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Abstract—Today more and more bus companies are providing
real-time bus locations to their riders to improve passenger
experience and increase ridership. Most of the existing bus
localization systems rely on the Global Navigation Satellite
System (GNSS), such as the Global Positioning System (GPS).
However, it is costly to install GNSS receivers and retrofit
existing buses to power them, which prevents them to be adopted
by those bus operators with tight budgets. There has been
increasing interest in developing GPS-free localization schemes
that leverage the wireless signals transmitted by the buses to
localize them. Such schemes often require the received signal
strength (RSS) measured at multiple base stations and therefore
are not applicable to a small transportation service with a single
base station, such as the shuttle service for a university campus.
This paper presents a novel approach that leverages the LoRa
link characteristics measured by a single base station and deep
learning to localize a campus shuttle when it approaches a stop.
Experimental results show that our solution provides a detection
accuracy of no less than 92.07% and significantly outperforms
all baselines without requiring new hardware and introducing
additional communication overhead.

Index Terms—Campus Shuttle Localization, LoRa, Link Char-
acteristics, Deep Learning

I. INTRODUCTION

Today more and more bus companies are providing real-
time bus locations to their riders to improve passenger ex-
perience and increase ridership. For instance, the real-time
location of a bus can be used to calculate the expected time of
arrival (ETA) at different bus stops. Most of the existing bus
localization systems rely on the Global Navigation Satellite
System (GNSS), such as the Global Positioning System (GPS).
For instance, buses in New York city are equipped with GPS
receivers, and users can use the NYC bus checker app to
get live bus countdowns and estimated arrival time at any
of NYC’s 15,000+ bus stops [1]. However, it is costly to
install GPS receivers and retrofit existing buses to power them,
which prevents them to be adopted by those bus operators
with tight budgets. There exist some alternatives that leverage
RFID [2] and Bluetooth Proximity Beacons [3] to provide
accurate bus locations. Gunady et al. use Bluetooth Low
Energy (BLE) proximity beacons to track the location of a
bus and BLE detection devices are installed at all bus stops
along the route [3]. Extra and expensive hardware is required
both on buses and stops to support such designs. The bus

operators with tight budget consequently have shown a marked
reluctance to embrace them.

There has been increasing interest in developing new lo-
calization schemes that leverage the existing wireless signals
transmitted by the buses to localize them. For example, Ogue-
jiofor designs an outdoor localization system to automatically
locate the position of target devices by measuring the signal
strength at an appropriate number of sensor nodes [4]. Plets
et al. present a performance comparison of signal strength
based and signal arrival time differences based localization
approaches in a public outdoor LoRa network [5]. The
trigonometry calculation is used to obtain the object location
relative to at least three reference points. Such schemes often
require the received signal strength (RSS) to be measured at
multiple base stations and therefore are not applicable to a
small transportation service with a single base station. In this
paper, we have developed a LoRa-based localization system
by using a single base station and existing LoRa [6] traffic.
We present a low-cost solution that leverages the LoRa link
characteristics measured by a single LoRa base station and
deep learning to localize a campus shuttle when it approaches
a stop. Our solution does not require the installation of new
hardware and operates solely with the existing LoRa link
characteristics. Specifically, our paper makes the following
contributions:

• We perform an empirical study that shows the feasibility
of using the LoRa link characteristics measured by a
single LoRa base station to localize campus shuttles;

• We develop a novel deep learning-based localization
method that uses multiple deep neural networks (DNNs)
to predict the shuttle location when it arrives at a stop;

• We implement our solution and test it using the real-world
campus shuttle monitoring system. We have performed
a 14-month empirical study to collect LoRa link traces
to evaluate our localization method. Experimental results
show that our approach can provide high localization
accuracy and outperform several baselines.

The remainder of the paper is organized as follows. Sec-
tion II introduces the background of our LoRa-based campus
shuttle monitoring system. Section III shows our empirical
study and Section IV presents the design of our campus shut-



Fig. 1. Campus shuttle route, stops, and LoRa base station.

Fig. 2. LoRa network architecture.

tle localization approach. Section V evaluates our approach.
Section VI reviews related work. Section VII concludes the
paper.

