
channel quality, queuing state of each device, and path conges-
tion situation, but also have many network control targets, such
as resource allocation, queue management, and congestion con-
trol. However, data collection from many wireless deployments,
including the ones in industrial facilities, is costly; therefore it is
difficult to obtain sufficient information for deep learning to train
a good model or reinforcement learning to identify an optimal
policy for network configuration. In such scenarios, the benefits
of employing learning-based methods that require much data are
outweighed by the costs. To address this issue, there have been
increasing interests in using network simulations to configure phys-
ical networks [29, 47]. For instance, Liu et al. develop a framework,
which integrates the process control system model and the network
model into a unified discrete-event simulator and leverages it to
identify good network configurations [29]. Slabicki et al. introduce
an open-source framework for end-to-end LoRa simulations and
propose to dynamically optimize link parameters for scalable and
efficient network operations [47]. Unfortunately, a recent study
shows that the network configuration selected according to simula-
tions may fail to help the physical network achieve the desirable
performance due to the simulation-to-reality gap [46]. This paper
aims to close such a gap and provide a new solution that learns
a good predictive model for network configuration using a large
amount of inexpensive simulation data and a small number of costly
physical measurements.

Domain adaptation has been used to narrow the gap between
different domains in computer vision [51, 54, 58], natural language
processing [39], magnetic resonance imaging [18], network per-
formance modeling [27], structural health monitoring [17], and
building occupancy estimation [2, 60]. Domain adaptation aims
to learn from one or multiple source domains, together with or
without a target domain, and then generate a model that performs
well on the target domain. Generally, the source domain data and
the target domain data share the same space for both input features
and labels, but they do not share the same distribution. Over the

Configuring Industrial Wireless Mesh Networks via Multi-Source Domain Adaptation

past decades, many single-source domain adaptation methods have
been proposed to address the domain shift [25, 30]. However, there
have been very few studies looking into the use of domain adap-
tation to address the domain shift issue in network configuration.
Recently, Shi et al. develop SDA, which leverages a teacher-student
neural network to close the simulation-to-reality gap in network
configuration [46]. However, SDA cannot close the gap when using
the data produced by a single simulator and leaves a more than 10%
accuracy gap. More recently, Cheng et al. propose a meta-learning
based solution, which adapts network configuration at runtime.
However, it is not applicable for closing the simulation-to-reality
gap [8]. To our knowledge, this paper represents the first systematic
effort to explore the benefit of using the data generated by mul-
tiple simulators to close the simulation-to-reality gap in network
configuration.

Multi-source domain adaptation [49] has been employed recently
in computer vision [61], natural language processing [19, 39], and
physiological signal processing [7, 48]. For instance, Sun et al. de-
velop a multi-source domain adaptation method, which computes
the weighting factors for multiple sources according to both mar-
ginal and conditional probability differences between the source
domains and the target domain [48]. Duan et al. propose to lever-
age a set of pre-computed classifiers independently learned from
multiple source domains to effectively reduce the domain discrep-
ancy [14]. Peng et al. propose to transfer knowledge learned from
multiple source domains to an unlabeled target domain by dynami-
cally aligning moments of their feature distributions [41]. MMD is
employed by those learning methods to measure the discrepancy
between domains and diminish the distribution shift between the
source domain and target domain accordingly [14, 48]. Moreover,
early theoretical analysis provides strong guarantees for represent-
ing the target domain distribution as the weighted combination of
source domain distributions [4, 34]. Inspired by the existing analysis
and methods, we develop the first solution that leverages the multi-
source domain adaptation to close the simulation-to-reality gap
in network configuration. Our experimental results show that our
solution can close the simulation-to-reality gap and significantly
outperform the state-of-the-art method, SDA.

8 DISCUSSIONS ON REAL-WORLD
APPLICATIONS AND GENERALIZATION

This paper aims to provide a solution for engineers to well configure
an industrial WMN after they deploy it in the field. We recommend
the engineers following six steps to configure the network. First,
the engineers should measure the ambient operation environments,
such as collecting noise traces. Second, the engineers should im-
plement the physical network in multiple simulators and then feed
the environmental measurements into those simulators. Third, the
engineers should run simulations in each simulator to measure the
performance of the simulated network with every possible combi-
nation of network parameters. A large amount of simulation data
that carries valuable network configuration knowledge can be inex-
pensively obtained in this step. Fourth, the engineers should collect
a few performance measurements from the physical network when
it uses each possible combination of network parameters. Collect-
ing the physical data in this step introduces significant overhead

(see Figure 6), which emphasizes the importance of minimizing the
amount of physical data needed for training in our solution. Fifth,
the engineers should train the network configuration model using
MARIA. Finally, the engineers can configure the physical network
in the field with the configuration selected by MARIA based on
the network performance requirements posed by the upper layer
industrial applications.

