
Toward MAC Protocol Service over the Air

Tae-Suk Kim, Taerim Park

Samsung Advanced Institute of Technology

Samsung Electronics

Gyunggi-do, South Korea

Email: {taesuk.kim, taerim.park}@samsung.com

Mo Sha and Chenyang Lu

Department of Computer Science and Engineering

Washington University in St. Louis

Email: {sham,lu}@cse.wustl.edu

Abstract—With the rapid permeation of smartphones and
wireless sensors in our society, smartphones are poised to become
personal hubs connecting wireless sensors with users and the
Internet. Due to frequent changes to applications and network
conditions, wireless networks connecting a personal hub and
wireless sensors must meet time-varying QoS requirements at
minimal energy cost. This paper presents the architecture of
a novel Protocol Service System (PSS) towards the vision of
protocol service over the air. In contrast to traditional wireless
networks where a single MAC protocol is statically selected a
priori, PSS switches among multiple MAC protocols at run time to
dynamically optimize power efficiency subject and meet current
QoS requirements. To meet the memory constraint on wireless
sensors PSS employs a component-based reconfigurable MAC
architecture to support multiple MAC protocols at significantly
reduced memory footprint through component sharing. The fea-
sibility of PSS has been demonstrated through a proof-of-concept
implementation of the PSS architecture and the development of
a personal hub prototype running the Android OS.

I. INTRODUCTION

We will live with numerous devices around us in the future.

It is forecasted that more than 7 trillion devices will be

deployed by 2020 [1]. Another report predicted 50 billion

consumer electronics including smartphones and 1 trillion

sensors including RFID/USN will be connected by 2020 [2].

Recent years have already witnessed remarkable increase in

smartphone dissemination. Due to its generality in purpose,

processing power comparable to that of PC, and connectivity

with both the Internet and personal area networks, smartphone

will serve as a personal hub connecting wireless sensors with

the user and the world. The trend of integration of smartphones

and wireless sensors is evident in emerging applications such

as mobile health and entertainments.

In contrast to local area networks, personal networks formed

by personal hub has two main features. First, devices are

required to control energy consumption tightly. In personal

networks, most devices are expected to be battery-powered

and require a battery life from months to years. Second,

a personal network may need to support a wide range of

application-specific QoS requirements such as latency and

compliance with real-time constraints (e.g., monitoring and

control in industrial environments), or reliable data delivery

(e.g., medical applications).

In this paper, we propose to address these challenges by

changing the MAC protocol at run time in response to changes

in application QoS requirements and network conditions.

MAC reconfiguration is an effective control knob due to the

significant impacts of MAC on network performance and

energy consumption. However, dynamics inherent in personal

networks poses challenges. As applications, location, user

preference and network conditions change over time, a wire-

less network protocol optimized to a specific scenario can

lead to poor power efficiency and QoS. Therefore a personal

network connecting the personal hub and wireless sensors

needs to be reconfigured at run time in response changing

QoS requirements and conditions.

This paper proposes a Protocol Service System (PSS) that

realizes protocol service over the air to support adaptive

wireless communication between a personal hub and sur-

rounding sensors. PSS determines the optimal MAC protocol

with respect to the current QoS requirements, workload and

network conditions and then switches to the selected MAC

protocol at run time. Specifically, the main contributions of

this paper are three-fold:

First, we propose a novel Protocol Service Architecture

that optimizes energy efficiency while meeting the current

QoS performance requirements through MAC layer re-

configuration. Our architecture comprises a Protocol Service

Engine (PSE) for identifying the best MAC protocol and

a Reconfigurable MAC Architecture (RMA) for dynamically

switching MAC protocols. In contrast to traditional wireless

networks where a single MAC protocol is statically selected

a priori, our proposed system dynamically switch among

multiple MAC protocols at run time.

Second, we propose a component-based approach to

Reconfigurable MAC Architecture. A key challenge in

supporting multiple MAC protocols on wireless sensors is

their limited memory. The proposed architecture minimizes the

memory footprint by reusing common components shared by

multiple MAC protocols. A proof-of-concept implementation

of RMA with two MAC protocols, BoX-MAC and Pure

TDMA, achieves 60% and 70 % savings in ROM and RAM,

respectively, compared with the sum of the footprints of the

two individual protocols.