II. BACKGROUND OF OUR CAMPUS SHUTTLE
MONITORING SYSTEM

In this section, we introduce our campus shuttle monitoring
system, which relies on a LoRa-based wireless network to
collect data from six campus shuttles in a real-time fashion [7].
As Figure 1 shows, all shuttles circle the campus of the State
University of New York at Binghamton (a 1280m × 990m
area) using a fixed counterclockwise route and stop at seven
shuttle stops (marked as A, B, C, D, E, F , and G in Figure 1).

LoRa is a low-power wide-area network modulation tech-
nique that has been initiated by Semtech [8] to build scalable
wireless networks. A LoRa module that works at the sub-
1 GHz bands can achieve a lifetime of up to 4.5 years
with a 2000 mAh battery capacity [9]. The characteristics
of LoRa make it a cost-effective solution to monitor the
campus shuttles. Because the LoRa coverage range is 10 to 15
km, the characteristics of LoRa radio make it possible for a
single LoRa base station to cover our entire campus. Figure 2
shows our LoRa network architecture, which consists of LoRa
end devices, a LoRa base station, and a server. The LoRa
end devices transmit uplink data messages to the LoRa base
station through long-distance LoRa links and the LoRa base

Fig. 3. Hardware deployment for our LoRa network.

station then forwards the messages to the server through an
Ethernet connection. The LoRa base station measures each
incoming LoRa packet’s signal to noise ratio (SNR) and RSS
values, periodically computes the packet delivery ratio (PDR)
of each LoRa link, and forward the information to the server.
The server is responsible for storing the data into a database
and running campus shuttle monitoring applications. A user
can access the database to view the historical data through
an application terminal. The server also generates downlink
application messages and passes them from right to left in
Figure 2 until reaching the designated LoRa end device.
The LoRa base station periodically broadcasts the network
management packets that synchronize the time of all LoRa end
devices on the shuttles. A fixed channel is used for downlink
packets and six dedicated channels are assigned for different
LoRa end devices to avoid conflicts.

Figure 3 shows the LoRa base station placed in a weath-
erproof box on the roof of a three-floor building and a LoRa
end device installed in the glove compartment above the driver
seat on a shuttle. The LoRa base station and end devices are
built by integrating commercial off-the-shelf (COTS) devices:

• The LoRa base station contains a Raspberry Pi 3 Model
B (an embedded computer), which is integrated with an
iC980A module provided by IMST [10]. The iC980A
module is an upgraded version of the IMST iC880A
module, which operates in the 900/915 MHz band.

• The LoRa end device installed on the campus shuttle is
a Raspberry Pi 3 Model B embedded computer, which
is integrated with an RN2903 module [11]. The RN2903
module operates in the 900/915 MHz band that can be
configured in either transmission or reception mode each
time, and it can operate on a single channel for data
transmission or reception. Please note that our LoRa
devices operate in the free, unlicensed band.

LoRa Radios provide several configurable physical-layer pa-
rameters. The spreading factor (SF ) and bandwidth (BW ) de-
termine the time duration of a single LoRa chirp transmission.
The central carrier frequency (fc) decides the LoRa signal
central frequency for communication. The cyclic redundancy



Fig. 4. Seven areas near shuttle stops.

Fig. 5. RSS measurements when the shuttle is at different locations. The
shuttle stops A, B, C, D, E, F , and G are marked in red.

check (CRC) can be used to verify the integrity of the received
packets. The coding rate (CR) is the proportion of the data that
carries the useful information, and LoRa uses the Hamming
code [12] to provide data redundancy and detect errors. We
configure our LoRa devices to use SF = 9, BW = 500KHz,
fc = 910MHz, and CR = 4/8, and enable CRC to achieve
the best performance.

III. EMPIRICAL STUDY

In this section, we present our empirical study that inves-
tigates the feasibility of using the LoRa link characteristics
measured at a single base station to localize campus shuttles.
To obtain the ground truth, we deploy a GPS receiver on
the shuttle, which transmits its current location every 4.5
seconds through the LoRa link. We have performed a 14-
month empirical study and collected 248,000 packets in total
when six campus shuttle circled the university campus 2,185
times. The LoRa base station measures the RSS and the SNR
of each incoming packet and computes the PDR using the
sequence ID carried by each packet.