We expect our solution would affect not only industrial WMNs
but other complex wireless networks as it provides a replicable tem-
plate for novel network configuration strategies. Our data-driven
design is not tied to any specific network protocol stack, network
topology, or performancemetric. Moreover, our deep learning based
solution is capable of accepting a large number of tunable parame-
ters and automatically uncovering the correlations between those
parameters and network performance that would otherwise have
been too complex to be extracted by human experts.

9 CONCLUSIONS
In this paper, we present MARIA, a novel multi-source domain
adaptation solution for industrial WMN configuration. Experimen-
tal results show that MARIA provides 80.45% prediction accuracy
when it uses 6,600 cheaply generated simulation data traces and
440 data traces collected from the physical network for training.
As a comparison, the DNN model trained only with physical data
requires 3,080 costly physical data traces to achieve comparable
prediction accuracy (80.39%).

ACKNOWLEDGMENT
This workwas supported in part by the National Science Foundation
under grant CNS-2150010.

REFERENCES
[1] Eitan Altman, Thomas Boulogne, Rachid El Azouzi, Tania Jiménez, and Laura

Wynter. 2006. A Survey on Networking Games in Telecommunications. Com-
puters and Operations Research 33, 2 (2006), 286–311.

[2] Irvan B Arief-Ang, Flora D Salim, and Margaret Hamilton. 2017. DA-HOC: Semi-
Supervised Domain Adaptation for Room Occupancy Prediction Using 𝐶𝑂2
Sensor Data. In ACM International Conference on Systems for Energy-Efficient
Built Environments (BuildSys).

[3] Nouha Baccour, Anis Koubâa, Luca Mottola, Marco Antonio Zúñiga, Habib
Youssef, Carlo Alberto Boano, and Mário Alves. 2012. Radio Link Quality Es-
timation in Wireless Sensor Networks: A Survey. ACM Transaction on Sensor
Network 8, 4 (2012).

[4] John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
man. 2008. Learning Bounds for Domain Adaptation. In Advances in Neural
Information Processing Systems.

[5] Karsten M. Borgwardt, Arthur Gretton, Malte J. Rasch, Hans-Peter Kriegel, Bern-
hard Schölkopf, and Alex J. Smola. 2006. Integrating Structured Biological Data
by Kernel Maximum Mean Discrepancy. Bioinformatics 22, 14 (2006), e49–e57.

[6] Xianghui Cao, Lu Liu, Yu Cheng, and Xuemin Shen. 2018. Towards Energy-
Efficient Wireless Networking in the Big Data Era: A Survey. IEEE Communica-
tions Surveys & Tutorials 20, 1 (2018), 303–332.

[7] Rita Chattopadhyay, Qian Sun, Wei Fan, Ian Davidson, Sethuraman Pan-
chanathan, and Jieping Ye. 2012. Multisource Domain Adaptation and Its Appli-
cation to Early Detection of Fatigue. ACM Trans. Knowl. Discov. Data 6, 4 (2012),
26 pages.

[8] Xia Cheng and Mo Sha. 2023. Meta-Learning Based Runtime Adaptation for
Industrial Wireless Sensor-Actuator Networks. In IEEE/ACM International Sym-
posium on Quality of Service.

[9] Cooja. 2021. Source Code of Cooja. https://github.com/contiki-os/contiki/wiki/
An-Introduction-to-Cooja

[10] Crossbow. 2010. TelosB. https://dtsheet.com/doc/1368377/telosb-datasheet---
willow-technologies

[11] Hiba Dakdouk, Erika Tarazona, Reda Alami, Raphaël Féraud, Georgios Z. Pa-
padopoulos, and Patrick Maillé. 2018. Reinforcement Learning Techniques for

https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://dtsheet.com/doc/1368377/telosb-datasheet---willow-technologies
https://dtsheet.com/doc/1368377/telosb-datasheet---willow-technologies

Cheng, et al.

Optimized Channel Hopping in IEEE 802.15.4-TSCH Networks. In ACM Interna-
tional Conference on Modeling, Analysis and Simulation of Wireless and Mobile
Systems (MSWIM).

[12] Wei Dong, Chun Chen, Xue Liu, Yuan He, Yunhao Liu, Jiajun Bu, and Xianghua
Xu. 2014. Dynamic Packet Length Control in Wireless Sensor Networks. In IEEE
Transactions on Wireless Communications, Vol. 13.