Third, we present a proof-of-concept implementation of

PSS on an Android-based platform. Our personal hub pro-

totype integrates an Android-based mobile device emulating

a smartphone and a TinyOS-based mote for communication

with wireless sensors. To our knowledge, this is the first

implementation that realizes the idea of protocol service on

Globecom 2012 - Ad Hoc and Sensor Networking Symposium

469



a mobile device.

II. BACKGROUND AND RELATED WORKS

There are some existing approaches for MAC protocol

optimization and adaptation. Polaste et al. [3] present an

analytical model of node lifetime for B-MAC. Buettner et

al. [4] derive models of energy consumption and per-hop

latency for X-MAC. Ye et al. [5] present a model of energy

consumption to find optimal protocol parameters for SCP.

Those approaches are, however, limited to configuration at

compile time, which leads to suboptimal performance if the

network conditions deviate from the expectations.

Recently, there are some efforts to support MAC opti-

mization in run time. Zimmerling [6] presents a scheme for

automatic parameter adaptation for X-MAC. Meier et al. [7]

propose a MAC optimization architecture that automatically

configures the MAC parameters at runtime in order to increase

the network lifetime. However, these works do not support

protocol switching (i.e., protocol optimization rather than

parameter optimization) in run time.

Among previous works the MAC protocol engine [8] is

similar to ours in perspective of protocol optimization. The

protocol engine then chooses the optimal protocol among its

library, in which the analysis of each protocol is provided,

with optimal protocol parameters satisfying constraints for

energy, delay and reliability for a given network topology.

What is different from our work is that selection of the optimal

protocol is performed in off-line and corresponding parameters

are set at compile time. There is another work [9] on the

concept of protocol optimization. They present a method to

dynamically combine any set of existing MAC protocols into

a single higher layer, called meta-MAC protocol. However,

their concept is not realized and validated through system-

level implementation.

III. PROTOCOL SERVICE SYSTEM

The protocol service system (PSS) actively reconfigures the

protocol of the application program. To this end, the system

needs to perform the function of determining an optimal pro-

tocol for connections with neighbor sensor nodes considering

applications operated on each nodes and reconfiguring the

operating protocol to the optimal one, and the function of

receiving a request from another protocol service system to

reconfigure the current protocol. The protocol service system

including both functions is referred to as a full functional

protocol system device (FPD), while a device only with the

function of receiving is referred to as a reduced functional

protocol system device (RPD). A FPD consists of an analyzer,

a protocol engine, a protocol realizer, and a reconfigurable

protocol stack. A FPD is able to play a role of RPD by de-

activating modules related with the function of reconfiguring:

the analyzer and the protocol engine. Fig.1 illustrates an

operation between protocol reconfiguration capable devices, a

FPD and a RPD. In the following, we provide the description

of its constituent elements and the sequence of operation

between elements.

Fig. 1. Protocol reconfiguration system: FPD-RPD communication

A. Analyzer

The analyzer analyzes requirement information of the appli-

cation program and system information that is obtained from a

protocol layer. The requirement information of the application

program includes QoS related information of the application

program, for example, a latency, a Packet Error Rate (PER),

a lifetime, etc. The system information includes information

that the PSS may obtain from the underlying protocol layers

with respect to a physical (PHY) layer, a media access control

(MAC) layer, and the network layer, for example, channel state

information, the MAC operational parameter, the number of

devices connected. After selecting the necessary information,

the analyzer periodically provides the information to the

protocol engine in a predetermined message format. During

this process, the analyzer can trigger the protocol engine using

an event-based method that is executed every time information

is received or a period based method of triggering the engine

at predetermined intervals.

B. Protocol Service Engine

The protocol engine verifies in real time an optimal pro-

tocol of an application program and determines operating

parameters of the corresponding protocol. The protocol engine

includes a modeling unit and an algorithm unit. The modeling

unit formulates an optimization problem with QoS constraints

from applications. For each protocol that the system retains,

the performance and QoS metrics, such as energy consump-

tion, latency, throughput, etc., are modelled mathematically as

a function of parameters that are obtainable from the analyzer.