A. Mapping RSS and SNR to Shuttle Stops

Our goal is to localize a campus shuttle when it approaches
a stop. Figure 4 plots seven areas, which surround our seven
shuttle stops. We first study whether there exist unique RSS
and SNR measurements in each area, which allows us to
localize the shuttle. Figure 5 and Figure 6 plot the RSS and
SNR measurements when the shuttle is at different locations.
The RSS and SNR measurements vary considerably in the

Fig. 6. SNR measurements when the shuttle is at different locations. The
shuttle stops A, B, C, D, E, F , and G are marked in red.

Fig. 7. Heatmap of the number of shuttle stops where we observe the same
pair of RSS and SNR measurements.

same area due to the shuttle movement. For example, the RSS
measurements varies from -96 dBm to -77 dBm at the stop
A and from -113 dBm to -102 dBm at the stop F. Similarly,
the SNR measurements varies from -21 dBm to 1 dBm at
the stop F and from -19 dBm to 1 dBm at the stop G.

Figure 7 plots the heatmap of the number of shuttle stops
where we observe the same pair of RSS and SNR measure-
ments. As Figure 7 shows, the RSS and SNR measurements
with high values may help us localize the shuttle when it
approaches the stop A, which is close to our LoRa base station.

Observation 1: Some pairs of RSS and SNR measurements
appear only at a single shuttle stop, and therefore can be used
to localize the shuttle when it approaches that stop.

However, most RSS and SNR measurements appear in more
than two stops. For example, the combination of RSS =
−109dBm and SNR = −8dBm appears in four stops (C,
D, E, F ) and the combination of RSS = −108dBm and
SNR = −4dBm appears in two stops (D and F ).

Observation 2: Most RSS and SNR measurements appear
at multiple shuttle stops. It is infeasible to localize the shuttle
by simply mapping RSS and SNR measurements to different
shuttle stops.

B. Feasibility of Using Link Characteristics for Shuttle Local-
ization

We further investigate the feasibility of using more link
characteristics to localize the shuttle. Figure 8 plots the PDR,
the RSS, the RSS variation (RSSV), and the SNR when the



Fig. 8. PDR, RSS, RSSV, and SNR measurements when the shuttle circles the
university campus. PDR and RSSV are computed using a 45-second moving
window.

shuttle circles the university campus. We have identified all
lost and corrupted packets by checking the sequence ID carried
by each packet and used them to compute the PDR. The RSSV
is computed by following the equation:

RSSV =

8∑
k=0

|rssi−k − rssi−k−1| (1)

where rssi−k and rssi−k−1 are the (i−k)th and (i−k−1)th
RSS values measured by the LoRa base station. As Figure 8
shows, the PDR is high (100%) when the shuttle is close to the
stop A, decreases when it approaches the stop B, and increases
back to 100% when it gets close to the stop C. Similarly, the
RSS, the RSSV, and the SNR also show some unique changing
patterns when the shuttle approaches different stops.

Observation 3: In addition to RSS and SNR, it is beneficial
to use PDR and RSSV measurements to localize the shuttle.

IV. SYSTEM DESIGN

In this section, we first present an overview of our campus
shuttle localization system and then discuss each engine inside
it.

A. System Overview

Figure 9 shows the design of our campus shuttle localization
system that runs on the LoRa base station. When the system
begins to operate, it enters the training phase, which requires
the shuttles to transmit their ground truth locations together
with their regular data traffic. The Data Preprocessing Engine
gathers the link characteristics and the ground truth shuttle lo-
cations from the LoRa radio, preprocesses them, and forwards
the data to the Modeling Engine, which generates models
for the Localization Engine and the Reset Engine. After the
deep learning models and reset model generation, the campus
shuttle localization system then enters the operation phase and
no longer requires the shuttles to collect location data. The
Localization Engine and Reset Engine uses the LoRa link
characteristics to localize a shuttle when it approaches a shuttle
stop. We will next present the design of each engine.

Fig. 9. Campus shuttle localization system.

B. Data Preprocessing Engine

The Data Preprocessing Engine measures the link character-
istics from the LoRa base station when it receives an incoming
packet. In the training phase, it labels the measured LoRa link
characteristics (PDR, RSS, RSSV, and SNR measurements)
with the ground truth shuttle location carried by the LoRa
packet and then forward the data to the Modeling Engine
that trains the localization models. In the operation phase, it
forwards the measured LoRa link characteristics to the Local-
ization Engine and the Reset Engine that use the localization
models to localize a shuttle. Please note that the ground truth
shuttle locations are needed only in the training phase.