[13] Wei Dong, Jie Yu, and Pingxin Zhang. 2015. Exploiting Error Estimating Codes for
Packet Length Adaptation in Low-PowerWireless Networks. In IEEE Transactions
on Mobile Computing, Vol. 14.

[14] Lixin Duan, Ivor W. Tsang, Dong Xu, and Tat-Seng Chua. 2009. Domain Adap-
tation from Multiple Sources via Auxiliary Classifiers. In Annual International
Conference on Machine Learning.

[15] Emerson. 2022. Emerson. https://www.emerson.com/en-us/expertise/
automation/industrial-internet-things/pervasive-sensing-solutions/wireless-
technology

[16] Songwei Fu, Yan Zhang, Yuming Jiang, Chengchen Hu, Chia-Yen Shih, and
Pedro Jose Marron. 2015. Experimental Study for Multi-layer Parameter Config-
uration of WSN Links. In IEEE International Conference on Distributed Computing
Systems (ICDCS).

[17] Paul Gardner, Xuanang Liu, and Keith Worden. 2020. On the Application of
Domain Adaptation in Structural Health Monitoring. Mechanical Systems and
Signal Processing 138 (2020), 106550.

[18] Mohsen Ghafoorian, AlirezaMehrtash, Tina Kapur, Nico Karssemeijer, ElenaMar-
chiori, Mehran Pesteie, Charles R. G. Guttmann, Frank-Erik de Leeuw, Clare M.
Tempany, Bram van Ginneken, Andriy Fedorov, Purang Abolmaesumi, Bram
Platel, and William M. Wells. 2017. Transfer Learning for Domain Adaptation in
MRI: Application in Brain Lesion Segmentation. In Medical Image Computing
and Computer Assisted Intervention.

[19] Han Guo, Ramakanth Pasunuru, and Mohit Bansal. 2020. Multi-Source Domain
Adaptation for Text Classification via DistanceNet-Bandits. In Proceedings of the
AAAI Conference on Artificial Intelligence.

[20] IEC. 2017. WIA-FA. https://webstore.iec.ch/publication/32718
[21] IETF. 2020. 6TiSCH: IPv6 over the TSCH mode of IEEE 802.15.4e. https:

//datatracker.ietf.org/wg/6tisch/documents/
[22] ISA100. 2018. ISA100. https://isa100wci.org/
[23] Piumika N. Karunanayake, Andreas Könsgen, Thushara Weerawardane, and

Anna Förster. 2023. Q learning based adaptive protocol parameters for WSNs.
Journal of Communications and Networks 25 (2023). Issue 1.

[24] Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimiza-
tion. In International Conference on Learning Representations (ICLR).

[25] Brian Kulis, Kate Saenko, and Trevor Darrell. 2011. What You Saw Is Not What
You Get: Domain Adaptation Using Asymmetric Kernel Transforms. In IEEE
Conference on Computer Vision and Pattern Recognition.

[26] D.Praveen Kumar, Tarachand Amgoth, and Chandra Sekhara Rao Annavarapu.
2019. Machine Learning Algorithms for Wireless Sensor Networks: A Survey.
Information Fusion 49 (2019), 1–25.

[27] Hannes Larsson, Farnaz Moradi, Jalil Taghia, Xiaoyu Lan, and Andreas Johnsson.
2023. Domain Adaptation for Network Performance Modeling with and without
Labeled Data. In NOMS 2023-2023 IEEE/IFIP Network Operations and Management
Symposium.

[28] Chi Harold Liu, Qiuxia Lin, and Shilin Wen. 2019. Blockchain-Enabled Data
Collection and Sharing for Industrial IoT With Deep Reinforcement Learning.
IEEE Transactions on Industrial Informatics 15, 6 (2019), 3516–3526.

[29] Yongkang Liu, Richard Candell, Kang Lee, and NaderMoayeri. 2016. A Simulation
Framework for Industrial Wireless Networks and Process Control Systems. In
IEEE World Conference on Factory Communication Systems (WFCS).

[30] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. 2015. Learning
Transferable Features with Deep Adaptation Networks. In Proceedings of the
32nd International Conference on Machine Learning.

[31] Chenyang Lu, Abusayeed Saifullah, Bo Li, Mo Sha, Humberto Gonzalez, Dolvara
Gunatilaka, Chengjie Wu, Lanshun Nie, and Yixin Chen. 2016. Real-Time Wire-
less Sensor-Actuator Networks for Industrial Cyber-Physical Systems. Proc. IEEE
104, 5 (2016), 1013–1024.