Utilizing those models, with the constraints on the applica-

tions’ requirements expressed by the models, an optimization

problem with a metric of interest can be formulated, for

example, energy minimization using the latency requirements.

Those modeling is performed in off-line fashion.

The protocol engine obtains, from the analyzer, a value

with respect to requirement information of the application

program and system information in real-time and then input

the obtained value in the problem defined by the modeling unit.

The protocol engine then determines operating parameters

that optimize the target metric of the underlying protocol

within the range in which requirement information of the

application program is satisfied. These solving process is

performed by the algorithm unit. The algorithm unit selects

or develops a suitable algorithm based on characteristics of

the optimization problem formulated by the modeling unit.

More detail description is provided in section IV.

470



(a) Prototype: top layer (b) Prototype: bottom layer (c) Sensor: Kmote

Fig. 2. HW architecture

C. Realizer

The protocol realizer parses protocol configuration infor-

mation that is received from the protocol engine, and enables

a protocol reconfigured based on the protocol configuration

information to be realized in a protocol layer. To this end,

the protocol realizer generates and passes information to the

protocol stack of local (itself) and remote sensor nodes based

on protocol configuration information. Generated information

includes a protocol identifier (ID) to be changed to and

operating parameter values of the protocol. For the RPD, the

protocol realizer receives a protocol configuration request from

the underlying protocol stack, which receives the information

from the FPD via air. As in the FPD, the information, parsed

from the received information, necessary for the underlying

stack to reconfigure to the requested protocol, is passed to the

stack.

D. Reconfigurable Protocol Stack

The reconfigurable protocol stack maintains a memory

that stores a stack of the plurality of component modules.

A specific protocol is composed of corresponding set of

component modules; through wiring necessary components

a necessary function for the protocol can be executed. The

component modules have trade-off due to overhead resulting

from granularity and thus, can be variously configured based

on a designer’s intent. The reconfigurable protocol stack

transmits information, received from the realizer, to realize

the determined protocol for the application program in the

target device, for example, the RFD connected to the proto-

col reconfiguration system. Realization of the reconfigurable

protocol stack is further discussed in section IV.

IV. IMPLEMENTATION

This section describes the implementation of a PSS pro-

totype as a proof of concept. We first present the hardware

platform, followed by the software architecture.

A. HW architecture

The system consists of two HW platforms. The first one

emulates a mobile device. For this purpose, we developed a

HW prototype as shown in Fig.2. For emulating a sensor node

we used Kmote (similar to TelosB). The mobile device has

two layers. The top layer supports computation functions of a

mobile device. In the layer, S5PC110 a low power application

processor targeting high performance mobile devices and a

3.7 inch touch screen are equipped. S5PC110 is a 32 bit

RISC ARM Cortex-A8 based microprocessor. Its operating

frequency goes up to 1GHz and a lot of peripherals for system,

Fig. 3. SW architecture

memory, multimedia and connectivity are included. On the

microcontroller, we ported Android 2.2. The bottom layer

is a system to support communication, mainly short range

communication. It adopts WiFi and Bluetooth modules, and

they are directly connected to the application processor with

SPI and UART through inter-layer connector. For our sys-

tem, we prepared a separated place for independent modules

which may consist of a communication processor and a radio

transceiver. Then, we plugged in a Kmote, adopting MSP430

as a communication controller and cc2420 as a transceiver.

Also we ported TinyOS 2.1.1 [14] as operating system for re-

configurable protocol stack. It corresponds to communication

firmware in view of a mobile operating system. The Kmote

is connected to the application in the first layer through a SPI

interface.

B. SW architecture

Fig.3 shows SW architecture of the protocol reconfiguration

system. The system mainly consists of four software blocks:

client, server, radio agent, and reconfigurable stack. Client,

server, and radio agent are implemented in Android and

reconfigurable stack is implemented on top of TinyOS. In

the following, the details on implementation of each software

blocks are discussed.

1) Client: Client is an Android activity. Like any other

user application, it may get input from a user and present

results. For the simple testing, we implemented one client

for controlling two separated sensor nodes assuming two

independent applications. The client has two text edit boxes

(packet per seconds and latency bound), two buttons (register

and deregister), and one text view (received contents) for

each application as shown in Fig.3. Register and deregister

buttons are used to emulate conditions of starting/ending a

new service. When the register button is pushed, a message

containing packet rates and latency bound is passed to an

Android service, the server.