Specifically, the Data Preprocessing Engine performs the
following tasks:

• Identifying missing packets: All received packets are
sorted based on their sequence IDs. Based on the se-
quence IDs carried by the revised LoRa packets and
the predetermined packet transmission interval, the Data
Preprocessing Engine can identify all missing packets
at the LoRa base station. The missing packets’ RSS
and SNR values can be represented by the most recent
measurements.

• Computing categorical values: The shuttle route is di-
vided into seven blocks, which cover seven shuttle stops.
As Figure 4 shows, A, B, C, D, E, F , and G are the
seven blocks. All blocks (Blocki) can be represented as
a categorical value that is between [1, 7]. The categorical
values (labels) are used by the Modeling Engine for
training.

• Feature scaling: The Data Preprocessing Engine uses
min-max normalization method to preprocess all LoRa
link characteristics by following the equation:

x′ =
x−min(x)

max(x)−min(x)
(2)



Fig. 10. Importance factors of different link characteristic features when using
tree-based feature selection method [13].

where x is the original value, and x′ is the normalized
one. The Eq. 2 can convert link values into the range
between [0, 1]. The feature scaling helps to weigh all
the features equally and makes the deep learning model
converge faster.

C. Modeling Engine

1) Problem Formulation: Our localization system aims to
localize a shuttle when it approaches a stop with the following
requirements:

• As shown in Figure 1, the campus shuttle runs following
a fixed route with seven stops. Our localization system
must detect the current location when the campus shuttle
approaches a stop as accurate as possible;

• Our localization system must be able to correct its pre-
diction without human involvement;

• Our localization system must rely on a single one base
station ;

• Our localization system must introduce no additional
overhead and operate with the existing LoRa traffic.

To predict the current shuttle location, we formulate the
shuttle localization task as a machine learning problem.
Let x = concatenation(PDR,RSS,RSSV, SNR) denote
the given network link characteristics and y = P ∈
(A,B,C,D,E, F,G) denote the current shuttle location. Our
goal is to learn a nonlinear mapping fθ(·) : x → y, which can
correctly predict the current shuttle location with the measured
LoRa link characteristics as input.

2) Feature Selection: We perform a feature selection study
to identify important LoRa link characteristics. The feature
importance can represent how useful the input features can
contribute to predict the target variable. We have defined four
input features (LoRa link characteristics) and one target vari-
able (shuttle location). Figure 10 plots the importance factors
of four input features when we use the tree-based method [13]
to compute the score. The input features, which are selected
at the top of the trees, are more important than those at the
lower level of the trees. We plot the normalized importance
factors and the sum of all importance factors equals to one.
The importance factors are 0.2848, 0.2202, 0.2887, and 0.2064
for PDR, RSS, RSSV, and SNR, respectively. The feature

Fig. 11. Location detection accuracy by using DNN classification.

Fig. 12. Multiple DNN models and model controller in the Localization
Engine.

importance scores are in the same order of magnitude. The
results indicate all four different inputs can contribute to
predict the target variable (i.e., shuttle location). Please note
that some input features can be affected by the shuttle running
speed. For instance, the PDR is relatively high when the shuttle
stops or drives at low speed. The PDR decreases when the
shuttle is moving.

3) Simple Classification: The primary goal of our system
is to learn a classifier to identify the shuttle locations based
on input features. We first try to identify each shuttle stop
by using a deep learning model to solve the classification
problem. Multilayer Perceptron (MLP) [14] is used to design
the architecture of a deep learning model: there are 128 and
64 neurons in the first two hidden layers, and eight neurons
in the output layer to represent the seven shuttle stop blocks
and transition block. Figure 11 shows the accuracy of shuttle
location prediction when the shuttle approaches different stops.
The prediction accuracy is 94.20%, 54.84%, 20.90 %, 48.97%,
21.97%, 45.84%, and 24.26% when the campus shuttle arrives
at shuttle stop A, B, C, D, E, F , and G, respectively. The
average accuracy is 44.43%. The simple approach cannot
accurately identify shuttle locations without considering the
sequential order of shuttle arrival (A → B → ... → F → G).
For instance, if campus shuttle approaches stop E, then the
next prediction should be F instead of other locations.