[32] Zhi Quan Luo and Wei Yu. 2006. An Introduction to Convex Optimization
for Communications and Signal Processing. IEEE Journal on Selected Areas in
Communications 24, 8 (2006), 1426–1438.

[33] Nguyen Cong Luong, Dinh Thai Hoang, Shimin Gong, Dusit Niyato, Ping Wang,
Ying-Chang Liang, and Dong In Kim. 2019. Applications of Deep Reinforcement
Learning in Communications and Networking: A Survey. IEEE Communications
Surveys and Tutorials 21, 4 (2019), 3133–3174.

[34] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. 2009. Domain
Adaptation with Multiple Sources. In Advances in Neural Information Processing
Systems.

[35] James Manyika, Michael Chui, Jacques Bughin, Richard Dobbs, Peter Bisson,
and Alex Marrs. 2013. Disruptive Technologies: Advances that will Transform
Life, Business, and the Global Economy. http://www.mckinsey.com/business-
functions/digital-mckinsey/our-insights/disruptive-technologies

[36] Qian Mao, Fei Hu, and Qi Hao. 2018. Deep Learning for Intelligent Wireless
Networks: A Comprehensive Survey. IEEE Communications Surveys and Tutorials
20, 4 (2018), 2595–2621.

[37] NSNAM. 2019. ns-3 Network Simulator. https://www.nsnam.org/
[38] OMNeT++. 2021. Source Code of OMNeT++. https://github.com/omnetpp/

omnetpp
[39] Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. 2021. A Survey of the

Usages of Deep Learning for Natural Language Processing. IEEE Transactions on
Neural Networks and Learning Systems 32, 2 (2021), 604–624.

[40] Stephen S. Oyewobi, Gerhard P. Hancke, Adnan M. Abu-Mahfouz, and Adeiza J.
Onumanyi. 2019. An Effective Spectrum Handoff Based on Reinforcement
Learning for Target Channel Selection in the Industrial Internet of Things. Sensors
19, 6 (2019), 1–21.

[41] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang.
2019. Moment Matching for Multi-Source Domain Adaptation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV).

[42] Yang Peng, Zi Li, Daji Qiao, andWensheng Zhang. 2013. I2C: AHolistic Approach
to Prolong the Sensor Network Lifetime. In IEEE International Conference on
Computer Communications (INFOCOM).

[43] Mauricio G.C. Resende and Panos Pardalos. 2006. Handbook of Optimization in
Telecommunications. Springer.

[44] Mo Sha. 2016. Testbed at the State University of New York at Binghamton.
https://users.cs.fiu.edu/%7Emsha/testbed.htm

[45] Junyang Shi, AitianMa, Xia Cheng,Mo Sha, and Xi Peng. 2023. AdaptingWireless
Network Configuration From Simulation to Reality via Deep Learning-Based
Domain Adaptation. IEEE/ACM Transactions on Networking (2023), 1–16.

[46] Junyang Shi, Mo Sha, and Xi Peng. 2021. Adapting Wireless Mesh Network
Configuration from Simulation to Reality via Deep Learning based Domain Adap-
tation. In USENIX Symposium on Networked Systems Design and Implementation
(NSDI).

[47] Mariusz Slabicki, Gopika Premsankar, and Mario Di Francesco. 2018. Adap-
tive Configuration of LoRa Networks for Dense IoT Deployments. In IEEE/IFIP
Network Operations and Management Symposium (NOMS).

[48] Qian Sun, Rita Chattopadhyay, Sethuraman Panchanathan, and Jieping Ye. 2011.
A Two-Stage Weighting Framework for Multi-Source Domain Adaptation. In
Advances in Neural Information Processing Systems.

[49] Shiliang Sun, Honglei Shi, and Yuanbin Wu. 2015. A Survey of Multi-Source
Domain Adaptation. Information Fusion 24 (2015), 84–92.

[50] TOSSIM. 2021. Source Code of TOSSIM. https://github.com/tinyos/tinyos-
main/tree/master/tos/lib/tossim

[51] Hang Wang, Minghao Xu, Bingbing Ni, and Wenjun Zhang. 2020. Learning
to Combine: Knowledge Aggregation for Multi-source Domain Adaptation. In
Computer Vision – ECCV.

[52] Jiliang Wang, Zhichao Cao, Xufei Mao, and Yunhao Liu. 2014. Sleep in the
Dins: Insomnia Therapy for Duty-cycled Sensor Networks. In IEEE International
Conference on Computer Communications (INFOCOM).