2) Server: In this section, we describe how two main

elements of protocol service engine, protocol optimization

problem and solver, are implemented.

471



• Analyzer: An analyzer collects information from clients

and environments, then parse the collected information

for the engine. The information is passed by calling the

engine written in C-language through JNI interface. In

our current implementation, the analyzer only passes the

aggregated packet rates and the smallest latency bound

among two applications.

• Protocol Service Engine - protocol optimization prob-

lem: Based on the analysis of performance metrics for

two sensor protocols, BoX-MAC [11] and Pure TDMA

(PTDMA) [12] (represented in Appendix), the optimiza-

tion problem that chooses the best protocol and its oper-

ating parameters (in terms of energy consumption), given

QoS (latency in this implementation) can be formulated

as

min
p∈{BoX-MAC,PTDMA}

E∗
p , (1)

where E∗
p is the optimal value for a problem for each

protocol that minimizes the energy consumption over

feasible operating parameter, which can be formulated

as

min
x

Ep(x)

subject to Lp(x) ≤ Ql,
(2)

where Ep(x) represent the energy consumption of proto-

col p with the use of parameter x (the wake-up interval

(Tw) and the frame length (Tf ) for BoXmac and PTDMA,

respectively. See Appendix), Lp(x) is the latency incurred

by p using the value of x, and Ql is the QoS requirement

for latency. Thus, by solving (2) for each protocol,

the optimal parameter achieving the minimum energy

consumption for the latency bound are determined. The

optimal values are compared and the best protocol is

selected through (1). In the next section, we will deal

with how to solve the problem.

• Protocol Service Engine - solver: the optimization

problems above has two properties: first, the problem

(2) belongs to integer problem domain (since operating

parameters of each protocol is integer), and second, the

problem (2) without integer constraint is the convex

problem since the objective and requirements are power

function. Exploiting those properties, we utilize branch

& bound algorithm [10] to solve the problem (2), which

is a general approach to integer problem.

• Realizer: Realizer configures both local and remote

TinyOS protocol stacks through issuing control message.

The procedure for configuring protocol stacks managed

by the realizer is as follows: (1) Stop applications

of remote sensors, (2) Request protocol configuration

and confirmation with all neighboring sensor nodes, (3)

Configure local protocol stack, and (4) Restart remote

applications. Control message format with the procedure

above will be discussed in the section of radio agent

below.

Fig. 4. Reconfigurable MAC Architecture

3) Reconfigurable MAC Architecture: The Reconfigurable

MAC Architecture (RMA) prototype is implemented in

TinyOS and runs on the MSP430 microcontroller which is

connected to the S5PC110 and a Chipcon CC2420 (compliant

with IEEE 802.15.4) via two SPIs. RMA is implemented based

on the component-based MAC Layer Architecture (MLA)

[12]. While the current implementation of RMA only supports

two MAC protocols, BoX-MAC and PTDMA, it can be

extended to support more MAC protocols using the MAC

components in MLA. By keeping only a single copy of each

common component shared by multiple MAC protocols, RMA

can support a multitude of MAC protocols without incurring

excessive memory cost.

MLA is a component-based architecture for power-efficient

MAC protocols. MLA distills various features common to

existing MAC protocols into a set of reusable components, op-

timized for the specific function they are intended to provide.

Some of these components are low level, encapsulating the

intricacies of a particular hardware platform. Others are high

level, providing various functionality typical of MAC protocol

design in a reusable fashion. MLA defines link-layer interfaces

that allow for a separation between core radio functionality and

the logic required to perform radio power management. While

MLA is designed to facilitate development of MAC protocols,

its MAC components provide the building blocks for RMA

to support run-time reconfiguration of the MLA layer in a

memory-efficient fashion.

We now describe the current implementation of RMA for

Box-MAC and PTDMA. Fig.4 shows the MAC container

(MacC) of RMA. MacC encapsulates components of different

MAC protocols: tdmaMacC and BoXMacC encasulate the

hardware-independent components for PTDMA and BoX-

MAC, respectively. Notably, both MAC protocols share a

single copy of the radio core resulting in significant sav-

ings in memory footprint (as shown in our evaluation).