4) Enhanced Deep Learning Model: To improve the overall
performance, the Modeling Engine builds multiple models to
detect different shuttle stops and the model controller in the



Localization Engine selects the correct model for prediction
(See Section IV-E). Figure 12 shows multiple DNN models
computed by the Modeling Engine, which are further stored
in the model container. In the training phase, our Modeling
Engine trains each DNN model to detect each shuttle stop,
independently. Multilayer Perceptron (MLP) is used to design
the architecture of each deep learning model: there are 128
and 64 neurons in the first two hidden layers, and two
neurons in the output layer to represent the detection status
of current stop. The Modeling Engine forwards all models to
the localization engine for online localization. We introduce
the Localization Engine in Section IV-E.

Algorithm 1: Reset Model Construction Algorithm
Input : RSS, SNR,Blocki
Output: Table[][]

1 Table[][]={};
2 if Table[RSS][SNR] is empty then
3 Allocate space for Table[RSS][SNR] ;
4 Table[RSS][SNR] = {Blocki} ;
5 end
6 else if Table[RSS][SNR] is not empty then
7 if Blocki is not in Table[RSS][SNR] then
8 Insert Blocki into Table[RSS][SNR];
9 end

10 end

5) Reset Model: The Modeling Engine also needs to con-
struct the reset model and forwards the model to the Reset
Engine. Basically, the reset model can be used correct the
current model prediction. Algorithm 1 shows the reset model
construction algorithm. The RSS and SNR measurements are
input link characteristics, and Blocki indicates the current
shuttle blocks. Table[][] is a lookup table. We implement it
as a two-level hash table to map the input (RSS and SNR)
to an array of Blocksi. Line 2 to Line 5 of Algorithm 1
initialize the lookup table if it is empty, and allocate space
for the current Blocki. Line 6 to Line 10 of Algorithm 1
check whether the current Blocki existed in the lookup table.
If Blocki is not inside the table, and it will allocate space
for the current Blocki and add into Table[RSS][SNR]. The
Algorithm 1 runs in the training phase and build a map from
(RSS, SNR) to the blocks. This map can be used to set rules
for the RSS and SNR threshold to detect reset points.

D. Reset Engine

Based on the reset model generated by the Modeling En-
gine, the Reset Engine can set up RSS and SNR threshold
for the reset points. Those reset points possess special values
which only appear in specific shuttle stations. If the resetting
points are detected, the Reset Engine outputs the current
location, which bypasses the Localization Engine’s output (See
Section IV-E). The Reset Engine also needs to signal (Sreset)
the model controller in the Localization Engine to reset its
current deep learning model. Please note that the same reset

points can be detected only when the minimum time of shuttle
round interval is satisfied to prevent the repeat correction or
error correction.

E. Localization Engine

Algorithm 2: Model Controller Algorithm
Input : RSS, SNR, Sreset, Sfeedback

Output: Modelnew
1 Modelcur = −1;
2 if Modelcur == −1 then
3 //Initialization
4 if Sreset! = −1 then
5 Modelcur = Sreset ;
6 Output (Modelcur + 1)%N ;
7 end
8 end
9 else

10 //Runtime update
11 if Sreset! = −1 then
12 if Minimum time of shuttle round interval

satisfied then
13 Modelcur = Sreset ;
14 Output (Modelcur + 1)%N ;
15 end
16 end
17 if Sfeedback == True then
18 Modelcur = Modelcur + 1 ;
19 Output (Modelcur + 1)%N ;
20 end
21 end

The Localization Engine has two major modules, which
include the model container and model controller, as shown in
Figure 12. The model container stores multiple DNN models
and the model controller activate the correct DNN model
for the location prediction. Algorithm 2 illustrates the model
controller algorithm. The input values are RSS, SNR, resetting
signal (Sreset), and feedback signal (Sfeedback). Sfeedback is
a boolean value, which represents whether the current stop
has been detected or not. When Sfeedback == True, it
means the current stop has been detected. Then the value
of model selector will increase by one. Line 2 to Line 8
of Algorithm 2 initializes the model selector Modelcur. If a
resetting point is detected (Line 4), Modelcur will be updated
and the model controller signals the Localization Engine to
activate the next DNN model (Modelcur + 1)%N , where
N is the total number of DNN models in the Localization
Engine. Please note that Sreset can be an integer value in the
range of [0, N −1], which represents different shuttle stops. If
the resetting point is detected again and the minimum round
time interval is satisfied, the model controller can correct the
current prediction (Line 11 to Line 16). If the current stop is
detected, Sfeedback will be true, and the next deep learning
model can be activated (Line 17 to Line 20). Please note that