[53] Jingjing Wang, Chunxiao Jiang, Kai Zhang, Xiangwang Hou, Yong Ren, and Yi
Qian. 2020. Distributed Q-Learning Aided Heterogeneous Network Association
for Energy-Efficient IIoT. IEEE Transactions on Industrial Informatics 16, 4 (2020),
2756–2764.

[54] Mei Wang and Weihong Deng. 2018. Deep Visual Domain Adaptation: A Survey.
Neurocomputing 312, 27 (2018), 135–153.

[55] WCPS. 2018. Wireless Cyber-Physical Simulator (WCPS). http://wsn.cse.wustl.
edu/index.php/WCPS:_Wireless_Cyber-Physical_Simulator

[56] WirelessHART. 2024. WirelessHART. https://fieldcommgroup.org/technologies/
wirelesshart

[57] Hansong Xu, Xing Liu, Wei Yu, David Griffith, and Nada Golmie. 2020. Rein-
forcement Learning-Based Control and Networking Co-Design for Industrial
Internet of Things. IEEE Journal on Selected Areas in Communications 38, 5 (2020),
885–898.

[58] Ruijia Xu, Ziliang Chen, Wangmeng Zuo, Junjie Yan, and Liang Lin. 2018. Deep
Cocktail Network: Multi-Source Unsupervised Domain Adaptation with Cate-
gory Shift. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[59] Chaoyun Zhang, Paul Patras, and Hamed Haddadi. 2019. Deep Learning in
Mobile and Wireless Networking: A Survey. IEEE Communications Surveys &
Tutorials 21, 3 (2019), 2224–2287.

[60] Tianyu Zhang and Omid Ardakanian. 2019. A Domain Adaptation Technique
for Fine-Grained Occupancy Estimation in Commercial Buildings. In ACM/IEEE
International Conference on Internet of Things Design and Implementation (IoTDI).

[61] Sicheng Zhao, Guangzhi Wang, Shanghang Zhang, Yang Gu, Yaxian Li, Zhichao
Song, Pengfei Xu, Runbo Hu, Hua Chai, and Kurt Keutzer. 2020. Multi-Source
Distilling Domain Adaptation. In Proceedings of the AAAI Conference on Artificial
Intelligence.

[62] Marco Zimmerling, Federico Ferrari, Luca Mottola, Thiemo Voigt, and Lothar
Thiele. 2012. pTunes: Runtime Parameter Adaptation for Low-Power MAC
Protocols. In International Conference on Information Processing in Sensor Networks
(IPSN).

https://www.emerson.com/en-us/expertise/automation/industrial-internet-things/pervasive-sensing-solutions/wireless-technology
https://www.emerson.com/en-us/expertise/automation/industrial-internet-things/pervasive-sensing-solutions/wireless-technology
https://www.emerson.com/en-us/expertise/automation/industrial-internet-things/pervasive-sensing-solutions/wireless-technology
https://webstore.iec.ch/publication/32718
https://datatracker.ietf.org/wg/6tisch/documents/
https://datatracker.ietf.org/wg/6tisch/documents/
https://isa100wci.org/
http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/disruptive-technologies
http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/disruptive-technologies
https://www.nsnam.org/
https://github.com/omnetpp/omnetpp
https://github.com/omnetpp/omnetpp
https://users.cs.fiu.edu/%7Emsha/testbed.htm
https://github.com/tinyos/tinyos-main/tree/master/tos/lib/tossim
https://github.com/tinyos/tinyos-main/tree/master/tos/lib/tossim
http://wsn.cse.wustl.edu/index.php/WCPS:_Wireless_Cyber-Physical_Simulator
http://wsn.cse.wustl.edu/index.php/WCPS:_Wireless_Cyber-Physical_Simulator
https://fieldcommgroup.org/technologies/wirelesshart
https://fieldcommgroup.org/technologies/wirelesshart

	Abstract
	1 Introduction
	2 Background and Data Sets
	2.1 WirelessHART Networks
	2.2 Configuration-Performance Data Sets

	3 Empirical Study
	3.1 Problem Formulation
	3.2 Experimental Setup
	3.3 Results and Observations

	4 MARIA
	5 Simulation Data Selection
	6 Evaluation
	6.1 Performance of MARIA
	6.2 Validation on a Physical Network
	6.3 Effect of Different Loss Functions
	6.4 Effect of Simulation Domain Data Size
	6.5 Effect of Our Simulation Data Selection Method
	6.6 Performance Validation

	7 Related Work
	8 Discussions on real-world applications and Generalization
	9 Conclusions
	References