For the MAC protocols to be interfaced with upper/lower

layer, two MUX layers are developed in the container;

MuxUpC component implements the MUX layer between

upper layer and MAC layer and MuxLowC component im-

plements the MUX layer between MAC layer and the ra-

dio core. In the MUX layers, the interfaces from upper

layer/radio core are connected to all the MAC protocols

in MacC. The ProtocolController is a component to

472



manage protocol reconfiguration. ProtocolController

is interfaced with Android via SpiSlave interface, with

which control information (the protocol request information)

is received from protocol service engine, and application

data from/to remote sensor node is relayed to/from Android

side. ProtocolController is also interfaced with MacC

through AppControl interface. Once the protocol request

information (ID of the protocol and the values of operating

parameters) is received, it is relayed to the MUX layer

through AppControl. The MUX layer then directs the

events/commands to the interface of the selected protocol to

communicate with upper/lower layers.

4) Radio agent: Interfaced with Android device driver that

is located at the boundary between Android and TinyOS, radio

agent is charge of multiplexing and demultiplexing packets

among a device driver, clients and the server. For the interface

between radio agent and the SW blocks, the MAC payload

structure of IEEE 802.15.4 [13] is utilized. We define Msg ctrl

field (see Fig.3), and according to value of the filed packets are

separated into data and control packet for local protocol and

parameter configuration and for remote protocol and param-

eter configuration. In the case of configuring remote stacks,

the protocol server needs to control the switching operation

of remote sensors. For this purpose, several commands are

reserved in the Command filed in the payload: application

start, application stop, and protocol configuration request.

V. EVALUATION

In this section we show the possible benefit of proposed

protocol service system over realistic scenarios. In particular,

We evaluate the effectiveness of the protocol reconfigura-

tion system from the perspective of energy gain through (1)

parameter optimization on a single MAC protocol and (2)

protocol optimization over multiple protocols (BoX-MAC and

PTDMA).

A. Experimental set-up

For realistic performance evaluation, we categorize ap-

plications in terms of the representative characteristics of

applications (data sampling rate and delay requirement) into

three application groups. Application group 1 (AG 1): high

sampling rate & delay sensitive application, application group

2 (AG 2): low sampling rate & delay sensitive application,

and application group 3 (AG 3): low sampling rate & delay

insensitive application. Table I shows the values of parameters

used in the experiments for each application group. During

evaluation of the parameter optimization performance, the

prototype is connected with one Kmote sensor node, and the

sensor node sends packets, generated by sampling rate of each

application instance, to the prototype. Experiments duration

for each instance has a length of 100 sampled packets.

For the protocol optimization evaluation, a scenario that

simulates a real life usage pattern are considered by dynam-

ically switching application usage; Room temperature sensor

(application group 3) is communicated with smartphone during

8 hours sleep. After wake-up, the user goes to the school,

attaching ECG sensor on body and carrying a note book

with key fob (application group 2). After 2 hours, he comes

back to the home and uses ECG only (application group

1). Sensors are coordinated to send packet at the rate of

application instance specified in Table I according to the

schedule of the scenario. For this evaluation, the two Kmote

sensor nodes are connected to the prototype on the fly; when

only one application instance is serviced, then only one of

the sensor node is serviced. In all the experiments, the energy

consumption on each device is measured by power monitor

[15].

TABLE I
APPLICATION GROUP INSTANCES

AG 1 AG 2 AG 3

Sampling rate (packets/sec) 3 1/3 1/30

Latency requirement (ms) 500 200 1000

Example applications Health-care Security Environmental

applications applications applications

B. Results

1) Effect of parameter optimization: For the performance

comparison with the BoX-MAC with wake-up interval directed

by the proposed system, we choose the BoX-MAC using the

fixed wake-up interval over all the three application instances.