Fig. 13. Campus shuttle round interval. Fig. 14. Detection accuracy under different approaches.

the minimum time of shuttle round interval can ensure that the
reset signal will not be triggered many times within a single
round. Taking our campus shuttle system as an example, the
resetting point at stop A can be detected when RSS and SNR
measurements are above the -90dBm and 0dBm threshold.
The system contains seven DNN models (N = 7) in the
Localization Engine, which can make predictions based on
current link characteristics. By identifying the current shuttle
stop (Sfeedback is true), the current model indicator is updated
(Modelcur = Modelcur +1), then the Control Engine signals
the localization engine to activate the next one. The model
selection process repeats when the campus shuttle circles the
campus.

V. EVALUATION

A. Experimental Setup

We perform a series of experiments to validate the efficiency
of our method to locate the shuttle when it arrives at different
stop. We compare our method against three baselines: (i)
A single DNN model for classification [14]; (ii) SVM-P
method [15]; and (iii) hand-crafted threshold-based localiza-
tion method. As introduced in Section IV-C, we consider a
single DNN model to perform localization. The DNN model
has 128 and 64 neurons in the first two hidden layers, and
8 neurons in the last layer to represent different shuttle stops
and transition blocks. The rectified linear unit (ReLU) is used
to activate each hidden layer and softmax is employed to
the output layers, respectively. We use the Adam optimizer
with a learning rate of 0.01. For the SVM method, we have
considered the polynomial kernel (SVM-P) for classification.
In our hand-crafted method, we set different rules (i.e., RSS,
SNR, and PDR threshold or range) to detect different shuttle
stops. The RSS and SNR threshold for stop A is -90 dBm
and 0 dBm. The PDR range for stop B, C, D, E, F , and
G is [40%, 60%), [90%, 100%], [30%, 40%), [60%, 70%),
[10%, 30%), and [70%, 90%], respectively. Our method has
seven DNN models in total, each of which has 128 and 64
neurons in the first two hidden layers, and two neurons in the
output layer to represent the detection status of current stop.
A total number of 100 training epochs have been trained on
each DNN model. A different number of training data sets has
been used to evaluate our approach against different baselines.

(a) Station A. (b) Station B.

(c) Station C. (d) Station D.

(e) Station E. (f) Station F.

(g) Station G.

Fig. 15. Detection accuracy of our solution over time.

We use 60% of our total data collection to test the detection
accuracy of our model.

B. Detection Accuracy of Our Solution

In this set of experiments, we measure the shuttle stop detec-
tion accuracy of our solution and three baselines. Figure 13
shows the cumulative distribution function (CDF) of round
time intervals when the campus shuttle circles the campus. The
time interval ranges between 430 seconds to 2718 seconds.
The median time interval is 990 seconds. By leveraging the
minimal round interval information (See Algorithm 2) and
different DNN models to detect the campus at different stops,
Figure 14 shows the comparison on the detection accuracy
among different solutions. The detection accuracy of our so-
lution is 99.16%, 97.41%, 96.11%, 95.19%, 92.91%, 92.07%
and 95.19% at different shuttle stops, respectively. The average
accuracy is 71.96% under our solution based on calculation of



Fig. 16. Performance when using a different number of training data sets.

conditional probability. In comparison, the detection accuracy
of a single DNN model is 94.20%, 54.84%, 20.90%, 48.97%,
21.97%, 45.84% and 24.26% at different shuttle stops, re-
spectively. The average accuracy is 44.43%. The SVM-P and
hand-crafted solutions have lower average detection accuracy,
which are 37.15% and 21.52%, respectively. The detection ac-
curacy of SVM is 82.91%, 43.17%, 29.29%, 43.10%, 18.99%,
23.26% and 19.30% at different shuttle stops, respectively.
The results show that our solution consistently outperforms
the baselines. The performance improvement benefits from
the multiple DNN models and the control engine selection
algorithm. We then sort our data by their chronological order
and use a time window of 437 rounds to test our solution over
time. Figure 15 shows the detection accuracy of our solution
over time under different shuttle stations. When the time
increases from 120 hours to 600 hours, the accuracy of our
solution to detect stop A is 99.01%, 99.24%, 99.08%, 98.63%,
99.54% (as shown in Figure 15(a)). Small changes in accuracy
can also be observed at other stations. The results indicate our
solution can be applied under different time windows and the
detection accuracy does not decrease or vary considerably over
time.