In order to focus on energy consumption gain, we isolate the

feasibility for latency requirement by setting the fixed wake-

up interval to the level satisfying the most tight delay bound

(100 ms for the instance of application group 2), and the

wake-up interval is then set to 72 ms using equation (3),

the worst case of packet delay. The evaluation results are

summarized in Table II, which shows the consumed energy

in mAh (the first value in parenthesis) and wake-up interval

in ms (the second value) for various protocols. For the instance

of application group 1, the wake-up interval, calculated by the

protocol engine, is set to 104 ms, which is 30 ms longer than

the fixed interval of 72ms. This makes the energy consumption

of the sensor node (transmitter) less than that of BoX-MAC

with the fixed interval; this is encouraging results in that the

impact of the energy consumption on the sensor node is much

bigger than the smartphone because the battery size of the

sensor node is much smaller than that of the smartphone. For

the case of application group 2, the feasible wake-up region

to the delay bound (100 ms) is [0, 72], and parameters of both

protocols are set to the maximum feasible point, achieving the

maximum energy saving of receiver. We can easily expect the

better energy consumption would be achieved with a point out

of the feasible region but that would degrade the QoS due to

unsatisfied delay. The performance difference becomes stark in

the case of application group 3. The protocol reconfiguration

system results in 972 ms of wake-up interval, achieving the

598% energy saving compared to the BoX-MAC with 72 ms

interval.

2) Effect of protocol optimization:

• Switching Overhead: The overhead occurred in the

process of protocol reconfiguration are (1) TX/RX of the

three control messages (application stop request, protocol

473



TABLE II
EFFECT OF PARAMETER OPTIMIZATION

AG 1 AG 2 AG 3

RX (proposed) (30.82, 104) (321.52, 72) (328.42, 972)

RX (BoX-MAC) (40.21, 72) (321.41, 72) (3235.79, 72)

TX (Proposed) (61.65, 104) (359.35, 72) (573.92, 972)

TX (BoX-MAC) (58.79, 72) (359.71, 72) (3059.90, 72)

Sum (Proposed) (92.47, 104) (681.02, 72) (902.34, 972)

Sum (BoX-MAC) (99.00, 72) (681.12, 72) (6295.69, 72)

reconfiguration request, and application start request) and

(2) operation invoked on protocol stack for switching

protocol. We investigate the switching overhead by mea-

suring the energy consumption caused by them for the

switching from BoX-MAC to PTDMA, and PTDMA to

BoX-MAC case. In the case of switch from BoX-MAC

to PTDMA, a sensor node spends the extra 0.13 µAh

receiving a control message. The energy consumption of

processing on switching operation is observed to be 4.53

µAh consuming 935.12 ms, during which, BoX-MAC

related functions are turned down, PTDMA functions are

turned on, and synchronizing to coordinator’s beacon is

performed. For the case of switching from PTDMA to

BoX-MAC, the control message invokes 0.01 µAh extra

energy consumption, and energy consumption of 2.31

µAh for switching processing (449 ms). Fig.5 represents

the energy consumption behavior of receiving a control

message and switching processing measured at the sensor

node for the two switching cases considered. Considering

the order of energy consumption of daily usage amounts

to scores to hundreds of mA as shown in the results

below, the amount of overhead is very slight.

• Performance: The consumed energy of various protocols

executed for the scenario is summarized in Table III. As

the experiment progresses, the protocol service system

selects the BoX-MAC with the wake-up interval of 972

ms for temperature application, the BoX-MAC with the

wake-up interval of 72 ms for ECG and key fob, and

the PTDMA with the frame length of 490 ms for ECG

application. With this selection the protocol service sys-

tem achieves 157% and 322% longer battery life against

BoX-MAC and PTDMA with fixed parameters.