C. Performance under Different Amounts of Training Data

We further evaluate the effectiveness of our solution with
the different amount of training data. Figure 16 shows the
detection accuracy of our solution under a different number
of training data sets. When the training data set is one loop,
the detection accuracy of A is 40.19%. It further increases to
92.07%, 95.19%, and 99.08% under 5, 10, and 100 rounds of
training data, respectively. The detection accuracy increases
dramatically when the number of training data sets increases
from one to five loops. For instance, the detection accuracy
increases by 51.88% at stop A when the number of training
data increases from one to five loops. The detection accuracy
is 98.25%, 93.59%, 95.42%, 93.90%, 91.91%, 91.53% and
93.36% at different shuttle stops when the training data set is
20 loops. The results show that our solution performs well with
a small number of training data sets and the cost of training
DNN models is low.

D. Importance of Reset Engine

We perform a study to demonstrate the importance of
the Reset Engine to improve the robustness of the system.

Fig. 17. A micro-benchmark measurement on location prediction with or
without the reset engine.

Fig. 18. Recovery overhead.

Figure 17 shows a micro-benchmark measurement on location
prediction with or without the reset engine. The C and
W on the y-axis represent correct and wrong predictions,
respectively. It can be observed that our method can quickly
correct the prediction with the reset engine. After the wrong
prediction on location F and G, it can correctly predict the
location A. However, it takes a whole round for the one
without the reset engine to correct its location prediction. Our
experimental results demonstrate the importance of the reset
engine to help our localization system quickly recover from
the wrong prediction.

We further measure the number of stops used to correct
prediction with or without the reset engine. Figure 18 shows
the CDF of recovery overhead with or without the reset engine,
respectively. By enabling the reset engine, the maximum
and median recovery overhead are six stops and three stops,
respectively. In contrast, the maximum and median recovery
overhead are 12 stops and five stops by disabling the reset
engine. The results indicate that the reset engine can make the
localization system more stable and robust.

E. Time Consumption of Our Solution

We measure the training time of our DNN models. Figure 19
shows the box plot of training time for each DNN model.
We run the modeling algorithm on a Dell Linux laptop with
the 2.8GHz Intel Core E3-1505M for ten different times. On
average, the modeling time is 60.38 seconds, 58.32 seconds,
61.10 seconds, 57.43 seconds, 62.20 seconds, 55.24 seconds,
and 60.92 seconds for location A, B, C, D, E, F , and
G, respectively. The time consumption of DNN training is



Fig. 19. Training Time of Different DNN models (offline training).

Fig. 20. CDF of execution time for online localization.

moderate, and the modeling time is a one-time expense. Once
the model is established, no further training is required. Our
solution’s detection accuracy over time has been evaluated in
Section V-B. Figure 20 shows the CDF of execution time of
DNN models with the model selection algorithm in the online
localization stage. On average, the execution time is 0.028
seconds. The execution time is far less than the LoRa packets
sending interval (4.5 seconds). The short training time and
execution time demonstrate the high runtime efficiency of our
solution. Our model can provide real-time location predictions
with low execution time.

VI. RELATED WORK

GPS combined with other technologies are traditionally
used to identify moving bus locations and provide arrival time
prediction. For instance, Jisha et al. propose an IoT-based
tracking system to estimate school bus arrival time by using
a combination of GPS, GSM, and RFID technologies [16]. A
Kalman filtering-based prediction algorithm has been used to
estimate the arrival time of a school bus. Lee et al. design a
navigation system that supports autonomous driving through
the use of GPS/DR [17]. The system uses GPS/DR error
estimation based on a lane detection algorithm to improve
the localization performance. However, it is costly to install
localization devices and retrofit existing buses to power them.
The GPS module is power-hungry in the continuous navigation
mode [18], which is unacceptable for resource-constrained IoT
devices.

There has been increasing interest in developing GPS-
free localization schemes that leverage the wireless signals
transmitted by the IoT devices to locate them. Those practical

localization techniques are based majorly on Time of Arrival
(ToA), Time Difference of Arrival (TDoA), RSS, and Angle of
Arrival (AoA) [19]. Multiple base stations or APs are required
to locate the target object. For instance, Xiong et al. develop
an AoA based localization method, which uses antennae arrays
at the receiver side to estimate the device location [20].
Two monitors are required in a two-dimensional space, and
three monitors are required in a three-dimensional space to
track wireless clients. Lam et al. place six anchor nodes and
filter out the nodes strongly affected by noise to identify
the location of target device by using LoRa technology [21].
Thaljaoui et al. design a method for identifying a BLE device
by using three BLE beacons. The method operates in two
stages: the distance estimation stage and iRingLA localization
stage [22]. Shirehjini et al. propose a RFID based localization
system. The mobile device is equipped with an RFID reader,
and it reads the information from multiple RFID tags on
the carpet and then uses the sensor information to calculate
the device’s relative position [23]. Kyritsis et al. present a
low-cost, threshold-based localization approach and design an
algorithm that takes into account both the RSS of the bluetooth
low energy beacons and the geometry of the rooms the
beacons are placed in [24]. Artificial neural networks (ANNs)
are also used to perform device localization. The location
prediction is often formulated as a classification problem.
Altini et al. design a deep learning system based on multiple
neural networks to identify the target object location [25]. The
DNN is trained using the Bluetooth RSS values in the offline
training stage with labels. Once the model is trained, then
it can be used in the online localization stage. Most of the
previous work often requires the measurements performed at
multiple base stations and therefore are not applicable to a
single base station scenario. Recently, Blanco et al. propose
a single base station ToA/AoA localization method [26]. By
using the LTE sounding reference signal, the distance between
the target object and base station is calculated through the ToA
estimation. The AoA is measured by leveraging the multi-
signal classification algorithm [26] and the system has been
evaluated in the office scenario. Such a design can greatly
benefit from the technologies such as Massive Multiple Input
Multiple Output (MIMO) [27] systems to correctly predict
the target object location. In a practical urban environment,
the multiple base stations method used for localization can
rarely be met [28]. Tsalolikhin et al. address the problem
of mobile station localization using a single base station
approach, which attempts to build a statistical model of urban
propagation conditions [29]. The main idea of the proposed
localization approach is to formulate the mobile station local-
ization problem in the target classification framework and to
use the statistical model of the urban propagation conditions
to locate the target object without any hardware modifications.
Porretta et al. propose a deterministic localization method
with a single base station [30]. This method approximates
the urban environment in the base station proximity by a
sentinel function and achieves good localization performance.
The method requires exact knowledge of the urban environ-



ment in the base station proximity. A new mobile station
localization approach based on Ring of Scatterers (ROS)
is proposed in response to the Non-Line-of-Sight (NLOS)
environments [31]. By exploiting the geometrical relations
among the mobile station, scatterers, and the single base
station, Tian et al. present a Geometric Characteristics Based
(GCB) localization algorithm with ROS model that provides
conditional information for accurate location estimation of
mobile station and scatterers [31]. Simulation results illustrate
the superior performance of the proposed algorithm in typical
NLOS environments. In contrast to previous studies, our paper
investigates the feasibility of a single base station localization
by using low-cost and low-power LoRa networks without
introducing extra network traffic. Our approach leverages the
LoRa link characteristics measured by a single LoRa base
station and deep learning method to localize a campus shuttle,
and it is therefore orthogonal and complementary.

VII. CONCLUSIONS

Today most of the existing bus localization systems rely
on the GNSS, such as GPS. However, it is costly to install
GPS receivers and retrofit existing buses to power them,
which prevents them to be adopted by those bus operators
with tight budgets. There also exist some localization methods
that leverage the wireless signals transmitted by the buses to
locate running objects. Such methods often require the RSS
measurements to be performed at multiple base stations and
therefore are not applicable to a small transportation service
with a single base station. In this paper, we present our 14-
month empirical study that investigates the feasibility of using
the LoRa link characteristics measured at a single base station
to localize campus shuttles. Based on our findings, we develop
a novel solution that uses the LoRa link measurements to
localize a shuttle when it approaches a stop. We implement
our solution and test it on our campus shuttle monitoring
system. Experimental results show that our solution provides
the detection accuracy of no less than 92.07% and significantly
outperforms all baselines.
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