TABLE III
EFFECT OF PROTOCOL OPTIMIZATION

node AP 3 (8 h) AP 1 + AP 2 (2 h) AP 1 (3 h)

BoX-MAC node 1 (30.85, 72) (18.25, 72) (7.14, 72)

node 2 (10.36, 72)

PTDMA node 1 (70.87, 90) (17.77, 90) (7.02, 90)

node 2 (17.24, 90)

Proposed node 1 (5.92, 972 (B)) (9.13, 72 (B)) (1.90, 490 (P))

node 2 (5.18, 72 (B))

VI. CONCLUSION

We envision that mobile devices such as smartphones will

interact with wireless sensors “closely and intelligently” as

do current smartphones with human. Personal networks con-

necting mobile devices and sensors must meet application-

specific QoS requirements at minimal energy in dynamic

(a) Packet RX over BoX-MAC (b) PTDMA switching overhead

(c) Packet RX over PTDMA (d) BoX-MAC switching overhead

Fig. 5. Switching Overhead

environments. This paper proposes a Protocol Service System

(PSS) that maintains power efficiency and desired time-varying

QoS by dynamically switching MAC protocols at run time. We

have demonstrated the feasibility and efficacy of PSS through

a proof-of-concept implementation of the PSS architecture

and the development of an Android-based mobile platform

supporting PSS. In the future we will generalize our PSS to

support more MAC protocols and backward compatibility with

legacy wireless sensors. This work represents a promising step

towards the convergence of smartphones and wireless sensors

through universal and optimized connectivity.

APPENDIX

In this section, protocol behavior of BoX-MAC and PT-

DMA is first introduced and analysis of energy consumption

and latency for each protocol is driven.

A. BoX-MAC

BoX-MAC is an asynchronous MAC protocol; A receiver

node periodically wakes up at intervals of Tw to check

incoming packets. Once a data has arrived1, a transmitter starts

initial back-off with maximum back-off window size, Tbw. At

the expire of the back-off window, if the medium comes to

idle during the carrier sense interval of Tcs, it transmits a data

packet as a preamble to wake up the receiver, and it takes time

of Tpkt. After sending the packet, the transmitter waits for the

ACK packet from the receiver during the duration of Tal. If

the transmitter does not receive the ACK, it performs carrier

sense after short back-off, Tsbw, and retransmits the packet if

the channel is free. If energy is detected as a result of carrier

sense when the receiver wakes up, the receiver keeps radio

on and wait for the next entire packet. Once the packet is

successfully received, the receiver transmits the ACK packet

with the air time of Tack.

1we assume that packet arrival process is i.i.d.

474



1) Energy-consumption: Energy efficiency is analyzed by

considering the different sources individually. Energy is spent

performing periodic carrier senses (Ecs), sending (Etx), and

receiving (Erx). When receiving, the node receives Tpkt/2
of the packet in average before the first packet is received

successfully. For the case of transmitting, the sender has

Tw/(Tpkt+Tal) transmission chances, and half of them times

the packet is transmitted assuming the packet arrival is i.i.d.

Energy consumption during Tw is

Ecs = PrxTcs/Tw

Erx = λ((Tal + Tsbw/2 + 3Tpkt/2)Prx + TackPtx)

Etx = λ((Tbw/2 + Tcs)Prx + (Tw/(Tpkt + Tal)/2)

·TpktPtx + (Tw/(Tpkt + Tal)/2)TalPrx)

EBoX-MAC = Ecs+ Erx+ Etx

2) Latency: Latency is defined as the elapsed time from

when the packet arrives at the protocol layer to when a des-

tination receives the packet. Considering more packets within

latency requirement, higher user satisfaction, we perform the

worst case analysis for the latency that a packet experiences.

We assume as soon as a packet has arrived at protocol layer,

the packet is allowed to be sent right away, i.e., no queuing

delay due to prior packet. The worst case scenario is the case

where a transmitter waits for the max back-off windows and

transmits the packet right after the receiver goes to sleep.

Latency, LBoX-MAC, in this case is expressed as

LBoX-MAC = Tbo + Tcs + Tw + Tpkt. (3)

B. Pure TDMA

PTDMA is a TDMA protocol designed for a single-hop

network in which nodes communicate to a single base-station.

This protocol is similar to the GTS portion of 802.15.4. A

frame contains both active and sleep periods. The length of

each period can be configured by the application. The first

slot in the active period is reserved for exchanging time

synchronization information. The remainder of the slots in

the active period is assigned to nodes for transmitting packets

without contention. All nodes will be on during its own active

slots since they may be receiving packets. Radio is waked up

in the first slot of the active period and turned off during sleep

period.

1) Energy-consumption: Energy is spent performing peri-

odic sending a beacon from a hub (E
〈hub〉
bc ), receiving a beacon

(E
〈node〉
bc ), sending and receiving of a hub in active period

(E
〈hub〉
active), and sending and receiving of a node in active period

(E
〈hub〉
active). A hub sends a beacon packet in Tbc during the

first slot, Tslot, in every frame, Tframe. In the active period,

Tactive, a node transmit a packet in an assigned slot, and

during the remainder of the active interval it is listening for

packets to itself. Energy consumed during Tf is

E
〈hub〉
bc = (PtxTbc + Ptx(Tslot − Tbc))/Tf

E
〈node〉
bc = PrxTslot/Tf

E
〈hub〉
active = Prx(Tactive − Tslot)/Tf

E
〈node〉
active = (Prx(Tactive − Tslot − Tpkt) + PtxTpkt)/Tf

EPTDMA = E
〈hub〉
bc + E

〈node〉
bc + E

〈hub〉
active + E

〈node〉
active

2) Latency: The worst case is when the packet has just

arrived right after the assigned slot for the transmitter starts.

In this case, the packet stays in queue during Tframe, waiting

for the slot assigned in the next frame. The latency can be

then expressed as

LPTDMA = Tf + Tpkt. (4)

REFERENCES

[1] L. David, D. Dixit, N. Jefferies, “2020 Vision,” IEEE Vehicular
Technology Magazine, vol.5 , no. 3, pp. 22-29, 2010.

[2] “More than 50 billion connected devices,”
Ericsson white paper [online]. Available:
http://www.ericsson.com/res/docs/whitepapers/wp-50-
billions.pdf.

[3] J. Polastre, J. Hill, D. Culler, “Versatile low power media access
for wireless sensor networks,” In Proceedings of 2nd ACM Conf.
Embedded Networked Sensor Systems (SenSys), 2004.

[4] M. Buettner, G. Anderson, E. Han, “X-MAC: a short preamble
MAC protocol for duty-cycled wireless sensor networks,” In
Proceedings of 4nd ACM Conf. Embedded Networked Sensor
Systems (SenSys), 2006.

[5] W. Ye, F. Silva, and J. Heidemann,“Ultra-low duty cycle mac
with scheduled channel polling,” In Proceedings of 4nd ACM
Conf. Embedded Networked Sensor Systems (SenSys), 2006.

[6] M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele,
“pTunes: Runtime Parameter Adaptation for Low-power MAC
Protocols,” In Proceedings of the 11th ACM/IEEE International
Conference on Information Processing in Sensor Networks
(IPSN), 2012.

[7] A. Meier, M. Woehrle, M. Zimmerling, and L. Thiele, “ZeroCal:
Automatic MAC Protocol Calibration,” In Proceedings of the
6th IEEE International Conference on Distributed Computing
in Sensor Systems (DCOSS), 2010.

[8] S. Ergen, P. Marco, C. Fischione, “MAC Protocol Engine for
Sensor Networks,” In Proceedings of IEEE Global Telecommu-
nications Conference (GLOBECOM), 2009.

[9] A. Farago, A. Myers, V. Syrotiuk, and G. Zaruba,“Meta-MAC
protocols: Automatic combination of MAC protocols to opti-
mize performance for unknown conditions,” IEEE Journal on
Selected Areas in Communications, vol. 18, no. 9, pp. 16701681,
September 2000.

[10] S. Boyd, L. Vandenberghe, “Convex Optimization,” Cambridge
University Press, 2004.

[11] D. Moss and P. Levis,“BoX-MACs: Exploiting Physical and
Link Layer Boundaries in Low-Power Networking,” Technical
Report SING-08-00, Stanford University.

[12] K. Klues, G. Hackmann, O. Chipara and C. Lu, “A Component-
Based Architecture for Power-Efficient Media Access Control in
Wireless Sensor Networks,” In Proceedings of ACM Conference
on Embedded Networked Sensor Systems (SenSys), 2007.

[13] IEEE std 802.15.4-2006: Wireless medium access control
(MAC) and physical layer (PHY) specifications for low-rate
wireless personal area networks (WPANs).

[14] [online] Available: http://docs.tinyos.net
[15] [online] Available: http://www.msoon.com/LabEquipment/PowerMonitor/

475


